llvm-capstone/clang-tools-extra/clangd/Selection.cpp
Sam McCall 5cd77f98a1 [clangd] Address limitations in SelectionTree:
Summary:
 - nodes can have special-cased hit ranges including "holes" (FunctionTypeLoc in void foo())
 - token conflicts between siblings (int a,b;) are resolved in favor of left sibling
 - parent/child overlap is handled statefully rather than explicitly by comparing parent/child
   ranges (this lets us share a mechanism with sibling conflicts)

Reviewers: kadircet

Subscribers: ilya-biryukov, MaskRay, jkorous, mgrang, arphaman, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D63760

llvm-svn: 364519
2019-06-27 11:17:13 +00:00

371 lines
14 KiB
C++

//===--- Selection.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Selection.h"
#include "ClangdUnit.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
using ast_type_traits::DynTypedNode;
// Stores a collection of (possibly-overlapping) integer ranges.
// When new ranges are added, hit-tests them against existing ones.
class RangeSet {
public:
// Returns true if any new offsets are covered.
// This is naive (linear in number of successful add() calls), but ok for now.
bool add(unsigned Begin, unsigned End) {
assert(std::is_sorted(Ranges.begin(), Ranges.end()));
assert(Begin < End);
if (covered(Begin, End))
return false;
auto Pair = std::make_pair(Begin, End);
Ranges.insert(llvm::upper_bound(Ranges, Pair), Pair);
return true;
}
private:
bool covered(unsigned Begin, unsigned End) {
assert(Begin < End);
for (const auto &R : Ranges) {
if (Begin < R.first)
return false; // The prefix [Begin, R.first) is not covered.
if (Begin < R.second) {
Begin = R.second; // Prefix is covered, truncate the range.
if (Begin >= End)
return true;
}
}
return false;
}
std::vector<std::pair<unsigned, unsigned>> Ranges; // Always sorted.
};
// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
// Runs the visitor to gather selected nodes and their ancestors.
// If there is any selection, the root (TUDecl) is the first node.
static std::deque<Node> collect(ASTContext &AST, unsigned Begin,
unsigned End, FileID File) {
SelectionVisitor V(AST, Begin, End, File);
V.TraverseAST(AST);
assert(V.Stack.size() == 1 && "Unpaired push/pop?");
assert(V.Stack.top() == &V.Nodes.front());
if (V.Nodes.size() == 1) // TUDecl, but no nodes under it.
V.Nodes.clear();
return std::move(V.Nodes);
}
// We traverse all "well-behaved" nodes the same way:
// - push the node onto the stack
// - traverse its children recursively
// - pop it from the stack
// - hit testing: is intersection(node, selection) - union(children) empty?
// - attach it to the tree if it or any children hit the selection
//
// Two categories of nodes are not "well-behaved":
// - those without source range information, we don't record those
// - those that can't be stored in DynTypedNode.
// We're missing some interesting things like Attr due to the latter.
bool TraverseDecl(Decl *X) {
if (X && isa<TranslationUnitDecl>(X))
return Base::TraverseDecl(X); // Already pushed by constructor.
// Base::TraverseDecl will suppress children, but not this node itself.
if (X && X->isImplicit())
return true;
return traverseNode(X, [&] { return Base::TraverseDecl(X); });
}
bool TraverseTypeLoc(TypeLoc X) {
return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
}
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
return traverseNode(
&X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
}
bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
return traverseNode(
X, [&] { return Base::TraverseConstructorInitializer(X); });
}
// Stmt is the same, but this form allows the data recursion optimization.
bool dataTraverseStmtPre(Stmt *X) {
if (!X || canSafelySkipNode(X->getSourceRange()))
return false;
push(DynTypedNode::create(*X));
return true;
}
bool dataTraverseStmtPost(Stmt *X) {
pop();
return true;
}
// Uninteresting parts of the AST that don't have locations within them.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
bool TraverseType(QualType) { return true; }
private:
using Base = RecursiveASTVisitor<SelectionVisitor>;
SelectionVisitor(ASTContext &AST, unsigned SelBegin, unsigned SelEnd,
FileID SelFile)
: SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
SelBegin(SelBegin), SelEnd(SelEnd), SelFile(SelFile),
SelBeginTokenStart(SM.getFileOffset(Lexer::GetBeginningOfToken(
