llvm-capstone/clang-tools-extra/clangd/unittests/DexTests.cpp

841 lines
29 KiB
C++

//===-- DexTests.cpp ---------------------------------*- C++ -*-----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestFS.h"
#include "TestIndex.h"
#include "index/Index.h"
#include "index/SymbolID.h"
#include "index/dex/Dex.h"
#include "index/dex/Iterator.h"
#include "index/dex/Token.h"
#include "index/dex/Trigram.h"
#include "llvm/Support/ScopedPrinter.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <string>
#include <vector>
using ::testing::AnyOf;
using ::testing::ElementsAre;
using ::testing::IsEmpty;
using ::testing::UnorderedElementsAre;
namespace clang {
namespace clangd {
namespace dex {
namespace {
//===----------------------------------------------------------------------===//
// Query iterator tests.
//===----------------------------------------------------------------------===//
std::vector<DocID> consumeIDs(Iterator &It) {
auto IDAndScore = consume(It);
std::vector<DocID> IDs(IDAndScore.size());
for (size_t I = 0; I < IDAndScore.size(); ++I)
IDs[I] = IDAndScore[I].first;
return IDs;
}
TEST(DexIterators, DocumentIterator) {
const PostingList L({4, 7, 8, 20, 42, 100});
auto DocIterator = L.iterator();
EXPECT_EQ(DocIterator->peek(), 4U);
EXPECT_FALSE(DocIterator->reachedEnd());
DocIterator->advance();
EXPECT_EQ(DocIterator->peek(), 7U);
EXPECT_FALSE(DocIterator->reachedEnd());
DocIterator->advanceTo(20);
EXPECT_EQ(DocIterator->peek(), 20U);
EXPECT_FALSE(DocIterator->reachedEnd());
DocIterator->advanceTo(65);
EXPECT_EQ(DocIterator->peek(), 100U);
EXPECT_FALSE(DocIterator->reachedEnd());
DocIterator->advanceTo(420);
EXPECT_TRUE(DocIterator->reachedEnd());
}
TEST(DexIterators, AndTwoLists) {
Corpus C{10000};
const PostingList L0({0, 5, 7, 10, 42, 320, 9000});
const PostingList L1({0, 4, 7, 10, 30, 60, 320, 9000});
auto And = C.intersect(L1.iterator(), L0.iterator());
EXPECT_FALSE(And->reachedEnd());
EXPECT_THAT(consumeIDs(*And), ElementsAre(0U, 7U, 10U, 320U, 9000U));
And = C.intersect(L0.iterator(), L1.iterator());
And->advanceTo(0);
EXPECT_EQ(And->peek(), 0U);
And->advanceTo(5);
EXPECT_EQ(And->peek(), 7U);
And->advanceTo(10);
EXPECT_EQ(And->peek(), 10U);
And->advanceTo(42);
EXPECT_EQ(And->peek(), 320U);
And->advanceTo(8999);
EXPECT_EQ(And->peek(), 9000U);
And->advanceTo(9001);
}
TEST(DexIterators, AndThreeLists) {
Corpus C{10000};
const PostingList L0({0, 5, 7, 10, 42, 320, 9000});
const PostingList L1({0, 4, 7, 10, 30, 60, 320, 9000});
const PostingList L2({1, 4, 7, 11, 30, 60, 320, 9000});
auto And = C.intersect(L0.iterator(), L1.iterator(), L2.iterator());
EXPECT_EQ(And->peek(), 7U);
And->advanceTo(300);
EXPECT_EQ(And->peek(), 320U);
And->advanceTo(100000);
EXPECT_TRUE(And->reachedEnd());
}
TEST(DexIterators, AndEmpty) {
Corpus C{10000};
const PostingList L1{1};
const PostingList L2{2};
// These iterators are empty, but the optimizer can't tell.
auto Empty1 = C.intersect(L1.iterator(), L2.iterator());
auto Empty2 = C.intersect(L1.iterator(), L2.iterator());
// And syncs iterators on construction, and used to fail on empty children.
