mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-02 02:38:04 +00:00
fe7c0d90b2
These properties were useful for a few things before traits had a better integration story, but don't really carry their weight well these days. Most of these properties are already checked via traits in most of the code. It is better to align the system around traits, and improve the performance/cost of traits in general. Differential Revision: https://reviews.llvm.org/D96088
800 lines
30 KiB
C++
800 lines
30 KiB
C++
//===- Inliner.cpp - Pass to inline function calls ------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a basic inlining algorithm that operates bottom up over
|
|
// the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
|
|
// incremental propagation of inlining decisions from the leafs to the roots of
|
|
// the callgraph.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Analysis/CallGraph.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/InliningUtils.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
|
|
#define DEBUG_TYPE "inlining"
|
|
|
|
using namespace mlir;
|
|
|
|
/// This function implements the default inliner optimization pipeline.
|
|
static void defaultInlinerOptPipeline(OpPassManager &pm) {
|
|
pm.addPass(createCanonicalizerPass());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbol Use Tracking
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Walk all of the used symbol callgraph nodes referenced with the given op.
|
|
static void walkReferencedSymbolNodes(
|
|
Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable,
|
|
DenseMap<Attribute, CallGraphNode *> &resolvedRefs,
|
|
function_ref<void(CallGraphNode *, Operation *)> callback) {
|
|
auto symbolUses = SymbolTable::getSymbolUses(op);
|
|
assert(symbolUses && "expected uses to be valid");
|
|
|
|
Operation *symbolTableOp = op->getParentOp();
|
|
for (const SymbolTable::SymbolUse &use : *symbolUses) {
|
|
auto refIt = resolvedRefs.insert({use.getSymbolRef(), nullptr});
|
|
CallGraphNode *&node = refIt.first->second;
|
|
|
|
// If this is the first instance of this reference, try to resolve a
|
|
// callgraph node for it.
|
|
if (refIt.second) {
|
|
auto *symbolOp = symbolTable.lookupNearestSymbolFrom(symbolTableOp,
|
|
use.getSymbolRef());
|
|
auto callableOp = dyn_cast_or_null<CallableOpInterface>(symbolOp);
|
|
if (!callableOp)
|
|
continue;
|
|
node = cg.lookupNode(callableOp.getCallableRegion());
|
|
}
|
|
if (node)
|
|
callback(node, use.getUser());
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CGUseList
|
|
|
|
namespace {
|
|
/// This struct tracks the uses of callgraph nodes that can be dropped when
|
|
/// use_empty. It directly tracks and manages a use-list for all of the
|
|
/// call-graph nodes. This is necessary because many callgraph nodes are
|
|
/// referenced by SymbolRefAttr, which has no mechanism akin to the SSA `Use`
|
|
/// class.
|
|
struct CGUseList {
|
|
/// This struct tracks the uses of callgraph nodes within a specific
|
|
/// operation.
|
|
struct CGUser {
|
|
/// Any nodes referenced in the top-level attribute list of this user. We
|
|
/// use a set here because the number of references does not matter.
|
|
DenseSet<CallGraphNode *> topLevelUses;
|
|
|
|
/// Uses of nodes referenced by nested operations.
|
|
DenseMap<CallGraphNode *, int> innerUses;
|
|
};
|
|
|
|
CGUseList(Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable);
|
|
|
|
/// Drop uses of nodes referred to by the given call operation that resides
|
|
/// within 'userNode'.
|
|
void dropCallUses(CallGraphNode *userNode, Operation *callOp, CallGraph &cg);
|
|
|
|
/// Remove the given node from the use list.
|
|
void eraseNode(CallGraphNode *node);
|
|
|
|
/// Returns true if the given callgraph node has no uses and can be pruned.
|
|
bool isDead(CallGraphNode *node) const;
|
|
|
|
/// Returns true if the given callgraph node has a single use and can be
|
|
/// discarded.
|
|
bool hasOneUseAndDiscardable(CallGraphNode *node) const;
|
|
|
|
/// Recompute the uses held by the given callgraph node.
