mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-04 14:23:00 +00:00

In line with #66515, change `MutableArrayRange::begin`/`end` to enumerate `OpOperand &` instead of `Value`. Also remove `ForOp::getIterOpOperands`/`setIterArg`, which are now redundant. Note: `MutableOperandRange` cannot be made a derived class of `indexed_accessor_range_base` (like `OperandRange`), because `MutableOperandRange::assign` can change the number of operands in the range.
736 lines
30 KiB
C++
736 lines
30 KiB
C++
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the tiling using TilingInterface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/SCF/Utils/Utils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
|
|
#include "mlir/Interfaces/TilingInterface.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "tile-using-interface"
|
|
|
|
using namespace mlir;
|
|
|
|
scf::SCFTilingOptions &
|
|
scf::SCFTilingOptions::setTileSizes(ArrayRef<OpFoldResult> ts) {
|
|
assert(!tileSizeComputationFunction && "tile sizes already set");
|
|
auto tileSizes = llvm::to_vector(ts);
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
return tileSizes;
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
/// Helper method to adjust the interchange vector to match the iteration
|
|
/// domain.
|
|
static SmallVector<int64_t>
|
|
fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
|
|
size_t iterationDomainSize) {
|
|
SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
|
|
if (filledVector.size() < iterationDomainSize) {
|
|
auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
|
|
filledVector.append(range.begin(), range.end());
|
|
}
|
|
if (filledVector.size() > iterationDomainSize)
|
|
filledVector.resize(iterationDomainSize);
|
|
return filledVector;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// tileUsingSCFForOp implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Check if `stride` evenly divides the trip count `size - offset`.
|
|
static bool tileDividesIterationDomain(Range loopRange) {
|
|
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
|
|
if (!offsetAsInt)
|
|
return false;
|
|
std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
|
|
if (!sizeAsInt)
|
|
return false;
|
|
std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
|
|
if (!strideAsInt)
|
|
return false;
|
|
return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
|
|
}
|
|
|
|
/// Returns the bounded tile size given the current `iv`, `loopRange` and
|
|
/// `tileSize`, i.e., `min(tileSize, range.end() - iv)`.
|
|
static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
|
|
Range loopRange, Value iv,
|
|
Value tileSize) {
|
|
std::optional<int64_t> ts = getConstantIntValue(tileSize);
|
|
if (ts && ts.value() == 1)
|
|
return getAsOpFoldResult(tileSize);
|
|
|
|
if (tileDividesIterationDomain(
|
|
Range{loopRange.offset, loopRange.size, tileSize}))
|
|
return tileSize;
|
|
|
|
// The tile size to use (to avoid out of bounds access) is minimum of
|
|
// `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
|
|
// loop.
|
|
AffineExpr s0, s1, d0;
|
|
bindDims(b.getContext(), d0);
|
|
bindSymbols(b.getContext(), s0, s1);
|
|
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext());
|
|
Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
|
|
return affine::makeComposedFoldedAffineMin(
|
|
b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size});
|
|
}
|
|
|
|
/// Generate an empty loop nest that represents the tiled loop nest shell.
|
|
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
|
|
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
|
|
/// - In `offsets` and `sizes` return the multi-dimensional offset and size of
|
|
/// the
|
|
/// tile processed within the inner most loop.
|
|
static SmallVector<scf::ForOp> generateTileLoopNest(
|
|
OpBuilder &builder, Location loc, ArrayRef<Range> loopRanges,
|
|
ArrayRef<OpFoldResult> tileSizes, SmallVector<OpFoldResult> &offsets,
|
|
SmallVector<OpFoldResult> &sizes) {
|
|
assert(!loopRanges.empty() && "expected at least one loop range");
|
|
assert(loopRanges.size() == tileSizes.size() &&
|
|
"expected as many tile sizes as loop ranges");
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
SmallVector<scf::ForOp> loops;
|
|
offsets.resize(loopRanges.size());
|
|
sizes.resize(loopRanges.size());
|
|
|
|
for (auto loopRange : llvm::enumerate(loopRanges)) {
|
|
Value offset =
|
|
getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().offset);
|
|
Value size =
|
|
getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().size);
|
|
Value tileSize = getValueOrCreateConstantIndexOp(
|
|
builder, loc, tileSizes[loopRange.index()]);
|
|
// No loops if tile size is zero. Set offset and size to the loop
|
|
// offset and size.
