mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-04 14:23:00 +00:00

The current dialect registry allows for attaching delayed interfaces, that are added to attrs/dialects/ops/etc. when the owning dialect gets loaded. This is clunky for quite a few reasons, e.g. each interface type has a separate tracking structure, and is also quite limiting. This commit refactors this delayed mutation of dialect constructs into a more general DialectExtension mechanism. This mechanism is essentially a registration callback that is invoked when a set of dialects have been loaded. This allows for attaching interfaces directly on the loaded constructs, and also allows for loading new dependent dialects. The latter of which is extremely useful as it will now enable dependent dialects to only apply in the contexts in which they are necessary. For example, a dialect dependency can now be conditional on if a user actually needs the interface that relies on it. Differential Revision: https://reviews.llvm.org/D120367
1076 lines
43 KiB
C++
1076 lines
43 KiB
C++
//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Module Bufferization is an extension of Comprehensive Bufferize that
|
|
// bufferizes function boundaries. It provides `BufferizableOpInterface`
|
|
// implementations for FuncOp, CallOp and ReturnOp.
|
|
//
|
|
// Module Bufferization is run via `runModuleBufferize(ModuleOp, ...)`. This
|
|
// function analyzes the given module and determines the order of analysis and
|
|
// bufferization: Functions that are called are processed before their
|
|
// respective callers.
|
|
//
|
|
// After analyzing a FuncOp, additional information about its bbArgs is
|
|
// gathered through PostAnalysisStepFns and stored in
|
|
// `ModuleAnalysisState`.
|
|
//
|
|
// * `equivalentFuncOpBBArgsAnalysis` determines the equivalent bbArg for each
|
|
// tensor return value (if any).
|
|
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
|
|
// read/written.
|
|
//
|
|
// Only tensors that are equivalent to some FuncOp bbArg may be returned.
|
|
// Bufferization currently fails if other tensors (in particular tensors that
|
|
// bufferize out-of-place and result in a new buffer allocation) are returned.
|
|
// In the future, such allocations could be hoisted to the caller.
|
|
//
|
|
// Example: `foo` fails bufferization because %0 is not equivalent to any bbArg.
|
|
// ```
|
|
// func @foo() -> tensor<?xf32> {
|
|
// %0 = linalg.init_tensor [...] : tensor<?xf32>
|
|
// return %0 : tensor<?xf32>
|
|
// }
|
|
// ```
|
|
//
|
|
// Module Bufferization implements the following calling convention.
|
|
//
|
|
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
|
|
// be written to in-place.
|
|
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
|
|
// the CallOp must bufferize out-of-place.
|
|
//
|
|
// Example: The tensor.insert op bufferizes in-place because it is allowed to
|
|
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
|
|
// out-of-place because `%t0` is modified by the callee but read by the
|
|
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
|
|
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
|
|
// ```
|
|
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
|
|
// %f = ... : f32
|
|
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
|
|
// return %0 : tensor<?xf32>
|
|
// }
|
|
//
|
|
// func @caller() -> () {
|
|
// %t0 = ... : tensor<?xf32>
|
|
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
|
|
// %2 = tensor.extract %1[...] : tensor<?xf32>
|
|
// }
|
|
// ```
|
|
//
|
|
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
|
|
// analyze the function body. In such a case, the CallOp analysis conservatively
|
|
// assumes that each tensor OpOperand is both read and written.
|
|
//
|
|
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
|
|
// as "not reading" and/or "not writing".
|
|
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ModuleBufferization.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
using namespace mlir;
|
|
using namespace linalg;
|
|
using namespace tensor;
|
|
using namespace comprehensive_bufferize;
|
|
using namespace mlir::bufferization;
|
|
|
|
namespace {
|
|
/// The state of analysis of a FuncOp.
|
|
enum class FuncOpAnalysisState { NotAnalyzed, InProgress, Analyzed };
|
|
|
|
/// Extra analysis state that is required for bufferization of function
|
|
/// boundaries.
|
|
struct ModuleAnalysisState : public DialectAnalysisState {
|
|
/// A mapping of ReturnOp OpOperand indices to equivalent FuncOp BBArg
|
|
/// indices.
|
|
DenseMap<FuncOp, DenseMap<int64_t, int64_t>> equivalentFuncArgs;
|
|
|
|
/// A set of all read BlockArguments of FuncOps.
|
|
// Note: BlockArgument knows about its owner, so we do not need to store
|
|
// FuncOps here.
|
|
DenseSet<BlockArgument> readBbArgs;
|
|
|
|
/// A set of all written-to BlockArguments of FuncOps.
|
|
DenseSet<BlockArgument> writtenBbArgs;
|
|
|
|
/// Keep track of which FuncOps are fully analyzed or currently being
|
|
/// analyzed.
|
|
DenseMap<FuncOp, FuncOpAnalysisState> analyzedFuncOps;
|
|
|
|
// A list of functions in the order in which they are analyzed + bufferized.
|
|
SmallVector<FuncOp> orderedFuncOps;
|
|
|
|
// A mapping of FuncOps to their callers.
|
|
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
|
|
};
|
|
} // namespace
|
|
|
|
/// Get ModuleAnalysisState.
|
|
static const ModuleAnalysisState &
|
|
getModuleAnalysisState(const AnalysisState &state) {
|
|
Optional<const ModuleAnalysisState *> maybeState =
|
|
state.getDialectState<ModuleAnalysisState>(
|
|
func::FuncDialect::getDialectNamespace());
|
|
assert(maybeState.hasValue() && "ModuleAnalysisState does not exist");
|
|
return **maybeState;
|
|
}
|
|
|
|
/// Get or create ModuleAnalysisState.
