Greg Clayton 73b472d42a Updated the lldb_private::Flags class to have better method names and made
all of the calls inlined in the header file for better performance.

Fixed the summary for C string types (array of chars (with any combo if
modifiers), and pointers to chars) work in all cases.

Fixed an issue where a forward declaration to a clang type could cause itself
to resolve itself more than once if, during the resolving of the type itself
it caused something to try and resolve itself again. We now remove the clang
type from the forward declaration map in the DWARF parser when we start to 
resolve it and avoid this additional call. This should stop any duplicate
members from appearing and throwing all the alignment of structs, unions and
classes.

llvm-svn: 117437
2010-10-27 03:32:59 +00:00

783 lines
21 KiB
C++

//===-- Stream.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Stream.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace lldb;
using namespace lldb_private;
Stream::Stream (uint32_t flags, uint32_t addr_size, ByteOrder byte_order) :
m_flags (flags),
m_addr_size (addr_size),
m_byte_order (byte_order),
m_indent_level(0)
{
}
Stream::Stream () :
m_flags (0),
m_addr_size (4),
m_byte_order (eByteOrderHost),
m_indent_level(0)
{
}
//------------------------------------------------------------------
// Destructor
//------------------------------------------------------------------
Stream::~Stream ()
{
}
ByteOrder
Stream::SetByteOrder (ByteOrder byte_order)
{
ByteOrder old_byte_order = m_byte_order;
m_byte_order = byte_order;
return old_byte_order;
}
//------------------------------------------------------------------
// Put an offset "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
void
Stream::Offset (uint32_t uval, const char *format)
{
Printf (format, uval);
}
//------------------------------------------------------------------
// Put an SLEB128 "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
int
Stream::PutSLEB128 (int64_t sval)
{
int bytes_written = 0;
if (m_flags.Test(eBinary))
{
bool more = true;
while (more)
{
uint8_t byte = sval & 0x7fu;
sval >>= 7;
/* sign bit of byte is 2nd high order bit (0x40) */
if ((sval == 0 && !(byte & 0x40)) ||
(sval == -1 && (byte & 0x40)) )
more = false;
else
// more bytes to come
byte |= 0x80u;
bytes_written += Write(&byte, 1);
}
}
else
{
bytes_written = Printf ("0x%lli", sval);
}
return bytes_written;
}
//------------------------------------------------------------------
// Put an ULEB128 "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
int
Stream::PutULEB128 (uint64_t uval)
{
int bytes_written = 0;
if (m_flags.Test(eBinary))
{
do
{
uint8_t byte = uval & 0x7fu;
uval >>= 7;
if (uval != 0)
{
// more bytes to come
byte |= 0x80u;
}
bytes_written += Write(&byte, 1);
} while (uval != 0);
}
else
{
bytes_written = Printf ("0x%llx", uval);
}
return bytes_written;
}
//------------------------------------------------------------------
// Print a raw NULL terminated C string to the stream using the
// printf format in "format".
//------------------------------------------------------------------
int
Stream::PutCString (const char *cstr)
{
int cstr_len = strlen(cstr);
// when in binary mode, emit the NULL terminator
if (m_flags.Test(eBinary))
++cstr_len;
return Write (cstr, cstr_len);
}
//------------------------------------------------------------------
// Print a double quoted NULL terminated C string to the stream
// using the printf format in "format".
//------------------------------------------------------------------
void
Stream::QuotedCString (const char *cstr, const char *format)
{
Printf (format, cstr);
}
//------------------------------------------------------------------
// Put an address "addr" out to the stream with optional prefix
// and suffix strings.
//------------------------------------------------------------------
void
Stream::Address (uint64_t addr, int addr_size, const char *prefix, const char *suffix)
{
if (prefix == NULL)
prefix = "";
if (suffix == NULL)
suffix = "";
// int addr_width = m_addr_size << 1;
// Printf ("%s0x%0*llx%s", prefix, addr_width, addr, suffix);
Printf ("%s0x%0*llx%s", prefix, addr_size * 2, (uint64_t)addr, suffix);
}
//------------------------------------------------------------------
// Put an address range out to the stream with optional prefix
// and suffix strings.