auto And = C.intersect(std::move(Empty1), std::move(Empty2));
EXPECT_TRUE(And->reachedEnd());
}
TEST(DexIterators, OrTwoLists) {
Corpus C{10000};
const PostingList L0({0, 5, 7, 10, 42, 320, 9000});
const PostingList L1({0, 4, 7, 10, 30, 60, 320, 9000});
auto Or = C.unionOf(L0.iterator(), L1.iterator());
EXPECT_FALSE(Or->reachedEnd());
EXPECT_EQ(Or->peek(), 0U);
Or->advance();
EXPECT_EQ(Or->peek(), 4U);
Or->advance();
EXPECT_EQ(Or->peek(), 5U);
Or->advance();
EXPECT_EQ(Or->peek(), 7U);
Or->advance();
EXPECT_EQ(Or->peek(), 10U);
Or->advance();
EXPECT_EQ(Or->peek(), 30U);
Or->advanceTo(42);
EXPECT_EQ(Or->peek(), 42U);
Or->advanceTo(300);
EXPECT_EQ(Or->peek(), 320U);
Or->advanceTo(9000);
EXPECT_EQ(Or->peek(), 9000U);
Or->advanceTo(9001);
EXPECT_TRUE(Or->reachedEnd());
Or = C.unionOf(L0.iterator(), L1.iterator());
EXPECT_THAT(consumeIDs(*Or),
ElementsAre(0U, 4U, 5U, 7U, 10U, 30U, 42U, 60U, 320U, 9000U));
}
TEST(DexIterators, OrThreeLists) {
Corpus C{10000};
const PostingList L0({0, 5, 7, 10, 42, 320, 9000});
const PostingList L1({0, 4, 7, 10, 30, 60, 320, 9000});
const PostingList L2({1, 4, 7, 11, 30, 60, 320, 9000});
auto Or = C.unionOf(L0.iterator(), L1.iterator(), L2.iterator());
EXPECT_FALSE(Or->reachedEnd());
EXPECT_EQ(Or->peek(), 0U);
Or->advance();
EXPECT_EQ(Or->peek(), 1U);
Or->advance();
EXPECT_EQ(Or->peek(), 4U);
Or->advanceTo(7);
Or->advanceTo(59);
EXPECT_EQ(Or->peek(), 60U);
Or->advanceTo(9001);
EXPECT_TRUE(Or->reachedEnd());
}
// FIXME(kbobyrev): The testcase below is similar to what is expected in real
// queries. It should be updated once new iterators (such as boosting, limiting,
// etc iterators) appear. However, it is not exhaustive and it would be
// beneficial to implement automatic generation (e.g. fuzzing) of query trees
// for more comprehensive testing.
TEST(DexIterators, QueryTree) {
//
// +-----------------+
// |And Iterator:1, 5|
// +--------+--------+
// |
// |
// +-------------+----------------------+
// | |
// | |
// +----------v----------+ +----------v------------+
// |And Iterator: 1, 5, 9| |Or Iterator: 0, 1, 3, 5|
// +----------+----------+ +----------+------------+
// | |
// +------+-----+ ------------+
// | | | |
// +-------v-----+ +----+---+ +---v----+ +----v---+
// |1, 3, 5, 8, 9| |Boost: 2| |Boost: 3| |Boost: 4|
// +-------------+ +----+---+ +---+----+ +----+---+
// | | |
// +----v-----+ +-v--+ +---v---+
// |1, 5, 7, 9| |1, 5| |0, 3, 5|
// +----------+ +----+ +-------+
//
Corpus C{10};
const PostingList L0({1, 3, 5, 8, 9});
const PostingList L1({1, 5, 7, 9});
const PostingList L2({1, 5});
const PostingList L3({0, 3, 5});
// Root of the query tree: [1, 5]
auto Root = C.intersect(
// Lower And Iterator: [1, 5, 9]
C.intersect(L0.iterator(), C.boost(L1.iterator(), 2U)),
// Lower Or Iterator: [0, 1, 5]
C.unionOf(C.boost(L2.iterator(), 3U), C.boost(L3.iterator(), 4U)));
EXPECT_FALSE(Root->reachedEnd());
EXPECT_EQ(Root->peek(), 1U);
Root->advanceTo(0);
// Advance multiple times. Shouldn't do anything.