|
|
if (matchPattern(tileSize, m_Zero())) {
|
|
offsets[loopRange.index()] = offset;
|
|
sizes[loopRange.index()] = size;
|
|
continue;
|
|
}
|
|
|
|
auto loop = builder.create<scf::ForOp>(
|
|
loc, offset, size, tileSize, ValueRange{},
|
|
[&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
|
|
ValueRange /*iterArgs*/) {
|
|
sizes[loopRange.index()] = getBoundedTileSize(
|
|
bodyBuilder, bodyLoc, loopRange.value(), iv, tileSize);
|
|
builder.create<scf::YieldOp>(loc);
|
|
});
|
|
offsets[loopRange.index()] = loop.getInductionVar();
|
|
loops.push_back(loop);
|
|
builder.setInsertionPoint(loop.getBody()->getTerminator());
|
|
}
|
|
return loops;
|
|
}
|
|
|
|
/// For a value to be yielded (`yieldedValue`) from within a loop nest `loops`,
|
|
/// construct the destructive update pattern that inserts the yielded
|
|
/// value into a destination tensor provided by `initValue` at offset
|
|
/// `tileOffsets` and size `tileSizes`. For example,
|
|
///
|
|
/// ```mlir
|
|
/// scf.for %iv0 = ... {
|
|
/// %0 = tiled_op
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// is transformed to
|
|
///
|
|
/// ```mlir
|
|
/// scf.for %iv0 = ... iter_args(%arg = %0) {
|
|
/// %1 = tensor.extract_slice %arg
|
|
/// %2 = tiled_op
|
|
/// %3 = tensor.insert_slice %2 into %arg
|
|
/// scf.yield %3
|
|
/// }
|
|
/// ```
|
|
/// TODO: This API can be cleaned up by using `SubsetExtractOpInterface`.
|
|
static SmallVector<Value>
|
|
yieldTiledValues(RewriterBase &rewriter, ValueRange initValues,
|
|
ValueRange yieldedValues,
|
|
ArrayRef<SmallVector<OpFoldResult>> tileOffsetsList,
|
|
ArrayRef<SmallVector<OpFoldResult>> tileSizesList,
|
|
MutableArrayRef<scf::ForOp> loops) {
|
|
NewYieldValueFn yieldValueFn =
|
|
[&](OpBuilder &b, Location loc,
|
|
ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
|
|
SmallVector<Value> inserts;
|
|
for (const auto &yieldedValue : llvm::enumerate(yieldedValues)) {
|
|
ArrayRef<OpFoldResult> tileOffsets =
|
|
tileOffsetsList[yieldedValue.index()];
|
|
ArrayRef<OpFoldResult> tileSizes = tileSizesList[yieldedValue.index()];
|
|
SmallVector<OpFoldResult> tileStrides(tileOffsets.size(),
|
|
b.getIndexAttr(1));
|
|
Value insert = b.create<tensor::InsertSliceOp>(
|
|
loc, yieldedValue.value(), newBBArgs[yieldedValue.index()],
|
|
tileOffsets, tileSizes, tileStrides);
|
|
inserts.push_back(insert);
|
|
}
|
|
return inserts;
|
|
};
|
|
|
|
SmallVector<scf::ForOp> newLoops =
|
|
replaceLoopNestWithNewYields(rewriter, loops, initValues, yieldValueFn,
|
|
/*replaceIterOperandsUsesInLoop =*/false);
|
|
for (const auto &loop : llvm::enumerate(loops)) {
|
|
rewriter.eraseOp(loop.value());
|
|
loops[loop.index()] = newLoops[loop.index()];
|
|
}
|
|
return llvm::to_vector(llvm::map_range(
|
|
loops.front().getResults().take_back(yieldedValues.size()),
|
|
[](OpResult r) -> Value { return r; }));
|
|
}
|
|
|
|
/// If the tiled operation is destination passing style, update the
|
|
/// slice of the destination used (which refers to the untiled destination)
|
|
/// to use the corresponding region argument of the innermost loop.