//------------------------------------------------------------------
void
Stream::AddressRange(uint64_t lo_addr, uint64_t hi_addr, int addr_size, const char *prefix, const char *suffix)
{
if (prefix != NULL)
PutCString (prefix);
Address (lo_addr, addr_size, "[");
Address (hi_addr, addr_size, "-", ")");
}
int
Stream::PutChar (char ch)
{
return Write (&ch, 1);
}
//------------------------------------------------------------------
// Print some formatted output to the stream.
//------------------------------------------------------------------
int
Stream::Printf (const char *format, ...)
{
va_list args;
va_start (args, format);
size_t result = PrintfVarArg(format, args);
va_end (args);
return result;
}
//------------------------------------------------------------------
// Print some formatted output to the stream.
//------------------------------------------------------------------
int
Stream::PrintfVarArg (const char *format, va_list args)
{
char str[1024];
va_list args_copy;
va_copy (args_copy, args);
int bytes_written = 0;
// Try and format our string into a fixed buffer first and see if it fits
size_t length = ::vsnprintf (str, sizeof(str), format, args);
if (length < sizeof(str))
{
va_end (args);
// Include the NULL termination byte for binary output
if (m_flags.Test(eBinary))
length += 1;
// The formatted string fit into our stack based buffer, so we can just
// append that to our packet
bytes_written = Write (str, length);
}
else
{
// Our stack buffer wasn't big enough to contain the entire formatted
// string, so lets let vasprintf create the string for us!
char *str_ptr = NULL;
length = ::vasprintf (&str_ptr, format, args_copy);
if (str_ptr)
{
// Include the NULL termination byte for binary output
if (m_flags.Test(eBinary))
length += 1;
bytes_written = Write (str_ptr, length);
::free (str_ptr);
}
}
va_end (args_copy);
return bytes_written;
}
//------------------------------------------------------------------
// Print and End of Line character to the stream
//------------------------------------------------------------------
int
Stream::EOL()
{
return PutChar ('\n');
}
//------------------------------------------------------------------
// Indent the current line using the current indentation level and
// print an optional string following the idenatation spaces.
//------------------------------------------------------------------
int
Stream::Indent(const char *s)
{
return Printf ("%*.*s%s", m_indent_level, m_indent_level, "", s ? s : "");
}
//------------------------------------------------------------------
// Stream a character "ch" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (char ch)
{
PutChar (ch);
return *this;
}
//------------------------------------------------------------------
// Stream the NULL terminated C string out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (const char *s)
{
Printf ("%s", s);
return *this;
}
//------------------------------------------------------------------
// Stream the pointer value out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (void *p)
{
Printf ("0x%.*tx", (int)sizeof(void*) * 2, (ptrdiff_t)p);
return *this;
}
//------------------------------------------------------------------
// Stream a uint8_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint8_t uval)
{
PutHex8(uval);
return *this;
}
//------------------------------------------------------------------
// Stream a uint16_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint16_t uval)
{
PutHex16(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a uint32_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint32_t uval)
{
PutHex32(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a uint64_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint64_t uval)
{
PutHex64(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a int8_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int8_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int16_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int16_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int32_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int32_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int64_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int64_t sval)
{
Printf ("%lli", sval);
return *this;
}
//------------------------------------------------------------------
// Get the current indentation level
//------------------------------------------------------------------
int
Stream::GetIndentLevel() const
{
return m_indent_level;
}
//------------------------------------------------------------------
// Set the current indentation level
//------------------------------------------------------------------
void
Stream::SetIndentLevel(int indent_level)
{
m_indent_level = indent_level;
}
//------------------------------------------------------------------
// Increment the current indentation level
//------------------------------------------------------------------
void
Stream::IndentMore(int amount)
{
m_indent_level += amount;
}
//------------------------------------------------------------------
// Decrement the current indentation level
//------------------------------------------------------------------
void
Stream::IndentLess (int amount)
{
if (m_indent_level >= amount)
m_indent_level -= amount;
else
m_indent_level = 0;
}
//------------------------------------------------------------------
// Get the address size in bytes
//------------------------------------------------------------------
uint8_t
Stream::GetAddressByteSize() const
{
return m_addr_size;
}
//------------------------------------------------------------------
// Set the address size in bytes
//------------------------------------------------------------------
void
Stream::SetAddressByteSize(uint8_t addr_size)
{
m_addr_size = addr_size;
}
//------------------------------------------------------------------
// Returns true if the verbose flag bit is set in this stream.