|
|
void recomputeUses(CallGraphNode *node, CallGraph &cg);
|
|
|
|
/// Merge the uses of 'lhs' with the uses of the 'rhs' after inlining a copy
|
|
/// of 'lhs' into 'rhs'.
|
|
void mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs);
|
|
|
|
private:
|
|
/// Decrement the uses of discardable nodes referenced by the given user.
|
|
void decrementDiscardableUses(CGUser &uses);
|
|
|
|
/// A mapping between a discardable callgraph node (that is a symbol) and the
|
|
/// number of uses for this node.
|
|
DenseMap<CallGraphNode *, int> discardableSymNodeUses;
|
|
|
|
/// A mapping between a callgraph node and the symbol callgraph nodes that it
|
|
/// uses.
|
|
DenseMap<CallGraphNode *, CGUser> nodeUses;
|
|
|
|
/// A symbol table to use when resolving call lookups.
|
|
SymbolTableCollection &symbolTable;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
CGUseList::CGUseList(Operation *op, CallGraph &cg,
|
|
SymbolTableCollection &symbolTable)
|
|
: symbolTable(symbolTable) {
|
|
/// A set of callgraph nodes that are always known to be live during inlining.
|
|
DenseMap<Attribute, CallGraphNode *> alwaysLiveNodes;
|
|
|
|
// Walk each of the symbol tables looking for discardable callgraph nodes.
|
|
auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
|
|
for (Operation &op : symbolTableOp->getRegion(0).getOps()) {
|
|
// If this is a callgraph operation, check to see if it is discardable.
|
|
if (auto callable = dyn_cast<CallableOpInterface>(&op)) {
|
|
if (auto *node = cg.lookupNode(callable.getCallableRegion())) {
|
|
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(&op);
|
|
if (symbol && (allUsesVisible || symbol.isPrivate()) &&
|
|
symbol.canDiscardOnUseEmpty()) {
|
|
discardableSymNodeUses.try_emplace(node, 0);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
// Otherwise, check for any referenced nodes. These will be always-live.
|
|
walkReferencedSymbolNodes(&op, cg, symbolTable, alwaysLiveNodes,
|
|
[](CallGraphNode *, Operation *) {});
|
|
}
|
|
};
|
|
SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
|
|
walkFn);
|
|
|
|
// Drop the use information for any discardable nodes that are always live.
|
|
for (auto &it : alwaysLiveNodes)
|
|
discardableSymNodeUses.erase(it.second);
|
|
|
|
// Compute the uses for each of the callable nodes in the graph.
|
|
for (CallGraphNode *node : cg)
|
|
recomputeUses(node, cg);
|
|
}
|
|
|
|
void CGUseList::dropCallUses(CallGraphNode *userNode, Operation *callOp,
|
|
CallGraph &cg) {
|
|
auto &userRefs = nodeUses[userNode].innerUses;
|
|
auto walkFn = [&](CallGraphNode *node, Operation *user) {
|
|
auto parentIt = userRefs.find(node);
|
|
if (parentIt == userRefs.end())
|
|
return;
|
|
--parentIt->second;
|
|
--discardableSymNodeUses[node];
|
|
};
|
|
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
|
|
walkReferencedSymbolNodes(callOp, cg, symbolTable, resolvedRefs, walkFn);
|
|
}
|
|
|
|
void CGUseList::eraseNode(CallGraphNode *node) {
|
|
// Drop all child nodes.
|
|
for (auto &edge : *node)
|
|
if (edge.isChild())
|
|
eraseNode(edge.getTarget());
|
|
|
|
// Drop the uses held by this node and erase it.
|
|
auto useIt = nodeUses.find(node);
|
|
assert(useIt != nodeUses.end() && "expected node to be valid");
|
|
decrementDiscardableUses(useIt->getSecond());
|
|
nodeUses.erase(useIt);
|
|
discardableSymNodeUses.erase(node);
|
|
}
|
|
|
|
bool CGUseList::isDead(CallGraphNode *node) const {
|
|
// If the parent operation isn't a symbol, simply check normal SSA deadness.