|
|
///
|
|
/// ```mlir
|
|
/// %0 =
|
|
/// scf.for %iv0 = ... iter_args(%arg = %0) {
|
|
/// %1 = tensor.extract_slice %0
|
|
/// %2 = tiled_op
|
|
/// %3 = tensor.insert_slice %2 into %arg
|
|
/// scf.yield %3
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// is transformed to
|
|
///
|
|
/// ```mlir
|
|
/// scf.for %iv0 = ... iter_args(%arg = %0) {
|
|
/// %1 = tensor.extract_slice %arg
|
|
/// %2 = tiled_op
|
|
/// %3 = tensor.insert_slice %2 into %arg
|
|
/// scf.yield %3
|
|
/// }
|
|
/// ```
|
|
static void
|
|
updateDestinationOperandsForTiledOp(OpBuilder &builder,
|
|
ValueRange tiledOpDestinationValues,
|
|
ValueRange bbArgsList) {
|
|
for (const auto &destValue : llvm::enumerate(tiledOpDestinationValues)) {
|
|
auto sliceOp = destValue.value().getDefiningOp<tensor::ExtractSliceOp>();
|
|
if (!sliceOp)
|
|
continue;
|
|
sliceOp.setOperand(0, bbArgsList[destValue.index()]);
|
|
}
|
|
}
|
|
|
|
/// Helper method to yield the values of the tiled op, as well as
|
|
/// update the destination operands of the tiled op, if it is
|
|
/// a destination passing style op.
|
|
static SmallVector<Value>
|
|
yieldTiledValues(RewriterBase &rewriter, ArrayRef<Value> initValues,
|
|
TilingResult tilingResult,
|
|
ArrayRef<SmallVector<OpFoldResult>> tileOffsetsList,
|
|
ArrayRef<SmallVector<OpFoldResult>> tileSizesList,
|
|
MutableArrayRef<scf::ForOp> loops) {
|
|
SmallVector<Value> replacements =
|
|
yieldTiledValues(rewriter, initValues, tilingResult.tiledValues,
|
|
tileOffsetsList, tileSizesList, loops);
|
|
for (auto tiledOp : tilingResult.tiledOps) {
|
|
if (auto dstOp = dyn_cast<DestinationStyleOpInterface>(tiledOp)) {
|
|
auto innerMostLoop = loops.back();
|
|
SmallVector<Value> tiledOpDestinationTensors = dstOp.getDpsInitOperands();
|
|
updateDestinationOperandsForTiledOp(rewriter, tiledOpDestinationTensors,
|
|
innerMostLoop.getRegionIterArgs());
|
|
}
|
|
}
|
|
return replacements;
|
|
}
|
|
|
|
/// Implementation of tiling transformation of `op` that implements the
|
|
/// `TilingInterface` using `scf.for` to iterate over the tiles.
|
|
FailureOr<scf::SCFTilingResult>
|
|
mlir::scf::tileUsingSCFForOp(RewriterBase &rewriter, TilingInterface op,
|
|
const scf::SCFTilingOptions &options) {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointAfter(op);
|
|
|
|
if (!options.tileSizeComputationFunction) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "missing tile size computation function");
|
|
}
|
|
|
|
// 1. Get the range of the loops that are represented by the operation.
|
|
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
|
|
size_t numLoops = iterationDomain.size();
|
|
if (numLoops == 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unable to tile op with no iteration domain");
|
|
}
|
|
|
|
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
|
|
// skips tiling a particular dimension. This convention is significantly
|
|
// simpler to handle instead of adjusting affine maps to account for missing
|
|
// dimensions.