|
|
static ModuleAnalysisState &getModuleAnalysisState(AnalysisState &state) {
|
|
return state.getOrCreateDialectState<ModuleAnalysisState>(
|
|
func::FuncDialect::getDialectNamespace());
|
|
}
|
|
|
|
/// Return the state (phase) of analysis of the FuncOp.
|
|
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
|
|
FuncOp funcOp) {
|
|
const ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
auto it = moduleState.analyzedFuncOps.find(funcOp);
|
|
if (it == moduleState.analyzedFuncOps.end())
|
|
return FuncOpAnalysisState::NotAnalyzed;
|
|
return it->second;
|
|
}
|
|
|
|
/// Return the unique ReturnOp that terminates `funcOp`.
|
|
/// Return nullptr if there is no such unique ReturnOp.
|
|
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
|
|
func::ReturnOp returnOp;
|
|
for (Block &b : funcOp.getBody()) {
|
|
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
|
|
if (returnOp)
|
|
return nullptr;
|
|
returnOp = candidateOp;
|
|
}
|
|
}
|
|
return returnOp;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Annotate IR with the results of the analysis. For testing purposes only.
|
|
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
|
|
BlockArgument bbArg) {
|
|
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
|
|
Operation *op = returnVal.getOwner();
|
|
|
|
SmallVector<int64_t> equivBbArgs;
|
|
if (op->hasAttr(kEquivalentArgsAttr)) {
|
|
auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
|
|
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
|
|
return a.cast<IntegerAttr>().getValue().getSExtValue();
|
|
}));
|
|
} else {
|
|
equivBbArgs.append(op->getNumOperands(), -1);
|
|
}
|
|
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
|
|
|
|
OpBuilder b(op->getContext());
|
|
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
|
|
}
|
|
|
|
/// Store function BlockArguments that are equivalent to a returned value in
|
|
/// ModuleAnalysisState.
|
|
static LogicalResult
|
|
equivalentFuncOpBBArgsAnalysis(Operation *op, AnalysisState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) {
|
|
ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
|
|
// Support only single return-terminated block in the function.
|
|
auto funcOp = cast<FuncOp>(op);
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
for (OpOperand &returnVal : returnOp->getOpOperands())
|
|
if (returnVal.get().getType().isa<RankedTensorType>())
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<RankedTensorType>())
|
|
if (aliasInfo.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
|
|
moduleState
|
|
.equivalentFuncArgs[funcOp][returnVal.getOperandNumber()] =
|
|
bbArg.getArgNumber();
|
|
if (state.getOptions().testAnalysisOnly)
|
|
annotateEquivalentReturnBbArg(returnVal, bbArg);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return true if the buffer of the given tensor value is written to. Must not
|
|
/// be called for values inside not yet analyzed functions. (Post-analysis
|
|
/// steps do not have to be run yet, i.e., "in progress" is also OK.)
|
|
static bool isValueWritten(Value value, const AnalysisState &state,
|
|
const BufferizationAliasInfo &aliasInfo) {
|
|
#ifndef NDEBUG
|
|
assert(value.getType().isa<TensorType>() && "expected TensorType");
|
|
FuncOp funcOp;
|
|
if (auto bbArg = value.dyn_cast<BlockArgument>()) {
|
|
Operation *owner = bbArg.getOwner()->getParentOp();
|
|
funcOp = isa<FuncOp>(owner) ? cast<FuncOp>(owner)
|
|
: owner->getParentOfType<FuncOp>();
|
|
} else {
|
|
funcOp = value.getDefiningOp()->getParentOfType<FuncOp>();
|
|
}
|
|
assert(getFuncOpAnalysisState(state, funcOp) !=
|
|
FuncOpAnalysisState::NotAnalyzed &&
|
|
"FuncOp must be fully analyzed or analysis in progress");
|
|
#endif // NDEBUG
|
|
|
|
bool isWritten = false;
|
|
aliasInfo.applyOnAliases(value, [&](Value val) {
|
|
for (OpOperand &use : val.getUses())
|
|
if (state.isInPlace(use) && state.bufferizesToMemoryWrite(use))
|
|
isWritten = true;
|
|
});
|
|
return isWritten;
|
|
}
|
|
|
|
static void annotateFuncArgAccess(FuncOp funcOp, BlockArgument bbArg,
|
|
bool isRead, bool isWritten) {
|
|
OpBuilder b(funcOp.getContext());
|
|
Attribute accessType;
|
|
if (isRead && isWritten) {
|
|
accessType = b.getStringAttr("read-write");
|
|
} else if (isRead) {
|
|
accessType = b.getStringAttr("read");
|
|
} else if (isWritten) {
|
|
accessType = b.getStringAttr("write");
|
|
} else {
|
|
accessType = b.getStringAttr("none");
|
|
}
|
|
funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
|
|
}
|
|
|
|
/// Determine which FuncOp bbArgs are read and which are written. If this
|
|
/// PostAnalysisStepFn is run on a function with unknown ops, it will
|
|
/// conservatively assume that such ops bufferize to a read + write.
|
|
static LogicalResult
|
|
funcOpBbArgReadWriteAnalysis(Operation *op, AnalysisState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) {
|
|
ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
auto funcOp = cast<FuncOp>(op);
|
|
|
|
// If the function has no body, conservatively assume that all args are
|
|
// read + written.