Root->advanceTo(1);
Root->advanceTo(0);
EXPECT_EQ(Root->peek(), 1U);
auto ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 6);
Root->advance();
EXPECT_EQ(Root->peek(), 5U);
Root->advanceTo(5);
EXPECT_EQ(Root->peek(), 5U);
ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 8);
Root->advanceTo(9000);
EXPECT_TRUE(Root->reachedEnd());
}
TEST(DexIterators, StringRepresentation) {
Corpus C{10};
const PostingList L1({1, 3, 5});
const PostingList L2({1, 7, 9});
// No token given, prints full posting list.
auto I1 = L1.iterator();
EXPECT_EQ(llvm::to_string(*I1), "[1 3 5]");
// Token given, uses token's string representation.
Token Tok(Token::Kind::Trigram, "L2");
auto I2 = L1.iterator(&Tok);
EXPECT_EQ(llvm::to_string(*I2), "T=L2");
auto Tree = C.limit(C.intersect(std::move(I1), std::move(I2)), 10);
// AND reorders its children, we don't care which order it prints.
EXPECT_THAT(llvm::to_string(*Tree), AnyOf("(LIMIT 10 (& [1 3 5] T=L2))",
"(LIMIT 10 (& T=L2 [1 3 5]))"));
}
TEST(DexIterators, Limit) {
Corpus C{10000};
const PostingList L0({3, 6, 7, 20, 42, 100});
const PostingList L1({1, 3, 5, 6, 7, 30, 100});
const PostingList L2({0, 3, 5, 7, 8, 100});
auto DocIterator = C.limit(L0.iterator(), 42);
EXPECT_THAT(consumeIDs(*DocIterator), ElementsAre(3, 6, 7, 20, 42, 100));
DocIterator = C.limit(L0.iterator(), 3);
EXPECT_THAT(consumeIDs(*DocIterator), ElementsAre(3, 6, 7));
DocIterator = C.limit(L0.iterator(), 0);
EXPECT_THAT(consumeIDs(*DocIterator), ElementsAre());
auto AndIterator =
C.intersect(C.limit(C.all(), 343), C.limit(L0.iterator(), 2),
C.limit(L1.iterator(), 3), C.limit(L2.iterator(), 42));
EXPECT_THAT(consumeIDs(*AndIterator), ElementsAre(3, 7));
}
TEST(DexIterators, True) {
EXPECT_TRUE(Corpus{0}.all()->reachedEnd());
EXPECT_THAT(consumeIDs(*Corpus{4}.all()), ElementsAre(0, 1, 2, 3));
}
TEST(DexIterators, Boost) {
Corpus C{5};
auto BoostIterator = C.boost(C.all(), 42U);
EXPECT_FALSE(BoostIterator->reachedEnd());
auto ElementBoost = BoostIterator->consume();
EXPECT_THAT(ElementBoost, 42U);
const PostingList L0({2, 4});
const PostingList L1({1, 4});
auto Root = C.unionOf(C.all(), C.boost(L0.iterator(), 2U),
C.boost(L1.iterator(), 3U));
ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 1);
Root->advance();
EXPECT_THAT(Root->peek(), 1U);
ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 3);
Root->advance();
EXPECT_THAT(Root->peek(), 2U);
ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 2);
Root->advanceTo(4);
ElementBoost = Root->consume();
EXPECT_THAT(ElementBoost, 3);
}
TEST(DexIterators, Optimizations) {
Corpus C{5};
const PostingList L1{1};
const PostingList L2{2};
const PostingList L3{3};
// empty and/or yield true/false
EXPECT_EQ(llvm::to_string(*C.intersect()), "true");
EXPECT_EQ(llvm::to_string(*C.unionOf()), "false");
// true/false inside and/or short-circuit
EXPECT_EQ(llvm::to_string(*C.intersect(L1.iterator(), C.all())), "[1]");
EXPECT_EQ(llvm::to_string(*C.intersect(L1.iterator(), C.none())), "false");
// Not optimized to avoid breaking boosts.