|
|
SmallVector<OpFoldResult> tileSizeVector =
|
|
options.tileSizeComputationFunction(rewriter, op);
|
|
if (tileSizeVector.size() < iterationDomain.size()) {
|
|
auto zero = rewriter.getIndexAttr(0);
|
|
tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
|
|
}
|
|
|
|
scf::SCFTilingResult tilingResult;
|
|
SmallVector<OpFoldResult> offsets, sizes;
|
|
{
|
|
// If there is an interchange specified, permute the iteration domain and
|
|
// the tile sizes.
|
|
SmallVector<int64_t> interchangeVector;
|
|
if (!options.interchangeVector.empty()) {
|
|
interchangeVector = fillInterchangeVector(options.interchangeVector,
|
|
iterationDomain.size());
|
|
}
|
|
if (!interchangeVector.empty()) {
|
|
if (!isPermutationVector(interchangeVector)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "invalid intechange vector, not a permutation of the entire "
|
|
"iteration space");
|
|
}
|
|
|
|
applyPermutationToVector(iterationDomain, interchangeVector);
|
|
applyPermutationToVector(tileSizeVector, interchangeVector);
|
|
}
|
|
|
|
// 3. Materialize an empty loop nest that iterates over the tiles. These
|
|
// loops for now do not return any values even if the original operation has
|
|
// results.
|
|
tilingResult.loops = generateTileLoopNest(
|
|
rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
|
|
|
|
if (!interchangeVector.empty()) {
|
|
auto inversePermutation = invertPermutationVector(interchangeVector);
|
|
applyPermutationToVector(offsets, inversePermutation);
|
|
applyPermutationToVector(sizes, inversePermutation);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
if (!tilingResult.loops.empty()) {
|
|
llvm::dbgs() << "LoopNest shell :\n";
|
|
tilingResult.loops.front().dump();
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
});
|
|
|
|
// 4. Generate the tiled implementation within the inner most loop.
|
|
if (!tilingResult.loops.empty())
|
|
rewriter.setInsertionPoint(
|
|
tilingResult.loops.back().getBody()->getTerminator());
|
|
FailureOr<TilingResult> tiledImplementation =
|
|
op.getTiledImplementation(rewriter, offsets, sizes);
|
|
tilingResult.tiledOps.append(tiledImplementation->tiledOps);
|
|
if (op->getNumResults() == 0) {
|
|
// nothing more to do.
|
|
return tilingResult;
|
|
}
|
|
|
|
// If loops are empty, the tiled op is used as the replacement for the untiled
|
|
// op.
|
|
if (tilingResult.loops.empty()) {
|
|
tilingResult.replacements = tiledImplementation->tiledValues;
|
|
return tilingResult;
|
|
}
|
|
|
|
// 5. Yield all the results of the tiled operation. The surrounding loop
|
|
// nest is modified to insert a destructive update pattern to yield
|
|
// from the loop nest values to replace the untiled op with.
|
|
int64_t numResults = op->getNumResults();
|
|
SmallVector<SmallVector<OpFoldResult>> resultOffsetsList(numResults),
|
|
resultSizesList(numResults);
|
|
for (const auto &result : llvm::enumerate(op->getResults())) {
|
|
if (failed(op.getResultTilePosition(rewriter, result.index(), offsets,
|
|
sizes,
|
|
resultOffsetsList[result.index()],
|
|
resultSizesList[result.index()]))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get slice of result produced");
|
|
}
|
|
}
|
|
|
|
SmallVector<Value> destinationTensors;
|
|
if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op,
|
|
destinationTensors)))
|
|
return rewriter.notifyMatchFailure(op, "failed to get destinations");
|
|
|
|
tilingResult.replacements = yieldTiledValues(
|
|
rewriter, destinationTensors, tiledImplementation.value(),
|
|
resultOffsetsList, resultSizesList, tilingResult.loops);
|
|
|
|
LLVM_DEBUG({
|
|
if (!tilingResult.loops.empty()) {
|
|
llvm::dbgs() << "After tiled implementation :\n";
|
|
tilingResult.loops.front().dump();
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
});
|
|
return tilingResult;
|
|
}
|
|
|
|
FailureOr<scf::SCFReductionTilingResult>
|
|
mlir::scf::tileReductionUsingScf(RewriterBase &b,
|
|
PartialReductionOpInterface op,
|
|
ArrayRef<OpFoldResult> tileSizes) {
|
|
Location loc = op.getLoc();
|
|
// Ops implementing PartialReductionOpInterface are expected to implement
|
|
// TilingInterface.