//------------------------------------------------------------------
bool
Stream::GetVerbose() const
{
return m_flags.Test(eVerbose);
}
//------------------------------------------------------------------
// Returns true if the debug flag bit is set in this stream.
//------------------------------------------------------------------
bool
Stream::GetDebug() const
{
return m_flags.Test(eDebug);
}
//------------------------------------------------------------------
// The flags get accessor
//------------------------------------------------------------------
Flags&
Stream::GetFlags()
{
return m_flags;
}
//------------------------------------------------------------------
// The flags const get accessor
//------------------------------------------------------------------
const Flags&
Stream::GetFlags() const
{
return m_flags;
}
//------------------------------------------------------------------
// The byte order get accessor
//------------------------------------------------------------------
lldb::ByteOrder
Stream::GetByteOrder() const
{
return m_byte_order;
}
int
Stream::PrintfAsRawHex8 (const char *format, ...)
{
va_list args;
va_list args_copy;
va_start (args, format);
va_copy (args, args_copy); // Copy this so we
char str[1024];
int bytes_written = 0;
// Try and format our string into a fixed buffer first and see if it fits
size_t length = ::vsnprintf (str, sizeof(str), format, args);
if (length < sizeof(str))
{
// The formatted string fit into our stack based buffer, so we can just
// append that to our packet
for (size_t i=0; i<length; ++i)
bytes_written += _PutHex8 (str[i], false);
}
else
{
// Our stack buffer wasn't big enough to contain the entire formatted
// string, so lets let vasprintf create the string for us!
char *str_ptr = NULL;
length = ::vasprintf (&str_ptr, format, args_copy);
if (str_ptr)
{
for (size_t i=0; i<length; ++i)
bytes_written += _PutHex8 (str_ptr[i], false);
::free (str_ptr);
}
}
va_end (args);
va_end (args_copy);
return bytes_written;
}
int
Stream::PutNHex8 (size_t n, uint8_t uvalue)
{
int bytes_written = 0;
for (size_t i=0; i<n; ++i)
bytes_written += _PutHex8 (uvalue, m_flags.Test(eAddPrefix));
return bytes_written;
}
int
Stream::_PutHex8 (uint8_t uvalue, bool add_prefix)
{
int bytes_written = 0;
if (m_flags.Test(eBinary))
{
bytes_written = Write (&uvalue, 1);
}
else
{
if (add_prefix)
PutCString("0x");
static char g_hex_to_ascii_hex_char[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
char nibble_chars[2];
nibble_chars[0] = g_hex_to_ascii_hex_char[(uvalue >> 4) & 0xf];
nibble_chars[1] = g_hex_to_ascii_hex_char[(uvalue >> 0) & 0xf];
bytes_written = Write (nibble_chars, sizeof(nibble_chars));
}
return bytes_written;
}
int
Stream::PutHex8 (uint8_t uvalue)
{
return _PutHex8 (uvalue, m_flags.Test(eAddPrefix));
}
int
Stream::PutHex16 (uint16_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
int bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
return bytes_written;
}
int
Stream::PutHex32(uint32_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
int bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
return bytes_written;
}
int
Stream::PutHex64(uint64_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
int bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 (uvalue >> (byte * 8), add_prefix);
}
return bytes_written;