|
|
if (funcOp.getBody().empty()) {
|
|
for (BlockArgument bbArg : funcOp.getArguments()) {
|
|
moduleState.readBbArgs.insert(bbArg);
|
|
moduleState.writtenBbArgs.insert(bbArg);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
for (BlockArgument bbArg : funcOp.getArguments()) {
|
|
if (!bbArg.getType().isa<TensorType>())
|
|
continue;
|
|
bool isRead = state.isValueRead(bbArg);
|
|
bool isWritten = isValueWritten(bbArg, state, aliasInfo);
|
|
if (state.getOptions().testAnalysisOnly)
|
|
annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
|
|
if (isRead)
|
|
moduleState.readBbArgs.insert(bbArg);
|
|
if (isWritten)
|
|
moduleState.writtenBbArgs.insert(bbArg);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
|
|
|
|
/// If `value` is a memref::CastOp, return its source. Otherwise, return
|
|
/// `value` directly.
|
|
static Value getNonCastedValue(Value value) {
|
|
while (auto castOp = value.getDefiningOp<memref::CastOp>())
|
|
value = castOp.source();
|
|
return value;
|
|
}
|
|
|
|
/// Remove the attribute that triggers inplace bufferization on a FuncOp
|
|
/// argument `bbArg`.
|
|
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
|
|
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kBufferLayoutAttrName);
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName);
|
|
}
|
|
|
|
/// Return the FuncOp called by `callOp`.
|
|
static FuncOp getCalledFunction(CallOpInterface callOp) {
|
|
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
|
|
if (!sym)
|
|
return nullptr;
|
|
return dyn_cast_or_null<FuncOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
|
|
}
|
|
|
|
/// Return the FunctionType with `argumentTypes` and `resultTypes` where each
|
|
/// tensor is replaced by the corresponding buffer type.
|
|
/// In order for all the callers to agree, this *must* bufferize to the most
|
|
/// dynamic buffer type supported.
|
|
/// A later pass across all CallOps in the module can decide whether to simplify
|
|
/// the types of to version according to some cost model.
|
|
static FunctionType
|
|
getBufferizedFunctionType(MLIRContext *ctx, TypeRange argumentTypes,
|
|
TypeRange resultTypes,
|
|
const BufferizationOptions &options) {
|
|
auto rewrite = [&](Type t) -> Type {
|
|
// TODO: non-zero address space.
|
|
// TODO: layout information if relevant.
|
|
if (auto tensorType = t.dyn_cast<TensorType>())
|
|
return getMemRefType(tensorType, options);
|
|
return t;
|
|
};
|
|
auto argTypes = llvm::to_vector<4>(llvm::map_range(argumentTypes, rewrite));
|
|
auto retTypes = llvm::to_vector<4>(llvm::map_range(resultTypes, rewrite));
|
|
return FunctionType::get(ctx, argTypes, retTypes);
|
|
}
|
|
|
|
/// Gather equivalence info of CallOps.
|
|
/// Note: This only adds new equivalence info if `funcOp` was already analyzed.
|
|
// TODO: This does not handle cyclic function call graphs etc.
|
|
static void equivalenceAnalysis(FuncOp funcOp,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
ModuleAnalysisState &moduleState) {
|
|
funcOp->walk([&](func::CallOp callOp) {
|
|
FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called FuncOp");
|
|
|
|
// No equivalence info available for the called function.
|
|
if (!moduleState.equivalentFuncArgs.count(calledFunction))
|
|
return WalkResult::skip();
|
|
|
|
for (auto it : moduleState.equivalentFuncArgs[calledFunction]) {
|
|
int64_t returnIdx = it.first;
|
|
int64_t bbargIdx = it.second;
|
|
Value returnVal = callOp.getResult(returnIdx);
|
|
Value argVal = callOp->getOperand(bbargIdx);
|
|
aliasInfo.unionEquivalenceClasses(returnVal, argVal);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
/// Rewrite the `funcOp` arguments analysis return values and terminator into
|
|
/// buffer form (using the canonical memref layout for now), according to the
|
|
/// inPlace-bufferizable information of the function arguments.
|
|
///
|
|
/// This relies on a buffer equivalence analysis of each return operand. When a
|
|
/// result buffer is equivalent to a BlockArgument of `funcOp`, it can be
|
|
/// dropped from the return values and becomes inplaceable at all callers. This
|
|
/// assumes all CallOp perform the necessary work to clone operands so as to
|
|
/// make them inplaceable. Reliance on this logic will need to be relaxed in the
|
|
/// future.
|
|
///
|
|
/// Note: Returning a memref currently fails bufferization. If such memrefs
|
|
/// originate from an op with an Alloc effect, they could be hoisted in the
|
|
/// future.
|
|
static LogicalResult bufferizeFuncOpBoundary(FuncOp funcOp,
|
|
RewriterBase &rewriter,
|
|
BufferizationState &state) {
|
|
const ModuleAnalysisState &moduleState =
|
|
getModuleAnalysisState(state.getAnalysisState());
|
|
|
|
// If nothing to do then we are done.
|
|
if (!llvm::any_of(funcOp.getFunctionType().getInputs(), isaTensor) &&
|
|
!llvm::any_of(funcOp.getFunctionType().getResults(), isaTensor))
|
|
return success();
|
|
|
|
// Get the bufferized FunctionType for funcOp or construct it if not yet
|
|
// available.