|
|
auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
|
|
SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
|
|
auto tileSizesVector = llvm::to_vector(tileSizes);
|
|
if (tileSizesVector.size() < iterationDomain.size()) {
|
|
auto zero = b.getIndexAttr(0);
|
|
tileSizesVector.append(iterationDomain.size() - tileSizesVector.size(),
|
|
zero);
|
|
}
|
|
if (op->getNumResults() != 1)
|
|
return b.notifyMatchFailure(
|
|
op, "don't support ops with multiple results for now");
|
|
SmallVector<utils::IteratorType> iterators =
|
|
tilingInterfaceOp.getLoopIteratorTypes();
|
|
|
|
SmallVector<int> reductionDims;
|
|
for (auto [idx, iteratorType] :
|
|
llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) {
|
|
if (iteratorType == utils::IteratorType::reduction)
|
|
reductionDims.push_back(idx);
|
|
}
|
|
|
|
// 1. create the inital tensor value.
|
|
FailureOr<Operation *> identityTensor =
|
|
op.generateInitialTensorForPartialReduction(b, loc, tileSizesVector,
|
|
reductionDims);
|
|
if (failed(identityTensor))
|
|
return b.notifyMatchFailure(op,
|
|
"cannot create a tensor of identity value.");
|
|
// 2. Create the nested loops.
|
|
SmallVector<OpFoldResult> offsets, sizes;
|
|
SmallVector<scf::ForOp> loops = generateTileLoopNest(
|
|
b, loc, iterationDomain, tileSizesVector, offsets, sizes);
|
|
|
|
// 3. Generate the tiled implementation within the inner most loop.
|
|
b.setInsertionPoint(loops.back().getBody()->getTerminator());
|
|
Operation *parallelOp = op.tileToPartialReduction(
|
|
b, loc, (*identityTensor)->getResults(), offsets, sizes, reductionDims);
|
|
|
|
SmallVector<OpFoldResult> resultSizesList;
|
|
for (size_t i = 0; i < offsets.size(); i++)
|
|
resultSizesList.push_back(
|
|
tensor::getMixedSize(b, loc, parallelOp->getResult(0), i));
|
|
SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
|
|
SmallVector<Value> replacements = yieldTiledValues(
|
|
b, (*identityTensor)->getResults(), parallelOp->getResults(), outOffsets,
|
|
resultSizesList, loops);
|
|
|
|
auto dstOp = cast<DestinationStyleOpInterface>(parallelOp);
|
|
auto innerMostLoop = loops.back();
|
|
SmallVector<Value> destinationTensors = dstOp.getDpsInitOperands();
|
|
assert(destinationTensors.size() ==
|
|
innerMostLoop.getRegionIterArgs().size() &&
|
|
"unexpected number of outputs");
|
|
updateDestinationOperandsForTiledOp(b, destinationTensors,
|
|
innerMostLoop.getRegionIterArgs());
|
|
|
|
// 4. Apply the merge reduction to combine all the partial values.
|
|
b.setInsertionPointAfter(*loops.begin());
|
|
Operation *mergeOp = op.mergeReductions(b, loc, replacements, reductionDims);
|
|
b.replaceOp(op, mergeOp->getResults());
|
|
|
|
SCFReductionTilingResult results;
|
|
results.initialOp = *identityTensor;
|
|
results.loops = std::move(loops);
|
|
results.parallelTiledOp = parallelOp;
|
|
results.mergeOp = mergeOp;
|
|
return results;
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// tileConsumerAndFuseProducerGreedilyUsingSCFForOp implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the untiled producer whose slice is used in a tiled consumer. The
|
|
/// method traverses the tile loop nest (`loops`) if needed, and returns the
|
|
/// `iter_args` of the outer most that is encountered. Traversing the iter_args
|
|
/// indicates that this is a destination operand of the consumer. If there was
|
|
/// no loop traversal needed, the second value of the returned tuple is empty.