EXPECT_EQ(llvm::to_string(*C.unionOf(L1.iterator(), C.all())),
"(| [1] true)");
EXPECT_EQ(llvm::to_string(*C.unionOf(L1.iterator(), C.none())), "[1]");
// and/or nested inside and/or are flattened
EXPECT_EQ(llvm::to_string(*C.intersect(
L1.iterator(), C.intersect(L1.iterator(), L1.iterator()))),
"(& [1] [1] [1])");
EXPECT_EQ(llvm::to_string(*C.unionOf(
L1.iterator(), C.unionOf(L2.iterator(), L3.iterator()))),
"(| [1] [2] [3])");
// optimizations combine over multiple levels
EXPECT_EQ(llvm::to_string(*C.intersect(
C.intersect(L1.iterator(), C.intersect()), C.unionOf(C.all()))),
"[1]");
}
//===----------------------------------------------------------------------===//
// Search token tests.
//===----------------------------------------------------------------------===//
::testing::Matcher<std::vector<Token>>
tokensAre(std::initializer_list<std::string> Strings, Token::Kind Kind) {
std::vector<Token> Tokens;
for (const auto &TokenData : Strings) {
Tokens.push_back(Token(Kind, TokenData));
}
return ::testing::UnorderedElementsAreArray(Tokens);
}
::testing::Matcher<std::vector<Token>>
trigramsAre(std::initializer_list<std::string> Trigrams) {
return tokensAre(Trigrams, Token::Kind::Trigram);
}
std::vector<Token> identifierTrigramTokens(llvm::StringRef S) {
std::vector<Trigram> Trigrams;
generateIdentifierTrigrams(S, Trigrams);
std::vector<Token> Tokens;
for (Trigram T : Trigrams)
Tokens.emplace_back(Token::Kind::Trigram, T.str());
return Tokens;
}
TEST(DexTrigrams, IdentifierTrigrams) {
EXPECT_THAT(identifierTrigramTokens("X86"), trigramsAre({"x86", "x", "x8"}));
EXPECT_THAT(identifierTrigramTokens("nl"), trigramsAre({"nl", "n"}));
EXPECT_THAT(identifierTrigramTokens("n"), trigramsAre({"n"}));
EXPECT_THAT(identifierTrigramTokens("clangd"),
trigramsAre({"c", "cl", "cla", "lan", "ang", "ngd"}));
EXPECT_THAT(identifierTrigramTokens("abc_def"),
trigramsAre({"a", "d", "ab", "ad", "de", "abc", "abd", "ade",
"bcd", "bde", "cde", "def"}));
EXPECT_THAT(identifierTrigramTokens("a_b_c_d_e_"),
trigramsAre({"a", "b", "ab", "bc", "abc", "bcd", "cde"}));
EXPECT_THAT(identifierTrigramTokens("unique_ptr"),
trigramsAre({"u", "p", "un", "up", "pt", "uni", "unp",
"upt", "niq", "nip", "npt", "iqu", "iqp", "ipt",
"que", "qup", "qpt", "uep", "ept", "ptr"}));
EXPECT_THAT(identifierTrigramTokens("TUDecl"),
trigramsAre({"t", "d", "tu", "td", "de", "tud", "tde", "ude",
"dec", "ecl"}));
EXPECT_THAT(identifierTrigramTokens("IsOK"),
trigramsAre({"i", "o", "is", "ok", "io", "iso", "iok", "sok"}));
EXPECT_THAT(identifierTrigramTokens("_pb"),
trigramsAre({"_", "_p", "p", "pb"}));
