mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-03 13:42:13 +00:00

This commit removes the deallocation capabilities of one-shot-bufferization. One-shot-bufferization should never deallocate any memrefs as this should be entirely handled by the ownership-based-buffer-deallocation pass going forward. This means the `allow-return-allocs` pass option will default to true now, `create-deallocs` defaults to false and they, as well as the escape attribute indicating whether a memref escapes the current region, will be removed. A new `allow-return-allocs-from-loops` option is added as a temporary workaround for some bufferization limitations.
144 lines
5.0 KiB
C++
144 lines
5.0 KiB
C++
//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
|
|
namespace mlir {
|
|
namespace bufferization {
|
|
#define GEN_PASS_DEF_TENSORCOPYINSERTION
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
|
|
} // namespace bufferization
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
/// Resolve all operands that are also used inside of repetitive regions of the
|
|
/// same op. Such cases are not fully supported by One-Shot Bufferize.
|
|
///
|
|
/// E.g.:
|
|
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
|
|
/// "some_use"(%tensor)
|
|
/// ...
|
|
/// }
|
|
///
|
|
/// Is converted to:
|
|
/// %tensor_copy = bufferization.alloc_tensor copy(%tensor)
|
|
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
|
|
/// "some_use"(%tensor_copy)
|
|
/// ...
|
|
/// }
|
|
static void
|
|
resolveUsesInRepetitiveRegions(Operation *op,
|
|
const BufferizationOptions &options) {
|
|
IRRewriter rewriter(op->getContext());
|
|
AnalysisState state(options);
|
|
|
|
// Look for repetitive ops (loops).
|
|
op->walk([&](BufferizableOpInterface bufferizableOp) {
|
|
// Skip filtered ops.
|
|
if (!options.isOpAllowed(bufferizableOp.getOperation()))
|
|
return WalkResult::advance();
|
|
|
|
// Find all operands that are also used inside of a repetitive region of
|
|
// this op.
|
|
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
|
|
Value operand = opOperand.get();
|
|
// Skip non-tensor operands.
|
|
if (!isa<TensorType>(operand.getType()))
|
|
continue;
|
|
// Skip operands that do not bufferize to memory writes.
|
|
if (!bufferizableOp.bufferizesToMemoryWrite(opOperand, state))
|
|
continue;
|
|
|
|
// Gather all uses inside repetitive regions.
|
|
SmallVector<OpOperand *> usesInsideRegion;
|
|
for (OpOperand &use : operand.getUses()) {
|
|
Operation *owner = use.getOwner();
|
|
if (!bufferizableOp->isProperAncestor(owner))
|
|
continue;
|
|
for (Region &r : bufferizableOp->getRegions()) {
|
|
if (r.findAncestorOpInRegion(*owner) &&
|
|
bufferizableOp.isRepetitiveRegion(r.getRegionNumber())) {
|
|
usesInsideRegion.push_back(&use);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Nothing to do if the operand is not used inside a repetitive region.
|
|
if (usesInsideRegion.empty())
|
|
continue;
|
|
|
|
// Insert a tensor copy and replace all uses inside of repetitive regions.
|
|
rewriter.setInsertionPoint(bufferizableOp);
|
|
auto tensorCopy = rewriter.create<AllocTensorOp>(
|
|
bufferizableOp->getLoc(), cast<TensorType>(operand.getType()),
|
|
/*dynamicSizes=*/ValueRange(),
|
|
/*copy=*/operand, /*memory_space=*/IntegerAttr());
|
|
for (OpOperand *use : usesInsideRegion)
|
|
use->set(tensorCopy);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
LogicalResult mlir::bufferization::insertTensorCopies(
|
|
Operation *op, const OneShotBufferizationOptions &options,
|
|
BufferizationStatistics *statistics) {
|
|
// Preprocessing: Resolve currently unsupported bufferization cases.
|
|
resolveUsesInRepetitiveRegions(op, options);
|
|
|
|
OneShotAnalysisState state(op, options);
|
|
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
|
|
// analysis depending on whether function boundary bufferization is enabled or
|
|
// not.
|
|
if (options.bufferizeFunctionBoundaries) {
|
|
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state, statistics)))
|
|
return failure();
|
|
} else {
|
|
if (failed(analyzeOp(op, state, statistics)))
|
|
return failure();
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
return insertTensorCopies(op, state);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::bufferization::insertTensorCopies(Operation *op,
|
|
const AnalysisState &state) {
|
|
IRRewriter rewriter(op->getContext());
|
|
|
|
WalkResult result = op->walk([&](Operation *op) {
|
|
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return WalkResult::skip();
|
|
|
|
// Find inplacability conflicts and resolve them. (Typically with explicit
|
|
// tensor copies in the form of AllocTensorOps.)
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return failure(result.wasInterrupted());
|
|
}
|