|
|
static std::tuple<OpResult, std::optional<OpOperand *>>
|
|
getUntiledProducerFromSliceSource(OpOperand *source,
|
|
ArrayRef<scf::ForOp> loops) {
|
|
std::optional<OpOperand *> destinationIterArg;
|
|
auto loopIt = loops.rbegin();
|
|
while (auto iterArg = dyn_cast<BlockArgument>(source->get())) {
|
|
scf::ForOp loop = *loopIt;
|
|
if (iterArg.getOwner()->getParentOp() != loop)
|
|
break;
|
|
source = &loop.getOpOperandForRegionIterArg(iterArg);
|
|
loopIt++;
|
|
}
|
|
if (loopIt == loops.rend())
|
|
destinationIterArg = source;
|
|
return {dyn_cast<OpResult>(source->get()), destinationIterArg};
|
|
}
|
|
|
|
/// Implementation of fusing producer of a single slice by computing the
|
|
/// slice of the producer in-place.
|
|
std::optional<scf::SCFFuseProducerOfSliceResult>
|
|
mlir::scf::tileAndFuseProducerOfSlice(RewriterBase &rewriter,
|
|
tensor::ExtractSliceOp candidateSliceOp,
|
|
MutableArrayRef<scf::ForOp> loops) {
|
|
// 1. Get the producer of the source (potentially walking through
|
|
// `iter_args` of nested `scf.for`)
|
|
auto [fusableProducer, destinationInitArg] =
|
|
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable()[0],
|
|
loops);
|
|
if (!fusableProducer)
|
|
return std::nullopt;
|
|
|
|
// 2. Generate the tiled implementation of the producer of the source
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
rewriter.setInsertionPoint(candidateSliceOp);
|
|
FailureOr<TilingResult> tileAndFuseResult =
|
|
tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
|
|
fusableProducer);
|
|
if (failed(tileAndFuseResult))
|
|
return std::nullopt;
|
|
rewriter.replaceAllUsesWith(candidateSliceOp,
|
|
tileAndFuseResult->tiledValues[0]);
|
|
|
|
// 3. If the slice is for a destination operand, for example,
|
|
//
|
|
// ```mlir
|
|
// %0 = linalg.init
|
|
// %1 = linalg.fill .. outs(%0 : )
|
|
// %2 = scf.for .. iter_args(%arg0 = %1) {
|
|
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
|
|
// %4 = tensor.extract_slice %arg1 [..]
|
|
// .. = linalg.matmul .. outs(%4 : )
|
|
// }
|
|
// }
|
|
// ```
|
|
//
|
|
// the IR is currently
|
|
//
|
|
// ```
|
|
// %0 = linalg.init
|
|
// %1 = linalg.fill
|
|
// %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
|
|
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
|
|
// %4 = tensor.extract_slice %0 /*incorrect value */ [..]
|
|
// %5 = linalg.fill .. outs(%4 : )
|
|
// .. = linalg.matmul .. outs(%5 : )
|
|
// }
|
|
// }
|
|
// ```
|
|
//
|
|
// The untiled `linalg.fill` is still used as the `init_value` since it
|
|
// was originally a destination operand of the untiled `linalg.matmul`.
|
|
// When fusing an operand that is a destination operand.
|
|
// - Update the iter_arg of the outer most loop to use the destination
|
|
// of the untiled producer.
|
|
// - Update the destination of the slice of the tiled producer generated
|
|
// to use the same basic block argument as the slice that was used to
|
|
// generate inplace the tiled implementation of the producer.
|
|
// With this the IR will be.
|
|
//
|
|
// ```
|
|
// %0 = linalg.init
|
|
// %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
|
|
// %2 = scf.for .. iter_args(%arg1 = %arg0) {
|
|
// %3 = tensor.extract_slice %arg1 /* corrected value */ [..]
|
|
// %4 = linalg.fill .. outs(%3 : )
|
|
// .. = linalg.matmul .. outs(%4 : )
|
|
// }
|
|
// }
|
|
// ```
|
|
// TODO: This can be modeled better if the `DestinationStyleOpInterface`.