|
|
// TODO: Atm we have 3 cases:
|
|
// 1. if a function is called from within the Module, it must have bufferized
|
|
// to inplaceable tensor results.
|
|
// 2. if it is bodiless, it must have bufferized and is not allowed to have
|
|
// result tensors.
|
|
// 3. if it is not called internally, it still must bufferize to inplaceable
|
|
// tensor results and we construct it now (e.g. top-level function called
|
|
// externally).
|
|
// -> Figure out a better layering.
|
|
TypeRange resultTypes;
|
|
|
|
// Corner case: Bodiless FuncOp
|
|
// ============================
|
|
// The body of such functions is assumed opaque and we can't know the
|
|
// bufferization contract they want to enforce atm.
|
|
// As a consequence, only support functions that don't return any tensor atm.
|
|
if (funcOp.getBody().empty()) {
|
|
if (llvm::any_of(funcOp.getFunctionType().getResults(), isaTensor))
|
|
return funcOp->emitError() << "cannot bufferize bodiless function that "
|
|
<< "returns a tensor";
|
|
FunctionType bufferizedFuncType = getBufferizedFunctionType(
|
|
funcOp.getContext(), funcOp.getFunctionType().getInputs(), TypeRange{},
|
|
state.getOptions());
|
|
funcOp.setType(bufferizedFuncType);
|
|
return success();
|
|
}
|
|
|
|
// Support only single return-terminated block in the function.
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
// 1. For each FuncOp result, keep track of which inplace argument it reuses.
|
|
SmallVector<Value> returnValues;
|
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
|
Value returnVal = returnOperand.get();
|
|
|
|
// If not a renturn tensor type just forward it.
|
|
if (!returnVal.getType().isa<RankedTensorType>()) {
|
|
returnValues.push_back(returnVal);
|
|
continue;
|
|
}
|
|
|
|
// If return operand is equivalent to some bbArg, no need to return it.
|
|
auto funcOpIt = moduleState.equivalentFuncArgs.find(funcOp);
|
|
if (funcOpIt != moduleState.equivalentFuncArgs.end() &&
|
|
funcOpIt->second.count(returnOperand.getOperandNumber()))
|
|
continue;
|
|
|
|
// Cast values at the call site if necessary.
|
|
returnValues.push_back(
|
|
getNonCastedValue(*state.getBuffer(rewriter, returnOperand)));
|
|
}
|
|
|
|
// 2. Rewrite the terminator without the inPlace bufferizable values.
|
|
ValueRange retValues{returnValues};
|
|
FunctionType bufferizedFuncType = getBufferizedFunctionType(
|
|
funcOp.getContext(), funcOp.getFunctionType().getInputs(),
|
|
retValues.getTypes(), state.getOptions());
|
|
OpBuilder b(returnOp);
|
|
b.create<func::ReturnOp>(returnOp.getLoc(), returnValues);
|
|
returnOp->erase();
|
|
|
|
// 3. Rewrite the bbArgs.
|
|
// Iterate on the original `numArgs` and replace them in order.
|
|
// This guarantees the argument order still matches after the rewrite.
|
|
Block &frontBlock = funcOp.getBody().front();
|
|
unsigned numArgs = frontBlock.getNumArguments();
|
|
for (unsigned idx = 0; idx < numArgs; ++idx) {
|
|
auto bbArg = frontBlock.getArgument(0);
|
|
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
|
|
// Non-tensor types are just forwarded.
|
|
if (!tensorType) {
|
|
frontBlock.addArgument(bbArg.getType(), bbArg.getLoc());
|
|
bbArg.replaceAllUsesWith(frontBlock.getArguments().back());
|
|
frontBlock.eraseArgument(0);
|
|
continue;
|
|
}
|
|
|
|
// Get the buffer type from the bufferized function type.
|
|
Type memrefType = bufferizedFuncType.getInput(idx);
|
|
Value memref = frontBlock.addArgument(memrefType, bbArg.getLoc());
|
|
OpBuilder b(funcOp->getContext());
|
|
b.setInsertionPointToStart(&frontBlock);
|
|
// Replace all uses of bbArg through a ToMemRefOp.
|
|
for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) {
|
|
if (auto toMemrefOp =
|
|
dyn_cast<bufferization::ToMemrefOp>(use.getOwner())) {
|
|
if (memref.getType() != toMemrefOp.memref().getType()) {
|
|
// Type has changed, insert a cast.
|
|
assert(memref::CastOp::areCastCompatible(
|
|
memref.getType(), toMemrefOp.memref().getType()) &&
|
|
"bufferizeFuncOpBoundary: cast incompatible");
|
|
auto castOp = b.create<memref::CastOp>(
|
|
funcOp.getLoc(), toMemrefOp.memref().getType(), memref);
|
|
toMemrefOp.memref().replaceAllUsesWith(castOp);
|
|
} else {
|
|
// Type did not change, replace directly.
|
|
toMemrefOp.memref().replaceAllUsesWith(memref);
|
|
}
|
|
}
|
|
}
|
|
// Replace all remaining uses by a to_tensor.
|
|
if (!bbArg.use_empty()) {
|
|
auto toTensorOp =
|
|
b.create<bufferization::ToTensorOp>(funcOp.getLoc(), memref);
|
|
bbArg.replaceAllUsesWith(toTensorOp);
|
|
}
|
|
frontBlock.eraseArgument(0);
|
|
// TODO: add support to erase aliasInfo entries if deemed necessary.