}
int
Stream::PutMaxHex64
(
uint64_t uvalue,
size_t byte_size,
lldb::ByteOrder byte_order
)
{
switch (byte_size)
{
case 1: return PutHex8 (uvalue);
case 2: return PutHex16 (uvalue);
case 4: return PutHex32 (uvalue);
case 8: return PutHex64 (uvalue);
}
return 0;
}
int
Stream::PutPointer (void *ptr)
{
return PutRawBytes (&ptr, sizeof(ptr), eByteOrderHost, eByteOrderHost);
}
int
Stream::PutFloat(float f, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&f, sizeof(f), eByteOrderHost, byte_order);
}
int
Stream::PutDouble(double d, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&d, sizeof(d), eByteOrderHost, byte_order);
}
int
Stream::PutLongDouble(long double ld, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&ld, sizeof(ld), eByteOrderHost, byte_order);
}
int
Stream::PutRawBytes (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order)
{
if (src_byte_order == eByteOrderInvalid)
src_byte_order = m_byte_order;
if (dst_byte_order == eByteOrderInvalid)
dst_byte_order = m_byte_order;
int bytes_written = 0;
const uint8_t *src = (const uint8_t *)s;
bool binary_was_set = m_flags.Test (eBinary);
if (!binary_was_set)
m_flags.Set (eBinary);
if (src_byte_order == dst_byte_order)
{
for (size_t i = 0; i < src_len; ++i)
bytes_written += _PutHex8 (src[i], false);
}
else
{
for (size_t i = src_len-1; i < src_len; --i)
bytes_written += _PutHex8 (src[i], false);
}
if (!binary_was_set)
m_flags.Clear (eBinary);
return bytes_written;
}
int
Stream::PutBytesAsRawHex8 (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order)
{
if (src_byte_order == eByteOrderInvalid)
src_byte_order = m_byte_order;
if (dst_byte_order == eByteOrderInvalid)
dst_byte_order = m_byte_order;
int bytes_written = 0;
const uint8_t *src = (const uint8_t *)s;
bool binary_is_set = m_flags.Test(eBinary);
m_flags.Clear(eBinary);
if (src_byte_order == dst_byte_order)
{
for (size_t i = 0; i < src_len; ++i)
bytes_written += _PutHex8 (src[i], false);
}
else
{
for (size_t i = src_len-1; i < src_len; --i)
bytes_written += _PutHex8 (src[i], false);
}
if (binary_is_set)
m_flags.Set(eBinary);
return bytes_written;
}
int
Stream::PutCStringAsRawHex8 (const char *s)
{
int bytes_written = 0;
bool binary_is_set = m_flags.Test(eBinary);
m_flags.Clear(eBinary);
do
{
bytes_written += _PutHex8 (*s, false);
++s;
} while (*s);
if (binary_is_set)
m_flags.Set(eBinary);
return bytes_written;
}
void
Stream::UnitTest(Stream *s)
{
s->PutHex8(0x12);
s->PutChar(' ');
s->PutHex16(0x3456, eByteOrderHost);
s->PutChar(' ');
s->PutHex16(0x3456, eByteOrderBig);
s->PutChar(' ');
s->PutHex16(0x3456, eByteOrderLittle);
s->PutChar(' ');
s->PutHex32(0x789abcde, eByteOrderHost);
s->PutChar(' ');
s->PutHex32(0x789abcde, eByteOrderBig);
s->PutChar(' ');
s->PutHex32(0x789abcde, eByteOrderLittle);
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, eByteOrderHost);
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, eByteOrderBig);
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, eByteOrderLittle);
const char *hola = "Hello World!!!";
s->PutChar(' ');
s->PutCString (hola);
s->PutChar(' ');
s->Write (hola, 5);
s->PutChar(' ');
s->PutCStringAsRawHex8 (hola);
s->PutChar(' ');
s->PutCStringAsRawHex8 ("01234");
s->PutChar(' ');
s->Printf ("pid=%i", 12733);
s->PutChar(' ');
s->PrintfAsRawHex8 ("pid=%i", 12733);
s->PutChar('\n');
}