|
|
Operation *nodeOp = node->getCallableRegion()->getParentOp();
|
|
if (!isa<SymbolOpInterface>(nodeOp))
|
|
return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->use_empty();
|
|
|
|
// Otherwise, check the number of symbol uses.
|
|
auto symbolIt = discardableSymNodeUses.find(node);
|
|
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 0;
|
|
}
|
|
|
|
bool CGUseList::hasOneUseAndDiscardable(CallGraphNode *node) const {
|
|
// If this isn't a symbol node, check for side-effects and SSA use count.
|
|
Operation *nodeOp = node->getCallableRegion()->getParentOp();
|
|
if (!isa<SymbolOpInterface>(nodeOp))
|
|
return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->hasOneUse();
|
|
|
|
// Otherwise, check the number of symbol uses.
|
|
auto symbolIt = discardableSymNodeUses.find(node);
|
|
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 1;
|
|
}
|
|
|
|
void CGUseList::recomputeUses(CallGraphNode *node, CallGraph &cg) {
|
|
Operation *parentOp = node->getCallableRegion()->getParentOp();
|
|
CGUser &uses = nodeUses[node];
|
|
decrementDiscardableUses(uses);
|
|
|
|
// Collect the new discardable uses within this node.
|
|
uses = CGUser();
|
|
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
|
|
auto walkFn = [&](CallGraphNode *refNode, Operation *user) {
|
|
auto discardSymIt = discardableSymNodeUses.find(refNode);
|
|
if (discardSymIt == discardableSymNodeUses.end())
|
|
return;
|
|
|
|
if (user != parentOp)
|
|
++uses.innerUses[refNode];
|
|
else if (!uses.topLevelUses.insert(refNode).second)
|
|
return;
|
|
++discardSymIt->second;
|
|
};
|
|
walkReferencedSymbolNodes(parentOp, cg, symbolTable, resolvedRefs, walkFn);
|
|
}
|
|
|
|
void CGUseList::mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs) {
|
|
auto &lhsUses = nodeUses[lhs], &rhsUses = nodeUses[rhs];
|
|
for (auto &useIt : lhsUses.innerUses) {
|
|
rhsUses.innerUses[useIt.first] += useIt.second;
|
|
discardableSymNodeUses[useIt.first] += useIt.second;
|
|
}
|
|
}
|
|
|
|
void CGUseList::decrementDiscardableUses(CGUser &uses) {
|
|
for (CallGraphNode *node : uses.topLevelUses)
|
|
--discardableSymNodeUses[node];
|
|
for (auto &it : uses.innerUses)
|
|
discardableSymNodeUses[it.first] -= it.second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallGraph traversal
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class represents a specific callgraph SCC.
|
|
class CallGraphSCC {
|
|
public:
|
|
CallGraphSCC(llvm::scc_iterator<const CallGraph *> &parentIterator)
|
|
: parentIterator(parentIterator) {}
|
|
/// Return a range over the nodes within this SCC.
|
|
std::vector<CallGraphNode *>::iterator begin() { return nodes.begin(); }
|
|
std::vector<CallGraphNode *>::iterator end() { return nodes.end(); }
|
|
|
|
/// Reset the nodes of this SCC with those provided.
|
|
void reset(const std::vector<CallGraphNode *> &newNodes) { nodes = newNodes; }
|
|
|
|
/// Remove the given node from this SCC.
|
|
void remove(CallGraphNode *node) {
|
|
auto it = llvm::find(nodes, node);
|
|
if (it != nodes.end()) {
|
|
nodes.erase(it);
|
|
parentIterator.ReplaceNode(node, nullptr);
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<CallGraphNode *> nodes;
|
|
llvm::scc_iterator<const CallGraph *> &parentIterator;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Run a given transformation over the SCCs of the callgraph in a bottom up
|
|
/// traversal.