|
|
}
|
|
|
|
// 4. Rewrite the FuncOp type to buffer form.
|
|
funcOp.setType(bufferizedFuncType);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
|
|
/// callee-caller order (i.e. callees without callers first).
|
|
/// Store the map of FuncOp to all its callers in `callerMap`.
|
|
/// Return `failure()` if a cycle of calls is detected or if we are unable to
|
|
/// retrieve the called FuncOp from any CallOpInterface.
|
|
static LogicalResult
|
|
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
|
|
SmallVectorImpl<FuncOp> &orderedFuncOps,
|
|
DenseMap<FuncOp, DenseSet<Operation *>> &callerMap) {
|
|
// For each FuncOp, the set of functions called by it (i.e. the union of
|
|
// symbols of all nested CallOpInterfaceOp).
|
|
DenseMap<FuncOp, DenseSet<FuncOp>> calledBy;
|
|
// For each FuncOp, the number of CallOpInterface it contains.
|
|
DenseMap<FuncOp, unsigned> numberCallOpsContainedInFuncOp;
|
|
WalkResult res = moduleOp.walk([&](FuncOp funcOp) -> WalkResult {
|
|
if (!funcOp.getBody().empty()) {
|
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
if (!returnOp)
|
|
return funcOp->emitError()
|
|
<< "cannot bufferize a FuncOp with tensors and "
|
|
"without a unique ReturnOp";
|
|
}
|
|
|
|
numberCallOpsContainedInFuncOp[funcOp] = 0;
|
|
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
|
|
// Only support CallOp for now.
|
|
if (!isa<func::CallOp>(callOp.getOperation()))
|
|
return callOp->emitError() << "expected a CallOp";
|
|
FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called FuncOp");
|
|
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
|
|
it.first->getSecond().insert(callOp);
|
|
if (calledBy[calledFunction].count(funcOp) == 0) {
|
|
calledBy[calledFunction].insert(funcOp);
|
|
numberCallOpsContainedInFuncOp[funcOp]++;
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
});
|
|
if (res.wasInterrupted())
|
|
return failure();
|
|
// Iteratively remove function operation that do not call any of the
|
|
// functions remaining in the callCounter map and add them to the worklist.
|
|
while (!numberCallOpsContainedInFuncOp.empty()) {
|
|
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
|
|
[](auto entry) { return entry.getSecond() == 0; });
|
|
if (it == numberCallOpsContainedInFuncOp.end())
|
|
return moduleOp.emitOpError(
|
|
"expected callgraph to be free of circular dependencies.");
|
|
orderedFuncOps.push_back(it->getFirst());
|
|
for (auto callee : calledBy[it->getFirst()])
|
|
numberCallOpsContainedInFuncOp[callee]--;
|
|
numberCallOpsContainedInFuncOp.erase(it);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void
|
|
foreachCaller(const DenseMap<FuncOp, DenseSet<Operation *>> &callerMap,
|
|
FuncOp callee, llvm::function_ref<void(Operation *)> doit) {
|
|
auto itCallers = callerMap.find(callee);
|
|
if (itCallers == callerMap.end())
|
|
return;
|
|
for (Operation *caller : itCallers->second)
|
|
doit(caller);
|
|
}
|
|
|
|
/// Postprocess the linalg.buffer_layout annotation across function boundaries.
|
|
/// This is a purely mechanical process that may later become part of a
|
|
/// separate pass with its own layout assignment heuristic.
|
|
static void layoutPostProcessing(ModuleOp moduleOp) {
|
|
SmallVector<FuncOp> orderedFuncOps;
|
|
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
|
|
auto res = getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap);
|
|
(void)res;
|
|
assert(succeeded(res) && "unexpected getFuncOpsOrderedByCalls failure");
|
|
|
|
for (FuncOp funcOp : orderedFuncOps) {
|
|
DenseMap<Operation *, SmallVector<Value>> operandsPerCaller;
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
operandsPerCaller.try_emplace(caller, SmallVector<Value>());
|
|
});
|
|
|
|
SmallVector<Type> argumentTypes;
|
|
// Iterate on each function argument and check it it was marked with a
|
|
// desired layout.
|
|
for (const auto &it :
|
|
llvm::enumerate(funcOp.getFunctionType().getInputs())) {
|
|
int argNumber = it.index();
|
|
Type inputType = it.value();
|
|
auto memrefType = inputType.dyn_cast<MemRefType>();
|
|
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
|
|
argNumber, BufferizableOpInterface::kBufferLayoutAttrName);
|
|
AffineMap desiredLayoutMap =
|
|
layoutAttr ? layoutAttr.getValue() : AffineMap();
|
|
AffineMap currentLayoutMap =
|
|
memrefType ? getStridedLinearLayoutMap(memrefType) : AffineMap();
|
|
if (!memrefType || !layoutAttr || desiredLayoutMap == currentLayoutMap) {
|
|
argumentTypes.push_back(inputType);
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
operandsPerCaller.find(caller)->getSecond().push_back(
|
|
caller->getOperand(argNumber));
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Compute the buffer type with desired layout and add to input argument
|
|
// types.
|
|
MemRefType desiredMemrefType = MemRefType::get(
|
|
memrefType.getShape(), memrefType.getElementType(), desiredLayoutMap);
|
|
argumentTypes.push_back(desiredMemrefType);
|
|
|
|
// If funcOp's body is not empty, change the bbArg type and propagate.
