llvm with tablegen backend for capstone disassembler
Go to file
Craig Topper 5f3bf5967b [X86] Fix f128->i16 fptosi to promote the i16 to i32 before trying to form a libcall.
Previously one of the test cases added here gave an error.
2019-11-20 17:09:31 -08:00
clang [Sema] Add a 'Semantic' parameter to Expr::isKnownToHaveBooleanValue 2019-11-20 16:29:31 -08:00
clang-tools-extra [clang-tidy] modernize-use-equals-default avoid adding redundant semicolons 2019-11-20 18:08:37 -05:00
compiler-rt scudo: Only use the Android reserved TLS slot when building libc's copy of the allocator. 2019-11-20 11:30:58 -08:00
debuginfo-tests [debuginfo] Update test to account for missing __debug_macinfo 2019-11-11 10:40:47 -08:00
libc Illustrate a redirector using the example of round function from math.h. 2019-11-01 11:06:12 -07:00
libclc libclc: Drop the old python based build system 2019-11-08 09:59:40 -05:00
libcxx [libc++] Separate -include and path to the site config file 2019-11-18 16:28:53 -05:00
libcxxabi [libcxxabi] Prevent cmake from removing our explicit system C++ include paths 2019-11-12 10:08:40 -08:00
libunwind [libunwind] Adjust the signal_frame test for Arm 2019-11-19 09:58:46 +00:00
lld Ignore R_MIPS_JALR relocations against non-function symbols 2019-11-20 13:23:26 +00:00
lldb [Reproducer] Limit signals to macro define sin <csignal> 2019-11-20 14:28:37 -08:00
llgo
llvm [X86] Fix f128->i16 fptosi to promote the i16 to i32 before trying to form a libcall. 2019-11-20 17:09:31 -08:00
openmp [nfc][libomptarget] Remove casts of string literals to char* 2019-11-19 19:41:59 +00:00
parallel-libs
polly Add missing includes needed to prune LLVMContext.h include, NFC 2019-11-14 15:23:15 -08:00
pstl
.arcconfig
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.