EXPECT_THAT(identifierTrigramTokens("__pb"),
trigramsAre({"_", "_p", "p", "pb"}));
EXPECT_THAT(identifierTrigramTokens("abc_defGhij__klm"),
trigramsAre({"a", "d", "ab", "ad", "dg", "de", "abc",
"abd", "ade", "adg", "bcd", "bde", "bdg", "cde",
"cdg", "def", "deg", "dgh", "dgk", "efg", "egh",
"egk", "fgh", "fgk", "ghi", "ghk", "gkl", "hij",
"hik", "hkl", "ijk", "ikl", "jkl", "klm"}));
EXPECT_THAT(identifierTrigramTokens(""), IsEmpty());
}
TEST(DexTrigrams, QueryTrigrams) {
EXPECT_THAT(generateQueryTrigrams("c"), trigramsAre({"c"}));
EXPECT_THAT(generateQueryTrigrams("cl"), trigramsAre({"cl"}));
EXPECT_THAT(generateQueryTrigrams("cla"), trigramsAre({"cla"}));
EXPECT_THAT(generateQueryTrigrams(""), trigramsAre({}));
EXPECT_THAT(generateQueryTrigrams("_"), trigramsAre({"_"}));
EXPECT_THAT(generateQueryTrigrams("__"), trigramsAre({"_"}));
EXPECT_THAT(generateQueryTrigrams("___"), trigramsAre({"_"}));
EXPECT_THAT(generateQueryTrigrams("m_"), trigramsAre({"m"}));
EXPECT_THAT(generateQueryTrigrams("p_b"), trigramsAre({"pb"}));
EXPECT_THAT(generateQueryTrigrams("pb_"), trigramsAre({"pb"}));
EXPECT_THAT(generateQueryTrigrams("_p"), trigramsAre({"_p"}));
EXPECT_THAT(generateQueryTrigrams("_pb_"), trigramsAre({"pb"}));
EXPECT_THAT(generateQueryTrigrams("__pb"), trigramsAre({"pb"}));
EXPECT_THAT(generateQueryTrigrams("X86"), trigramsAre({"x86"}));
EXPECT_THAT(generateQueryTrigrams("clangd"),
trigramsAre({"cla", "lan", "ang", "ngd"}));
EXPECT_THAT(generateQueryTrigrams("abc_def"),
trigramsAre({"abc", "bcd", "cde", "def"}));
EXPECT_THAT(generateQueryTrigrams("a_b_c_d_e_"),
trigramsAre({"abc", "bcd", "cde"}));
EXPECT_THAT(generateQueryTrigrams("unique_ptr"),
trigramsAre({"uni", "niq", "iqu", "que", "uep", "ept", "ptr"}));
EXPECT_THAT(generateQueryTrigrams("TUDecl"),
trigramsAre({"tud", "ude", "dec", "ecl"}));
EXPECT_THAT(generateQueryTrigrams("IsOK"), trigramsAre({"iso", "sok"}));
EXPECT_THAT(generateQueryTrigrams("abc_defGhij__klm"),
trigramsAre({"abc", "bcd", "cde", "def", "efg", "fgh", "ghi",
"hij", "ijk", "jkl", "klm"}));
}
TEST(DexSearchTokens, SymbolPath) {
EXPECT_THAT(generateProximityURIs(
"unittest:///clang-tools-extra/clangd/index/Token.h"),
ElementsAre("unittest:///clang-tools-extra/clangd/index/Token.h",
"unittest:///clang-tools-extra/clangd/index",
"unittest:///clang-tools-extra/clangd",
"unittest:///clang-tools-extra", "unittest:///"));
EXPECT_THAT(generateProximityURIs("unittest:///a/b/c.h"),
ElementsAre("unittest:///a/b/c.h", "unittest:///a/b",
"unittest:///a", "unittest:///"));
}
//===----------------------------------------------------------------------===//
// Index tests.