SM.getComposedLoc(SelFile, SelBegin), SM, LangOpts))) {
// Ensure we have a node for the TU decl, regardless of traversal scope.
Nodes.emplace_back();
Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
Nodes.back().Parent = nullptr;
Nodes.back().Selected = SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
// Node is always a pointer so the generic code can handle any null checks.
template <typename T, typename Func>
bool traverseNode(T *Node, const Func &Body) {
if (Node == nullptr || canSafelySkipNode(Node->getSourceRange()))
return true;
push(DynTypedNode::create(*Node));
bool Ret = Body();
pop();
return Ret;
}
// HIT TESTING
//
// We do rough hit testing on the way down the tree to avoid traversing
// subtrees that don't touch the selection (canSafelySkipNode), but
// fine-grained hit-testing is mostly done on the way back up (in pop()).
// This means children get to claim parts of the selection first, and parents
// are only selected if they own tokens that no child owned.
//
// Nodes *usually* nest nicely: a child's getSourceRange() lies within the
// parent's, and a node (transitively) owns all tokens in its range.
//
// Exception 1: child range claims tokens that should be owned by the parent.
// e.g. in `void foo(int);`, the FunctionTypeLoc should own
// `void (int)` but the parent FunctionDecl should own `foo`.
// To handle this case, certain nodes claim small token ranges *before*
// their children are traversed. (see earlySourceRange).
//
// Exception 2: siblings both claim the same node.
// e.g. `int x, y;` produces two sibling VarDecls.
// ~~~~~ x
// ~~~~~~~~ y
// Here the first ("leftmost") sibling claims the tokens it wants, and the
// other sibling gets what's left. So selecting "int" only includes the left
// VarDecl in the selection tree.
// An optimization for a common case: nodes outside macro expansions that
// don't intersect the selection may be recursively skipped.
bool canSafelySkipNode(SourceRange S) {
auto B = SM.getDecomposedLoc(S.getBegin());
auto E = SM.getDecomposedLoc(S.getEnd());
if (B.first != SelFile || E.first != SelFile)
return false;
return B.second >= SelEnd || E.second < SelBeginTokenStart;
}
// Pushes a node onto the ancestor stack. Pairs with pop().
// Performs early hit detection for some nodes (on the earlySourceRange).
void push(DynTypedNode Node) {
bool SelectedEarly = claimRange(earlySourceRange(Node));
Nodes.emplace_back();
Nodes.back().ASTNode = std::move(Node);
Nodes.back().Parent = Stack.top();
// Early hit detection never selects the whole node.
Nodes.back().Selected =
SelectedEarly ? SelectionTree::Partial : SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Pops a node off the ancestor stack, and finalizes it. Pairs with push().
// Performs primary hit detection.
void pop() {
Node &N = *Stack.top();
if (auto Sel = claimRange(N.ASTNode.getSourceRange()))
N.Selected = Sel;
if (N.Selected || !N.Children.empty()) {
// Attach to the tree.
N.Parent->Children.push_back(&N);
} else {
// Neither N any children are selected, it doesn't belong in the tree.
assert(&N == &Nodes.back());
Nodes.pop_back();
}
Stack.pop();
}
// Returns the range of tokens that this node will claim directly, and
// is not available to the node's children.
// Usually empty, but sometimes children cover tokens but shouldn't own them.
SourceRange earlySourceRange(const DynTypedNode &N) {
if (const Decl *D = N.get<Decl>()) {
// void [[foo]]();
if (auto *FD = llvm::dyn_cast<FunctionDecl>(D))
return FD->getNameInfo().getSourceRange();
// int (*[[s]])();
else if (auto *VD = llvm::dyn_cast<VarDecl>(D))
return VD->getLocation();
}
return SourceRange();
}
// Perform hit-testing of a complete Node against the selection.
// This runs for every node in the AST, and must be fast in common cases.
// This is usually called from pop(), so we can take children into account.
SelectionTree::Selection claimRange(SourceRange S) {
if (!S.isValid())
return SelectionTree::Unselected;
// getTopMacroCallerLoc() allows selection of constructs in macro args. e.g:
// #define LOOP_FOREVER(Body) for(;;) { Body }
// void IncrementLots(int &x) {
// LOOP_FOREVER( ++x; )
// }
// Selecting "++x" or "x" will do the right thing.
auto B = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getBegin()));
auto E = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getEnd()));