|
|
static LogicalResult runTransformOnCGSCCs(
|
|
const CallGraph &cg,
|
|
function_ref<LogicalResult(CallGraphSCC &)> sccTransformer) {
|
|
llvm::scc_iterator<const CallGraph *> cgi = llvm::scc_begin(&cg);
|
|
CallGraphSCC currentSCC(cgi);
|
|
while (!cgi.isAtEnd()) {
|
|
// Copy the current SCC and increment so that the transformer can modify the
|
|
// SCC without invalidating our iterator.
|
|
currentSCC.reset(*cgi);
|
|
++cgi;
|
|
if (failed(sccTransformer(currentSCC)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// This struct represents a resolved call to a given callgraph node. Given that
|
|
/// the call does not actually contain a direct reference to the
|
|
/// Region(CallGraphNode) that it is dispatching to, we need to resolve them
|
|
/// explicitly.
|
|
struct ResolvedCall {
|
|
ResolvedCall(CallOpInterface call, CallGraphNode *sourceNode,
|
|
CallGraphNode *targetNode)
|
|
: call(call), sourceNode(sourceNode), targetNode(targetNode) {}
|
|
CallOpInterface call;
|
|
CallGraphNode *sourceNode, *targetNode;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Collect all of the callable operations within the given range of blocks. If
|
|
/// `traverseNestedCGNodes` is true, this will also collect call operations
|
|
/// inside of nested callgraph nodes.
|
|
static void collectCallOps(iterator_range<Region::iterator> blocks,
|
|
CallGraphNode *sourceNode, CallGraph &cg,
|
|
SymbolTableCollection &symbolTable,
|
|
SmallVectorImpl<ResolvedCall> &calls,
|
|
bool traverseNestedCGNodes) {
|
|
SmallVector<std::pair<Block *, CallGraphNode *>, 8> worklist;
|
|
auto addToWorklist = [&](CallGraphNode *node,
|
|
iterator_range<Region::iterator> blocks) {
|
|
for (Block &block : blocks)
|
|
worklist.emplace_back(&block, node);
|
|
};
|
|
|
|
addToWorklist(sourceNode, blocks);
|
|
while (!worklist.empty()) {
|
|
Block *block;
|
|
std::tie(block, sourceNode) = worklist.pop_back_val();
|
|
|
|
for (Operation &op : *block) {
|
|
if (auto call = dyn_cast<CallOpInterface>(op)) {
|
|
// TODO: Support inlining nested call references.
|
|
CallInterfaceCallable callable = call.getCallableForCallee();
|
|
if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
|
|
if (!symRef.isa<FlatSymbolRefAttr>())
|
|
continue;
|
|
}
|
|
|
|
CallGraphNode *targetNode = cg.resolveCallable(call, symbolTable);
|
|
if (!targetNode->isExternal())
|
|
calls.emplace_back(call, sourceNode, targetNode);
|
|
continue;
|
|
}
|
|
|
|
// If this is not a call, traverse the nested regions. If
|
|
// `traverseNestedCGNodes` is false, then don't traverse nested call graph
|
|
// regions.
|
|
for (auto &nestedRegion : op.getRegions()) {
|
|
CallGraphNode *nestedNode = cg.lookupNode(&nestedRegion);
|
|
if (traverseNestedCGNodes || !nestedNode)
|
|
addToWorklist(nestedNode ? nestedNode : sourceNode, nestedRegion);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inliner
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class provides a specialization of the main inlining interface.
|
|
struct Inliner : public InlinerInterface {
|
|
Inliner(MLIRContext *context, CallGraph &cg,
|
|
SymbolTableCollection &symbolTable)
|
|
: InlinerInterface(context), cg(cg), symbolTable(symbolTable) {}
|
|
|
|
/// Process a set of blocks that have been inlined. This callback is invoked
|
|
/// *before* inlined terminator operations have been processed.
|
|
void
|
|
processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
|
|
// Find the closest callgraph node from the first block.