//===----------------------------------------------------------------------===//
TEST(Dex, Lookup) {
auto I = Dex::build(generateSymbols({"ns::abc", "ns::xyz"}), RefSlab(),
RelationSlab());
EXPECT_THAT(lookup(*I, SymbolID("ns::abc")), UnorderedElementsAre("ns::abc"));
EXPECT_THAT(lookup(*I, {SymbolID("ns::abc"), SymbolID("ns::xyz")}),
UnorderedElementsAre("ns::abc", "ns::xyz"));
EXPECT_THAT(lookup(*I, {SymbolID("ns::nonono"), SymbolID("ns::xyz")}),
UnorderedElementsAre("ns::xyz"));
EXPECT_THAT(lookup(*I, SymbolID("ns::nonono")), UnorderedElementsAre());
}
TEST(Dex, FuzzyFind) {
auto Index =
Dex::build(generateSymbols({"ns::ABC", "ns::BCD", "::ABC",
"ns::nested::ABC", "other::ABC", "other::A"}),
RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.Query = "ABC";
Req.Scopes = {"ns::"};
EXPECT_THAT(match(*Index, Req), UnorderedElementsAre("ns::ABC"));
Req.Scopes = {"ns::", "ns::nested::"};
EXPECT_THAT(match(*Index, Req),
UnorderedElementsAre("ns::ABC", "ns::nested::ABC"));
Req.Query = "A";
Req.Scopes = {"other::"};
EXPECT_THAT(match(*Index, Req),
UnorderedElementsAre("other::A", "other::ABC"));
Req.Query = "";
Req.Scopes = {};
Req.AnyScope = true;
EXPECT_THAT(match(*Index, Req),
UnorderedElementsAre("ns::ABC", "ns::BCD", "::ABC",
"ns::nested::ABC", "other::ABC",
"other::A"));
}
TEST(DexTest, DexLimitedNumMatches) {
auto I = Dex::build(generateNumSymbols(0, 100), RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.Query = "5";
Req.AnyScope = true;
Req.Limit = 3;
bool Incomplete;
auto Matches = match(*I, Req, &Incomplete);
EXPECT_TRUE(Req.Limit);
EXPECT_EQ(Matches.size(), *Req.Limit);
EXPECT_TRUE(Incomplete);
}
TEST(DexTest, FuzzyMatch) {
auto I = Dex::build(
generateSymbols({"LaughingOutLoud", "LionPopulation", "LittleOldLady"}),
RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.Query = "lol";
Req.AnyScope = true;
Req.Limit = 2;
EXPECT_THAT(match(*I, Req),
UnorderedElementsAre("LaughingOutLoud", "LittleOldLady"));
}
TEST(DexTest, ShortQuery) {
auto I = Dex::build(generateSymbols({"_OneTwoFourSix"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
bool Incomplete;
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_FALSE(Incomplete) << "Empty string is not a short query";
Req.Query = "o";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using first head as unigram";
Req.Query = "_o";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using delimiter and first head as bigram";
Req.Query = "on";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using first head and tail as bigram";
Req.Query = "ot";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using first two heads as bigram";
Req.Query = "tw";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using second head and tail as bigram";
Req.Query = "tf";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_TRUE(Incomplete) << "Using second and third heads as bigram";
Req.Query = "fo";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre());
EXPECT_TRUE(Incomplete) << "Short queries have different semantics";
Req.Query = "tfs";
EXPECT_THAT(match(*I, Req, &Incomplete), ElementsAre("_OneTwoFourSix"));
EXPECT_FALSE(Incomplete) << "3-char string is not a short query";
}
TEST(DexTest, MatchQualifiedNamesWithoutSpecificScope) {
auto I = Dex::build(generateSymbols({"a::y1", "b::y2", "y3"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.Query = "y";
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("a::y1", "b::y2", "y3"));
}
TEST(DexTest, MatchQualifiedNamesWithGlobalScope) {
auto I = Dex::build(generateSymbols({"a::y1", "b::y2", "y3"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.Query = "y";
Req.Scopes = {""};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("y3"));
}
TEST(DexTest, MatchQualifiedNamesWithOneScope) {
auto I =
Dex::build(generateSymbols({"a::y1", "a::y2", "a::x", "b::y2", "y3"}),
RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.Query = "y";
Req.Scopes = {"a::"};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("a::y1", "a::y2"));
}
TEST(DexTest, MatchQualifiedNamesWithMultipleScopes) {
auto I =
Dex::build(generateSymbols({"a::y1", "a::y2", "a::x", "b::y3", "y3"}),
RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.Query = "y";
Req.Scopes = {"a::", "b::"};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("a::y1", "a::y2", "b::y3"));
}
TEST(DexTest, NoMatchNestedScopes) {
auto I = Dex::build(generateSymbols({"a::y1", "a::b::y2"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.Query = "y";
Req.Scopes = {"a::"};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("a::y1"));
}
TEST(DexTest, WildcardScope) {
auto I = Dex::build(generateSymbols({"a::y1", "a::b::y2", "c::y3"}),
RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.Query = "y";
Req.Scopes = {"a::"};
EXPECT_THAT(match(*I, Req),
UnorderedElementsAre("a::y1", "a::b::y2", "c::y3"));
}
TEST(DexTest, IgnoreCases) {
auto I = Dex::build(generateSymbols({"ns::ABC", "ns::abc"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.Query = "AB";
Req.Scopes = {"ns::"};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre("ns::ABC", "ns::abc"));
}
TEST(DexTest, UnknownPostingList) {
// Regression test: we used to ignore unknown scopes and accept any symbol.