// Otherwise, nodes in macro expansions can't be selected.
if (B.first != SelFile || E.first != SelFile)
return SelectionTree::Unselected;
// Cheap test: is there any overlap at all between the selection and range?
// Note that E.second is the *start* of the last token, which is why we
// compare against the "rounded-down" SelBegin.
if (B.second >= SelEnd || E.second < SelBeginTokenStart)
return SelectionTree::Unselected;
// We may have hit something, need some more precise checks.
// Adjust [B, E) to be a half-open character range.
E.second += Lexer::MeasureTokenLength(S.getEnd(), SM, LangOpts);
auto PreciseBounds = std::make_pair(B.second, E.second);
// Trim range using the selection, drop it if empty.
B.second = std::max(B.second, SelBegin);
E.second = std::min(E.second, SelEnd);
if (B.second >= E.second)
return SelectionTree::Unselected;
// Attempt to claim the remaining range. If there's nothing to claim, only
// children were selected.
if (!Claimed.add(B.second, E.second))
return SelectionTree::Unselected;
// Some of our own characters are covered, this is a true hit.
// Determine whether the node was completely covered.
return (PreciseBounds.first >= SelBegin && PreciseBounds.second <= SelEnd)
? SelectionTree::Complete
: SelectionTree::Partial;
}
SourceManager &SM;
const LangOptions &LangOpts;
std::stack<Node *> Stack;
RangeSet Claimed;
std::deque<Node> Nodes; // Stable pointers as we add more nodes.
// Half-open selection range.
unsigned SelBegin;
unsigned SelEnd;
FileID SelFile;
// If the selection start slices a token in half, the beginning of that token.
// This is useful for checking whether the end of a token range overlaps
// the selection: range.end < SelBeginTokenStart is equivalent to
// range.end + measureToken(range.end) < SelBegin (assuming range.end points
// to a token), and it saves a lex every time.
unsigned SelBeginTokenStart;
};
} // namespace
void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
int Indent) const {
if (N.Selected)
OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
: '.');
else
OS.indent(Indent);
if (const TypeLoc *TL = N.ASTNode.get<TypeLoc>()) {
// TypeLoc is a hierarchy, but has only a single ASTNodeKind.
// Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
if (TL->getTypeLocClass() == TypeLoc::Qualified)
OS << "QualifiedTypeLoc";
else
OS << TL->getType()->getTypeClassName() << "TypeLoc";
} else {
OS << N.ASTNode.getNodeKind().asStringRef();
}
OS << " ";
N.ASTNode.print(OS, PrintPolicy);
OS << "\n";
for (const Node *Child : N.Children)
print(OS, *Child, Indent + 2);
}
// Decide which selection emulates a "point" query in between characters.
static std::pair<unsigned, unsigned> pointBounds(unsigned Offset, FileID FID,
ASTContext &AST) {
StringRef Buf = AST.getSourceManager().getBufferData(FID);
// Edge-cases where the choice is forced.
if (Buf.size() == 0)
return {0, 0};
if (Offset == 0)
return {0, 1};
if (Offset == Buf.size())
return {Offset - 1, Offset};
// We could choose either this byte or the previous. Usually we prefer the
// character on the right of the cursor (or under a block cursor).
// But if that's whitespace, we likely want the token on the left.
if (isWhitespace(Buf[Offset]) && !isWhitespace(Buf[Offset - 1]))
return {Offset - 1, Offset};
return {Offset, Offset + 1};
}
SelectionTree::SelectionTree(ASTContext &AST, unsigned Begin, unsigned End)
: PrintPolicy(AST.getLangOpts()) {
// No fundamental reason the selection needs to be in the main file,
// but that's all clangd has needed so far.
FileID FID = AST.getSourceManager().getMainFileID();
if (Begin == End)
std::tie(Begin, End) = pointBounds(Begin, FID, AST);
PrintPolicy.TerseOutput = true;
PrintPolicy.IncludeNewlines = false;
Nodes = SelectionVisitor::collect(AST, Begin, End, FID);
Root = Nodes.empty() ? nullptr : &Nodes.front();
}
SelectionTree::SelectionTree(ASTContext &AST, unsigned Offset)
: SelectionTree(AST, Offset, Offset) {}
const Node *SelectionTree::commonAncestor() const {
if (!Root)
return nullptr;
for (const Node *Ancestor = Root;; Ancestor = Ancestor->Children.front()) {
if (Ancestor->Selected || Ancestor->Children.size() > 1)
return Ancestor;
// The tree only contains ancestors of the interesting nodes.
assert(!Ancestor->Children.empty() && "bad node in selection tree");
}
}
} // namespace clangd
} // namespace clang