|
|
CallGraphNode *node;
|
|
Region *region = inlinedBlocks.begin()->getParent();
|
|
while (!(node = cg.lookupNode(region))) {
|
|
region = region->getParentRegion();
|
|
assert(region && "expected valid parent node");
|
|
}
|
|
|
|
collectCallOps(inlinedBlocks, node, cg, symbolTable, calls,
|
|
/*traverseNestedCGNodes=*/true);
|
|
}
|
|
|
|
/// Mark the given callgraph node for deletion.
|
|
void markForDeletion(CallGraphNode *node) { deadNodes.insert(node); }
|
|
|
|
/// This method properly disposes of callables that became dead during
|
|
/// inlining. This should not be called while iterating over the SCCs.
|
|
void eraseDeadCallables() {
|
|
for (CallGraphNode *node : deadNodes)
|
|
node->getCallableRegion()->getParentOp()->erase();
|
|
}
|
|
|
|
/// The set of callables known to be dead.
|
|
SmallPtrSet<CallGraphNode *, 8> deadNodes;
|
|
|
|
/// The current set of call instructions to consider for inlining.
|
|
SmallVector<ResolvedCall, 8> calls;
|
|
|
|
/// The callgraph being operated on.
|
|
CallGraph &cg;
|
|
|
|
/// A symbol table to use when resolving call lookups.
|
|
SymbolTableCollection &symbolTable;
|
|
};
|
|
} // namespace
|
|
|
|
/// Returns true if the given call should be inlined.
|
|
static bool shouldInline(ResolvedCall &resolvedCall) {
|
|
// Don't allow inlining terminator calls. We currently don't support this
|
|
// case.
|
|
if (resolvedCall.call->hasTrait<OpTrait::IsTerminator>())
|
|
return false;
|
|
|
|
// Don't allow inlining if the target is an ancestor of the call. This
|
|
// prevents inlining recursively.
|
|
if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
|
|
resolvedCall.call->getParentRegion()))
|
|
return false;
|
|
|
|
// Otherwise, inline.
|
|
return true;
|
|
}
|
|
|
|
/// Attempt to inline calls within the given scc. This function returns
|
|
/// success if any calls were inlined, failure otherwise.
|
|
static LogicalResult inlineCallsInSCC(Inliner &inliner, CGUseList &useList,
|
|
CallGraphSCC ¤tSCC) {
|
|
CallGraph &cg = inliner.cg;
|
|
auto &calls = inliner.calls;
|
|
|
|
// A set of dead nodes to remove after inlining.
|
|
SmallVector<CallGraphNode *, 1> deadNodes;
|
|
|
|
// Collect all of the direct calls within the nodes of the current SCC. We
|
|
// don't traverse nested callgraph nodes, because they are handled separately
|
|
// likely within a different SCC.
|
|
for (CallGraphNode *node : currentSCC) {
|
|
if (node->isExternal())
|
|
continue;
|
|
|
|
// Don't collect calls if the node is already dead.
|
|
if (useList.isDead(node)) {
|
|
deadNodes.push_back(node);
|
|
} else {
|
|
collectCallOps(*node->getCallableRegion(), node, cg, inliner.symbolTable,
|
|
calls, /*traverseNestedCGNodes=*/false);
|
|
}
|
|
}
|
|
|
|
// Try to inline each of the call operations. Don't cache the end iterator
|
|
// here as more calls may be added during inlining.
|
|
bool inlinedAnyCalls = false;
|
|
for (unsigned i = 0; i != calls.size(); ++i) {
|
|
ResolvedCall it = calls[i];
|
|
bool doInline = shouldInline(it);
|
|
CallOpInterface call = it.call;
|
|
LLVM_DEBUG({
|
|
if (doInline)
|
|
llvm::dbgs() << "* Inlining call: " << call << "\n";
|
|
else
|
|
llvm::dbgs() << "* Not inlining call: " << call << "\n";
|
|
});
|
|
if (!doInline)
|
|
continue;
|
|
Region *targetRegion = it.targetNode->getCallableRegion();
|
|
|
|
// If this is the last call to the target node and the node is discardable,
|
|
// then inline it in-place and delete the node if successful.