auto I = Dex::build(generateSymbols({"ns::ABC", "ns::abc"}), RefSlab(),
RelationSlab());
FuzzyFindRequest Req;
Req.Scopes = {"ns2::"};
EXPECT_THAT(match(*I, Req), UnorderedElementsAre());
}
TEST(DexTest, Lookup) {
auto I = Dex::build(generateSymbols({"ns::abc", "ns::xyz"}), RefSlab(),
RelationSlab());
EXPECT_THAT(lookup(*I, SymbolID("ns::abc")), UnorderedElementsAre("ns::abc"));
EXPECT_THAT(lookup(*I, {SymbolID("ns::abc"), SymbolID("ns::xyz")}),
UnorderedElementsAre("ns::abc", "ns::xyz"));
EXPECT_THAT(lookup(*I, {SymbolID("ns::nonono"), SymbolID("ns::xyz")}),
UnorderedElementsAre("ns::xyz"));
EXPECT_THAT(lookup(*I, SymbolID("ns::nonono")), UnorderedElementsAre());
}
TEST(DexTest, SymbolIndexOptionsFilter) {
auto CodeCompletionSymbol = symbol("Completion");
auto NonCodeCompletionSymbol = symbol("NoCompletion");
CodeCompletionSymbol.Flags = Symbol::SymbolFlag::IndexedForCodeCompletion;
NonCodeCompletionSymbol.Flags = Symbol::SymbolFlag::None;
std::vector<Symbol> Symbols{CodeCompletionSymbol, NonCodeCompletionSymbol};
Dex I(Symbols, RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.RestrictForCodeCompletion = false;
EXPECT_THAT(match(I, Req), ElementsAre("Completion", "NoCompletion"));
Req.RestrictForCodeCompletion = true;
EXPECT_THAT(match(I, Req), ElementsAre("Completion"));
}
TEST(DexTest, ProximityPathsBoosting) {
auto RootSymbol = symbol("root::abc");
RootSymbol.CanonicalDeclaration.FileURI = "unittest:///file.h";
auto CloseSymbol = symbol("close::abc");
CloseSymbol.CanonicalDeclaration.FileURI = "unittest:///a/b/c/d/e/f/file.h";
std::vector<Symbol> Symbols{CloseSymbol, RootSymbol};
Dex I(Symbols, RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.Query = "abc";
// The best candidate can change depending on the proximity paths.
Req.Limit = 1;
// FuzzyFind request comes from the file which is far from the root: expect
// CloseSymbol to come out.
Req.ProximityPaths = {testPath("a/b/c/d/e/f/file.h")};
EXPECT_THAT(match(I, Req), ElementsAre("close::abc"));
// FuzzyFind request comes from the file which is close to the root: expect
// RootSymbol to come out.