|
|
if (!funcOp.getBody().empty()) {
|
|
BlockArgument bbArg = funcOp.getArgument(argNumber);
|
|
bbArg.setType(desiredMemrefType);
|
|
OpBuilder b(bbArg.getContext());
|
|
b.setInsertionPointToStart(bbArg.getOwner());
|
|
assert(memref::CastOp::areCastCompatible(bbArg.getType(), memrefType) &&
|
|
"layoutPostProcessing: cast incompatible");
|
|
// Cast back to the original memrefType and let it canonicalize.
|
|
Value cast =
|
|
b.create<memref::CastOp>(funcOp.getLoc(), memrefType, bbArg);
|
|
bbArg.replaceAllUsesExcept(cast, cast.getDefiningOp());
|
|
}
|
|
|
|
// Cast to desired buffer type on all callers to `funcOp`.
|
|
// TODO: on the callee side, this may even have to trigger a copy to
|
|
// change the layout. For now let the memref::CastOp fail to verify in
|
|
// such cases.
|
|
auto castArg = [&](Operation *caller) {
|
|
OpBuilder b(caller);
|
|
assert(
|
|
memref::CastOp::areCastCompatible(
|
|
caller->getOperand(argNumber).getType(), desiredMemrefType) &&
|
|
"layoutPostProcessing.2: cast incompatible");
|
|
Value newOperand = b.create<memref::CastOp>(
|
|
funcOp.getLoc(), desiredMemrefType, caller->getOperand(argNumber));
|
|
operandsPerCaller.find(caller)->getSecond().push_back(newOperand);
|
|
};
|
|
foreachCaller(callerMap, funcOp, castArg);
|
|
}
|
|
|
|
// Set operands with cast buffer on all callers to `funcOp`.
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
caller->setOperands(operandsPerCaller.lookup(caller));
|
|
});
|
|
|
|
// Finally set the funcOp type to update the arguments.
|
|
auto newFuncType = FunctionType::get(moduleOp.getContext(), argumentTypes,
|
|
funcOp.getFunctionType().getResults());
|
|
funcOp.setType(newFuncType);
|
|
}
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace linalg {
|
|
namespace comprehensive_bufferize {
|
|
namespace std_ext {
|
|
|
|
/// Return the index of the bbArg in the given FuncOp that is equivalent to the
|
|
/// specified return value (if any).
|
|
static Optional<int64_t>
|
|
getEquivalentFuncArgIdx(FuncOp funcOp, const ModuleAnalysisState &state,
|
|
int64_t returnValIdx) {
|
|
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
|
|
if (funcOpIt == state.equivalentFuncArgs.end())
|
|
// No equivalence info stores for funcOp.
|
|
return None;
|
|
|
|
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
|
|
if (retValIt == funcOpIt->getSecond().end())
|
|
// Return value has no equivalent bbArg.
|
|
return None;
|
|
|
|
return retValIt->getSecond();
|
|
}
|
|
|
|
struct CallOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
|
|
func::CallOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
|
|
const ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is read.
|
|
return true;
|
|
|
|
return moduleState.readBbArgs.contains(
|
|
funcOp.getArgument(opOperand.getOperandNumber()));
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
|
|
const ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
|
// FuncOp not analyzed yet. Assume that OpOperand is written.
|
|
return true;
|
|
|
|
return moduleState.writtenBbArgs.contains(
|
|
funcOp.getArgument(opOperand.getOperandNumber()));
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
const ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
|
|
SmallVector<OpResult> result;
|
|
for (int64_t resultIdx = 0; resultIdx < callOp->getNumResults();
|
|
++resultIdx)
|
|
if (Optional<int64_t> maybeArgNumber =
|
|
getEquivalentFuncArgIdx(funcOp, moduleState, resultIdx))
|
|
if (*maybeArgNumber == opOperand.getOperandNumber())
|
|
result.push_back(callOp->getOpResult(resultIdx));
|
|
|
|
return result;
|
|
}
|
|
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
const ModuleAnalysisState &moduleState = getModuleAnalysisState(state);
|
|
|
|
// TODO: We should be looking for aliasing block arguments here. The current
|
|
// condition is actually stronger than neccesary. Once we check for aliasing
|
|
// block arguments, we may be multiple.
|
|
if (Optional<int64_t> maybeArgNumber = getEquivalentFuncArgIdx(
|
|
funcOp, moduleState, opResult.getResultNumber()))
|
|
return {&op->getOpOperand(*maybeArgNumber)};
|
|
|
|
// Note: Returning a non-equivalent tensor from a FuncOp is currently not
|
|
// supported an will fail bufferization.
|
|
return {};
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
|
|
/// In a first approximation, all the function arguments of a FuncOp are
|
|
/// marked inplaceable. For now, it is the responsibility of the `callOp`
|
|
/// bufferization to allow FuncOp that are inplaceable to write inPlace.
