Martin Erhart 6bf043e743
[mlir][bufferization] Remove allow-return-allocs and create-deallocs pass options, remove bufferization.escape attribute (#66619)
This commit removes the deallocation capabilities of
one-shot-bufferization. One-shot-bufferization should never deallocate
any memrefs as this should be entirely handled by the
ownership-based-buffer-deallocation pass going forward. This means the
`allow-return-allocs` pass option will default to true now,
`create-deallocs` defaults to false and they, as well as the escape
attribute indicating whether a memref escapes the current region, will
be removed. A new `allow-return-allocs-from-loops` option is added as a
temporary workaround for some bufferization limitations.
2023-09-18 16:44:48 +02:00

144 lines
5.0 KiB
C++

//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_TENSORCOPYINSERTION
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
using namespace mlir;
using namespace mlir::bufferization;
/// Resolve all operands that are also used inside of repetitive regions of the
/// same op. Such cases are not fully supported by One-Shot Bufferize.
///
/// E.g.:
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor)
/// ...
/// }
///
/// Is converted to:
/// %tensor_copy = bufferization.alloc_tensor copy(%tensor)
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
/// "some_use"(%tensor_copy)
/// ...
/// }
static void
resolveUsesInRepetitiveRegions(Operation *op,
const BufferizationOptions &options) {
IRRewriter rewriter(op->getContext());
AnalysisState state(options);
// Look for repetitive ops (loops).
op->walk([&](BufferizableOpInterface bufferizableOp) {
// Skip filtered ops.
if (!options.isOpAllowed(bufferizableOp.getOperation()))
return WalkResult::advance();
// Find all operands that are also used inside of a repetitive region of
// this op.
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
Value operand = opOperand.get();
// Skip non-tensor operands.
if (!isa<TensorType>(operand.getType()))
continue;
// Skip operands that do not bufferize to memory writes.
if (!bufferizableOp.bufferizesToMemoryWrite(opOperand, state))
continue;
// Gather all uses inside repetitive regions.
SmallVector<OpOperand *> usesInsideRegion;
for (OpOperand &use : operand.getUses()) {
Operation *owner = use.getOwner();
if (!bufferizableOp->isProperAncestor(owner))
continue;
for (Region &r : bufferizableOp->getRegions()) {
if (r.findAncestorOpInRegion(*owner) &&
bufferizableOp.isRepetitiveRegion(r.getRegionNumber())) {
usesInsideRegion.push_back(&use);
break;
}
}
}
// Nothing to do if the operand is not used inside a repetitive region.
if (usesInsideRegion.empty())
continue;
// Insert a tensor copy and replace all uses inside of repetitive regions.
rewriter.setInsertionPoint(bufferizableOp);
auto tensorCopy = rewriter.create<AllocTensorOp>(
bufferizableOp->getLoc(), cast<TensorType>(operand.getType()),
/*dynamicSizes=*/ValueRange(),
/*copy=*/operand, /*memory_space=*/IntegerAttr());
for (OpOperand *use : usesInsideRegion)
use->set(tensorCopy);
}
return WalkResult::advance();
});
}
LogicalResult mlir::bufferization::insertTensorCopies(
Operation *op, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
// Preprocessing: Resolve currently unsupported bufferization cases.
resolveUsesInRepetitiveRegions(op, options);
OneShotAnalysisState state(op, options);
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
// analysis depending on whether function boundary bufferization is enabled or
// not.
if (options.bufferizeFunctionBoundaries) {
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state, statistics)))
return failure();
} else {
if (failed(analyzeOp(op, state, statistics)))
return failure();
}
if (options.testAnalysisOnly)
return success();
return insertTensorCopies(op, state);
}
LogicalResult
mlir::bufferization::insertTensorCopies(Operation *op,
const AnalysisState &state) {
IRRewriter rewriter(op->getContext());
WalkResult result = op->walk([&](Operation *op) {
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
if (!bufferizableOp)
return WalkResult::skip();
// Find inplacability conflicts and resolve them. (Typically with explicit
// tensor copies in the form of AllocTensorOps.)
rewriter.setInsertionPoint(op);
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(result.wasInterrupted());
}