|
|
// Update to use that when it does become available.
|
|
scf::ForOp outerMostLoop = loops.front();
|
|
if (destinationInitArg &&
|
|
(*destinationInitArg)->getOwner() == outerMostLoop) {
|
|
std::optional<unsigned> iterArgNumber =
|
|
outerMostLoop.getIterArgNumberForOpOperand(**destinationInitArg);
|
|
int64_t resultNumber = fusableProducer.getResultNumber();
|
|
if (auto dstOp =
|
|
dyn_cast<DestinationStyleOpInterface>(fusableProducer.getOwner())) {
|
|
(*destinationInitArg)
|
|
->set(dstOp.getTiedOpOperand(fusableProducer)->get());
|
|
}
|
|
for (auto tileAndFusedOp : tileAndFuseResult->tiledOps) {
|
|
auto dstOp = dyn_cast<DestinationStyleOpInterface>(tileAndFusedOp);
|
|
if (!dstOp)
|
|
continue;
|
|
scf::ForOp innerMostLoop = loops.back();
|
|
updateDestinationOperandsForTiledOp(
|
|
rewriter, dstOp.getDpsInitOperand(resultNumber)->get(),
|
|
innerMostLoop.getRegionIterArgs()[iterArgNumber.value()]);
|
|
}
|
|
}
|
|
return scf::SCFFuseProducerOfSliceResult{fusableProducer,
|
|
tileAndFuseResult->tiledValues[0],
|
|
tileAndFuseResult->tiledOps};
|
|
}
|
|
|
|
/// Reconstruct the fused producer from within the tiled-and-fused code.
|
|
void mlir::scf::yieldReplacementForFusedProducer(
|
|
RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp,
|
|
scf::SCFFuseProducerOfSliceResult fusedProducerInfo,
|
|
MutableArrayRef<scf::ForOp> loops) {
|
|
auto [fusableProducer, fusedProducerValue, tileAndFusedOps] =
|
|
fusedProducerInfo;
|
|
SmallVector<Value> initValues;
|
|
FailureOr<Value> initValue = tensor::getOrCreateDestination(
|
|
rewriter, fusableProducer.getOwner()->getLoc(), fusableProducer);
|
|
if (succeeded(initValue)) {
|
|
SmallVector<OpFoldResult> resultOffsets = sliceOp.getMixedOffsets();
|
|
SmallVector<OpFoldResult> resultSizes = sliceOp.getMixedSizes();
|
|
SmallVector<Value> yieldedVals =
|
|
yieldTiledValues(rewriter, initValue.value(), fusedProducerValue,
|
|
resultOffsets, resultSizes, loops);
|
|
}
|
|
for (auto tileAndFusedOp : tileAndFusedOps) {
|
|
auto dstStyleProducer =
|
|
dyn_cast<DestinationStyleOpInterface>(tileAndFusedOp);
|
|
if (!dstStyleProducer)
|
|
continue;
|
|
Value dstValue =
|
|
dstStyleProducer.getDpsInitOperand(fusableProducer.getResultNumber())
|
|
->get();
|
|
updateDestinationOperandsForTiledOp(
|
|
rewriter, dstValue, loops.back().getRegionIterArgs().back());
|
|
}
|
|
}
|
|
|
|
/// Implementation of tile consumer and fuse producer greedily.
|
|
FailureOr<scf::SCFTileAndFuseResult>
|
|
mlir::scf::tileConsumerAndFuseProducerGreedilyUsingSCFForOp(
|
|
RewriterBase &rewriter, TilingInterface consumer,
|
|
const scf::SCFTileAndFuseOptions &options) {
|
|
// This transformation is only valid for ops that return values (i.e. not
|
|
// valid to use with operations that have memref operands).
|
|
if (!consumer->getNumResults()) {
|
|
return rewriter.notifyMatchFailure(
|
|
consumer, "invalid pattern for op with no results");
|
|
}
|
|
|
|
// 1. First tile the consumer.