Req.ProximityPaths = {testPath("file.h")};
EXPECT_THAT(match(I, Req), ElementsAre("root::abc"));
}
TEST(DexTests, Refs) {
llvm::DenseMap<SymbolID, std::vector<Ref>> Refs;
auto AddRef = [&](const Symbol &Sym, const char *Filename, RefKind Kind) {
auto &SymbolRefs = Refs[Sym.ID];
SymbolRefs.emplace_back();
SymbolRefs.back().Kind = Kind;
SymbolRefs.back().Location.FileURI = Filename;
};
auto Foo = symbol("foo");
auto Bar = symbol("bar");
AddRef(Foo, "foo.h", RefKind::Declaration);
AddRef(Foo, "foo.cc", RefKind::Definition);
AddRef(Foo, "reffoo.h", RefKind::Reference);
AddRef(Bar, "bar.h", RefKind::Declaration);
RefsRequest Req;
Req.IDs.insert(Foo.ID);
Req.Filter = RefKind::Declaration | RefKind::Definition;
std::vector<std::string> Files;
EXPECT_FALSE(Dex(std::vector<Symbol>{Foo, Bar}, Refs, RelationSlab())
.refs(Req, [&](const Ref &R) {
Files.push_back(R.Location.FileURI);
}));
EXPECT_THAT(Files, UnorderedElementsAre("foo.h", "foo.cc"));
Req.Limit = 1;
Files.clear();
EXPECT_TRUE(Dex(std::vector<Symbol>{Foo, Bar}, Refs, RelationSlab())
.refs(Req, [&](const Ref &R) {
Files.push_back(R.Location.FileURI);
}));
EXPECT_THAT(Files, ElementsAre(AnyOf("foo.h", "foo.cc")));
}
TEST(DexTests, Relations) {
auto Parent = symbol("Parent");
auto Child1 = symbol("Child1");
auto Child2 = symbol("Child2");
std::vector<Symbol> Symbols{Parent, Child1, Child2};
std::vector<Relation> Relations{{Parent.ID, RelationKind::BaseOf, Child1.ID},
{Parent.ID, RelationKind::BaseOf, Child2.ID}};
Dex I{Symbols, RefSlab(), Relations};
std::vector<SymbolID> Results;
RelationsRequest Req;
Req.Subjects.insert(Parent.ID);
Req.Predicate = RelationKind::BaseOf;
I.relations(Req, [&](const SymbolID &Subject, const Symbol &Object) {
Results.push_back(Object.ID);
});
EXPECT_THAT(Results, UnorderedElementsAre(Child1.ID, Child2.ID));
}
TEST(DexIndex, IndexedFiles) {
SymbolSlab Symbols;
RefSlab Refs;
auto Size = Symbols.bytes() + Refs.bytes();
auto Data = std::make_pair(std::move(Symbols), std::move(Refs));
llvm::StringSet<> Files = {"unittest:///foo.cc", "unittest:///bar.cc"};
Dex I(std::move(Data.first), std::move(Data.second), RelationSlab(),
std::move(Files), IndexContents::All, std::move(Data), Size);
auto ContainsFile = I.indexedFiles();
EXPECT_EQ(ContainsFile("unittest:///foo.cc"), IndexContents::All);
EXPECT_EQ(ContainsFile("unittest:///bar.cc"), IndexContents::All);
EXPECT_EQ(ContainsFile("unittest:///foobar.cc"), IndexContents::None);
}
TEST(DexTest, PreferredTypesBoosting) {
auto Sym1 = symbol("t1");
Sym1.Type = "T1";
auto Sym2 = symbol("t2");
Sym2.Type = "T2";
std::vector<Symbol> Symbols{Sym1, Sym2};
Dex I(Symbols, RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.Query = "t";
// The best candidate can change depending on the preferred type.
Req.Limit = 1;
Req.PreferredTypes = {std::string(Sym1.Type)};
EXPECT_THAT(match(I, Req), ElementsAre("t1"));
Req.PreferredTypes = {std::string(Sym2.Type)};
EXPECT_THAT(match(I, Req), ElementsAre("t2"));
}
TEST(DexTest, TemplateSpecialization) {
SymbolSlab::Builder B;
Symbol S = symbol("TempSpec");
S.ID = SymbolID("0");
B.insert(S);
S = symbol("TempSpec");
S.ID = SymbolID("1");
S.TemplateSpecializationArgs = "<int, bool>";
S.SymInfo.Properties = static_cast<index::SymbolPropertySet>(
index::SymbolProperty::TemplateSpecialization);
B.insert(S);
S = symbol("TempSpec");
S.ID = SymbolID("2");
S.TemplateSpecializationArgs = "<int, U>";
S.SymInfo.Properties = static_cast<index::SymbolPropertySet>(
index::SymbolProperty::TemplatePartialSpecialization);
B.insert(S);
auto I = dex::Dex::build(std::move(B).build(), RefSlab(), RelationSlab());
FuzzyFindRequest Req;
Req.AnyScope = true;
Req.Query = "TempSpec";
EXPECT_THAT(match(*I, Req),
UnorderedElementsAre("TempSpec", "TempSpec<int, bool>",
"TempSpec<int, U>"));
// FIXME: Add filtering for template argument list.
Req.Query = "TempSpec<int";
EXPECT_THAT(match(*I, Req), IsEmpty());
}
} // namespace
} // namespace dex
} // namespace clangd
} // namespace clang