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
func::CallOp callOp = cast<func::CallOp>(op);
|
|
unsigned numResults = callOp.getNumResults();
|
|
unsigned numOperands = callOp->getNumOperands();
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(funcOp && "expected CallOp to a FuncOp");
|
|
const ModuleAnalysisState &moduleState =
|
|
getModuleAnalysisState(state.getAnalysisState());
|
|
|
|
// Result types of the bufferized CallOp.
|
|
SmallVector<Type> resultTypes;
|
|
// Replacement values for the existing CallOp. These are usually the results
|
|
// of the bufferized CallOp, unless a tensor result folds onto an operand.
|
|
SmallVector<Value> replacementValues(numResults, Value());
|
|
// For non-tensor results: A mapping from return val indices of the old
|
|
// CallOp to return val indices of the bufferized CallOp.
|
|
SmallVector<Optional<unsigned>> retValMapping(numResults, None);
|
|
// Operands of the bufferized CallOp.
|
|
SmallVector<Value> newOperands(numOperands, Value());
|
|
|
|
// Based on previously gathered equivalence information, we know if a
|
|
// tensor result folds onto an operand. These are the only tensor value
|
|
// results that are supported at the moment.
|
|
//
|
|
// For tensors return values that do not fold onto an operand, additional
|
|
// work is needed (TODO) to either:
|
|
// * hoist a result into an inplaceable operand or
|
|
// * devise a better representation to truly return a buffer.
|
|
//
|
|
// Note: If a function has no body, no equivalence information is
|
|
// available. Consequently, a tensor return value cannot be proven to fold
|
|
// onto a FuncOp bbArg, so calls to such functions are not bufferizable at
|
|
// the moment.
|
|
|
|
// 1. Compute the result types of the new CallOp. Tensor results that are
|
|
// equivalent to a FuncOp bbArg are no longer returned.
|
|
for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
|
|
unsigned returnValIdx = it.index();
|
|
Type returnType = it.value();
|
|
if (!isaTensor(returnType)) {
|
|
// Non-tensor values are returned.
|
|
retValMapping[returnValIdx] = resultTypes.size();
|
|
resultTypes.push_back(returnType);
|
|
continue;
|
|
}
|
|
|
|
if (Optional<int64_t> bbArgIdx =
|
|
getEquivalentFuncArgIdx(funcOp, moduleState, returnValIdx)) {
|
|
// Return operands that are equivalent to some bbArg, are not
|
|
// returned.
|
|
FailureOr<Value> bufferOrFailure =
|
|
state.getBuffer(rewriter, callOp->getOpOperand(*bbArgIdx));
|
|
if (failed(bufferOrFailure))
|
|
return failure();
|
|
replacementValues[returnValIdx] = *bufferOrFailure;
|
|
newOperands[*bbArgIdx] = *bufferOrFailure;
|
|
continue;
|
|
}
|
|
|
|
return callOp->emitError(
|
|
"call to FuncOp that returns non-equivalent tensors not supported");
|
|
}
|
|
|
|
// 2. Compute bufferized FunctionType.
|
|
SmallVector<Type> argumentTypes{callOp->getOperandTypes()};
|
|
// Get the bufferized FunctionType for funcOp or construct it if not yet
|
|
// available.
|
|
FunctionType bufferizedFuncType = getBufferizedFunctionType(
|
|
funcOp.getContext(), argumentTypes, resultTypes, state.getOptions());
|
|
|
|
// 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
|
|
for (OpOperand &opOperand : callOp->getOpOperands()) {
|
|
unsigned idx = opOperand.getOperandNumber();
|
|
Value tensorOperand = opOperand.get();
|
|
|
|
// Non-tensor operands are just copied.
|
|
if (!tensorOperand.getType().isa<TensorType>()) {
|
|
newOperands[idx] = tensorOperand;
|
|
continue;
|
|
}
|
|
|
|
// Retrieve buffers for tensor operands. Tensor operand buffers, who's
|
|
// corresponding FuncOp bbArgs are equivalent to a returned tensor, were
|
|
// already stored in `newOperands` during Step 1.
|
|
Value buffer = newOperands[idx];
|
|
if (!buffer) {
|
|
FailureOr<Value> bufferOrFailure = state.getBuffer(rewriter, opOperand);
|
|
if (failed(bufferOrFailure))
|
|
return failure();
|
|
buffer = *bufferOrFailure;
|
|
}
|
|
|
|
// Caller / callee type mismatch is handled with a CastOp.
|
|
auto memRefType = bufferizedFuncType.getInput(idx);
|
|
// Since we don't yet have a clear layout story, to_memref may
|
|
// conservatively turn tensors into more dynamic memref than necessary.
|
|
// If the memref type of the callee fails, introduce an extra memref.cast
|
|
// that will either canonicalize away or fail compilation until we can do
|
|
// something better.
|
|
if (buffer.getType() != memRefType) {
|
|
assert(
|
|
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
|
|
"CallOp::bufferize: cast incompatible");
|
|
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
|
|
memRefType, buffer);
|
|
buffer = castBuffer;
|
|
}
|
|
newOperands[idx] = buffer;
|
|
}
|
|
|
|
// 4. Create the new CallOp.
|
|
Operation *newCallOp = rewriter.create<func::CallOp>(
|
|
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
|
|
newCallOp->setAttrs(callOp->getAttrs());
|
|
// Get replacement values for non-tensor / non-equivalent results.
|
|
for (unsigned i = 0; i < replacementValues.size(); ++i) {
|
|
if (replacementValues[i])
|
|
continue;
|
|
replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
|
|
}
|
|
|
|
// 5. Replace the old op with the new op.
|
|
replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ReturnOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
|
|
func::ReturnOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
#ifndef NDEBUG
|
|
auto returnOp = cast<func::ReturnOp>(op);
|
|
assert(isa<FuncOp>(returnOp->getParentOp()) &&
|
|
"only support FuncOp parent for ReturnOp");
|
|
#endif // NDEBUG
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
struct FuncOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
return failure();
|
|
}
|
|
|
|
/// Return `true` if the given function argument is writable.