|
|
scf::SCFTileAndFuseResult tileAndFuseResult;
|
|
llvm::SmallDenseMap<Value, int64_t> yieldedValueToResultNumber;
|
|
{
|
|
FailureOr<scf::SCFTilingResult> tilingResult =
|
|
tileUsingSCFForOp(rewriter, consumer, options.tilingOptions);
|
|
if (failed(tilingResult))
|
|
return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
|
|
for (auto *tiledOp : tilingResult->tiledOps)
|
|
tileAndFuseResult.tiledAndFusedOps.insert(tiledOp);
|
|
tileAndFuseResult.loops = std::move(tilingResult->loops);
|
|
for (const auto &result : llvm::enumerate(
|
|
llvm::zip(consumer->getResults(), tilingResult->replacements))) {
|
|
tileAndFuseResult.replacements[std::get<0>(result.value())] =
|
|
std::get<1>(result.value());
|
|
yieldedValueToResultNumber[tilingResult->tiledOps.back()->getResult(
|
|
result.index())] = result.index();
|
|
}
|
|
}
|
|
|
|
// If there are no loops generated, fusion is immaterial.
|
|
if (tileAndFuseResult.loops.empty())
|
|
return tileAndFuseResult;
|
|
|
|
// 2. Typically, the operands of the tiled operation are slices of the
|
|
// operands of the untiled operation. These are expressed in IR using
|
|
// `tensor.extract_slice` operations with source being the operands of the
|
|
// untiled operation. Create a worklist of these `tensor.extract_slice`
|
|
// operations. If the producers of the source of the `tensor.extract_slice`
|
|
// can be tiled such that the tiled value is generated in-place, that
|
|
// effectively tiles + fuses the operations.
|
|
auto addCandidateSlices = [](Operation *fusedOp,
|
|
std::deque<tensor::ExtractSliceOp> &candidates) {
|
|
for (Value operand : fusedOp->getOperands())
|
|
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
|
|
candidates.push_back(sliceOp);
|
|
};
|
|
|
|
std::deque<tensor::ExtractSliceOp> candidates;
|
|
addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
while (!candidates.empty()) {
|
|
// Traverse the slices in BFS fashion.
|
|
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
|
|
candidates.pop_front();
|
|
|
|
// The operands of the fused producer might themselved be slices of
|
|
// values produced by operations that implement the `TilingInterface`.
|
|
// Add these operations to the worklist.
|
|
std::optional<scf::SCFFuseProducerOfSliceResult> fusedProducer =
|
|
tileAndFuseProducerOfSlice(rewriter, candidateSliceOp,
|
|
tileAndFuseResult.loops);
|
|
if (!fusedProducer)
|
|
continue;
|
|
|
|
if (Operation *tiledAndFusedOp =
|
|
fusedProducer->tiledAndFusedProducer.getDefiningOp()) {
|
|
tileAndFuseResult.tiledAndFusedOps.insert(tiledAndFusedOp);
|
|
addCandidateSlices(tiledAndFusedOp, candidates);
|
|
}
|
|
}
|
|
return tileAndFuseResult;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// lowerToLoopsUsingSCFForOp implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FailureOr<SmallVector<scf::ForOp>>
|
|
mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
|
|
TilingInterface op) {
|
|
// TODO: Handle cases where the op has results if needed.
|
|
if (op->getNumResults() > 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unable to lower to loops operations with return values");
|
|
}
|
|
|
|
SmallVector<Range> domain = op.getIterationDomain(rewriter);
|
|
SmallVector<Value> ivs;
|
|
SmallVector<scf::ForOp> loops;
|
|
Location loc = op.getLoc();
|
|
for (auto loopRange : domain) {
|
|
Value offsetVal =
|
|
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
|
|
Value sizeVal =
|
|
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
|
|
Value strideVal =
|
|
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
|
|
auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
|
|
strideVal, ValueRange{});
|
|
loops.push_back(loop);
|
|
ivs.push_back(loop.getInductionVar());
|
|
rewriter.setInsertionPoint(loop.getBody()->getTerminator());
|
|
}
|
|
if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
|
|
return failure();
|
|
}
|
|
return loops;
|
|
}
|