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
auto funcOp = cast<FuncOp>(op);
|
|
BlockArgument bbArg = value.dyn_cast<BlockArgument>();
|
|
assert(bbArg && "expected BlockArgument");
|
|
|
|
// "linalg.inplaceable" overrides other writability decisions. This is
|
|
// currently used for testing only.
|
|
if (BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
|
|
bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName))
|
|
return inplaceAttr.getValue();
|
|
|
|
// All function arguments are writable by default.
|
|
return true;
|
|
}
|
|
|
|
bool isAllocationHoistingBarrier(Operation *op) const { return true; }
|
|
};
|
|
|
|
} // namespace std_ext
|
|
} // namespace comprehensive_bufferize
|
|
} // namespace linalg
|
|
} // namespace mlir
|
|
|
|
void mlir::linalg::comprehensive_bufferize::std_ext::
|
|
registerModuleBufferizationExternalModels(DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
|
|
func::CallOp::attachInterface<std_ext::CallOpInterface>(*ctx);
|
|
func::ReturnOp::attachInterface<std_ext::ReturnOpInterface>(*ctx);
|
|
func::FuncOp::attachInterface<std_ext::FuncOpInterface>(*ctx);
|
|
});
|
|
}
|
|
|
|
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
|
|
/// `bbArg`.
|
|
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
|
|
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.setArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName,
|
|
BoolAttr::get(bbArg.getContext(), inPlace));
|
|
}
|
|
|
|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
|
|
static void annotateOpsWithBufferizationMarkers(FuncOp funcOp,
|
|
const AnalysisState &state) {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(funcOp.getOperation());
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<TensorType>())
|
|
setInPlaceFuncArgument(bbArg, bufferizableOp.isWritable(bbArg, state));
|
|
}
|
|
|
|
LogicalResult mlir::linalg::comprehensive_bufferize::runModuleBufferize(
|
|
ModuleOp moduleOp, OneShotBufferizationOptions options) {
|
|
IRRewriter rewriter(moduleOp.getContext());
|
|
OneShotAnalysisState analysisState(moduleOp, options);
|
|
BufferizationState bufferizationState(analysisState);
|
|
ModuleAnalysisState &moduleState = getModuleAnalysisState(analysisState);
|
|
BufferizationAliasInfo &aliasInfo = analysisState.getAliasInfo();
|
|
|
|
if (failed(getFuncOpsOrderedByCalls(moduleOp, moduleState.orderedFuncOps,
|
|
moduleState.callerMap)))
|
|
return failure();
|
|
|
|
// Collect bbArg/return value information after the analysis.
|
|
options.addPostAnalysisStep(equivalentFuncOpBBArgsAnalysis);
|
|
options.addPostAnalysisStep(funcOpBbArgReadWriteAnalysis);
|
|
|
|
// Analyze ops.
|
|
for (FuncOp funcOp : moduleState.orderedFuncOps) {
|
|
// No body => no analysis.
|
|
if (funcOp.getBody().empty())
|
|
continue;
|
|
|
|
// Now analyzing function.
|
|
moduleState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
|
|
|
|
// Analyze funcOp.
|
|
if (failed(analyzeOp(funcOp, analysisState)))
|
|
return failure();
|
|
|
|
// Gather equivalence info for CallOps.
|
|
// TODO: Make this a post-analysis step.
|
|
equivalenceAnalysis(funcOp, aliasInfo, moduleState);
|
|
|
|
// Mark op as fully analyzed.
|
|
moduleState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
|
|
|
|
// Add annotations to function arguments.
|
|
if (options.testAnalysisOnly)
|
|
annotateOpsWithBufferizationMarkers(funcOp, analysisState);
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
// Bufferize function bodies.
|
|
for (FuncOp funcOp : moduleState.orderedFuncOps) {
|
|
// No body => no analysis.
|
|
if (funcOp.getBody().empty())
|
|
continue;
|
|
|
|
if (failed(bufferizeOp(funcOp, bufferizationState)))
|
|
return failure();
|
|
}
|
|
|
|
// Bufferize function boundaries.
|
|
for (FuncOp funcOp : moduleState.orderedFuncOps) {
|
|
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
|
|
// would be invalidated.
|
|
if (failed(bufferizeFuncOpBoundary(funcOp, rewriter, bufferizationState)))
|
|
return failure();
|
|
|
|
if (!options.allowReturnAllocs &&
|
|
llvm::any_of(funcOp.getFunctionType().getResults(), [](Type t) {
|
|
return t.isa<MemRefType, UnrankedMemRefType>();
|
|
})) {
|
|
funcOp->emitError("memref return type is unsupported");
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Finalize all buffers.
|
|
if (failed(finalizeBuffers(moduleOp, options)))
|
|
return failure();
|
|
|
|
// Perform a post-processing pass of layout modification at function boundary
|
|
// according to the kBufferLayoutAttrName.
|
|
layoutPostProcessing(moduleOp);
|
|
|
|
// Post-pass cleanup of inplaceable and buffer_layout attributes.
|
|
moduleOp.walk([&](FuncOp op) {
|
|
for (BlockArgument bbArg : op.getArguments())
|
|
removeBufferizationFuncArguments(bbArg);
|
|
});
|
|
|
|
return success();
|
|
}
|