|
|
bool inlineInPlace = useList.hasOneUseAndDiscardable(it.targetNode);
|
|
|
|
LogicalResult inlineResult = inlineCall(
|
|
inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
|
|
targetRegion, /*shouldCloneInlinedRegion=*/!inlineInPlace);
|
|
if (failed(inlineResult)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "** Failed to inline\n");
|
|
continue;
|
|
}
|
|
inlinedAnyCalls = true;
|
|
|
|
// If the inlining was successful, Merge the new uses into the source node.
|
|
useList.dropCallUses(it.sourceNode, call.getOperation(), cg);
|
|
useList.mergeUsesAfterInlining(it.targetNode, it.sourceNode);
|
|
|
|
// then erase the call.
|
|
call.erase();
|
|
|
|
// If we inlined in place, mark the node for deletion.
|
|
if (inlineInPlace) {
|
|
useList.eraseNode(it.targetNode);
|
|
deadNodes.push_back(it.targetNode);
|
|
}
|
|
}
|
|
|
|
for (CallGraphNode *node : deadNodes) {
|
|
currentSCC.remove(node);
|
|
inliner.markForDeletion(node);
|
|
}
|
|
calls.clear();
|
|
return success(inlinedAnyCalls);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InlinerPass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class InlinerPass : public InlinerBase<InlinerPass> {
|
|
public:
|
|
InlinerPass();
|
|
InlinerPass(const InlinerPass &) = default;
|
|
InlinerPass(std::function<void(OpPassManager &)> defaultPipeline);
|
|
InlinerPass(std::function<void(OpPassManager &)> defaultPipeline,
|
|
llvm::StringMap<OpPassManager> opPipelines);
|
|
void runOnOperation() override;
|
|
|
|
private:
|
|
/// Attempt to inline calls within the given scc, and run simplifications,
|
|
/// until a fixed point is reached. This allows for the inlining of newly
|
|
/// devirtualized calls. Returns failure if there was a fatal error during
|
|
/// inlining.
|
|
LogicalResult inlineSCC(Inliner &inliner, CGUseList &useList,
|
|
CallGraphSCC ¤tSCC, MLIRContext *context);
|
|
|
|
/// Optimize the nodes within the given SCC with one of the held optimization
|
|
/// pass pipelines. Returns failure if an error occurred during the
|
|
/// optimization of the SCC, success otherwise.
|
|
LogicalResult optimizeSCC(CallGraph &cg, CGUseList &useList,
|
|
CallGraphSCC ¤tSCC, MLIRContext *context);
|
|
|
|
/// Optimize the nodes within the given SCC in parallel. Returns failure if an
|
|
/// error occurred during the optimization of the SCC, success otherwise.
|
|
LogicalResult optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
|
|
MLIRContext *context);
|
|
|
|
/// Optimize the given callable node with one of the pass managers provided
|
|
/// with `pipelines`, or the default pipeline. Returns failure if an error
|
|
/// occurred during the optimization of the callable, success otherwise.
|
|
LogicalResult optimizeCallable(CallGraphNode *node,
|
|
llvm::StringMap<OpPassManager> &pipelines);
|
|
|
|
/// Attempt to initialize the options of this pass from the given string.
|
|
/// Derived classes may override this method to hook into the point at which
|
|
/// options are initialized, but should generally always invoke this base
|
|
/// class variant.
|
|
LogicalResult initializeOptions(StringRef options) override;
|
|
|
|
/// An optional function that constructs a default optimization pipeline for
|
|
/// a given operation.
|
|
std::function<void(OpPassManager &)> defaultPipeline;
|
|
/// A map of operation names to pass pipelines to use when optimizing
|
|
/// callable operations of these types. This provides a specialized pipeline
|
|
/// instead of the default. The vector size is the number of threads used
|
|
/// during optimization.
|
|
SmallVector<llvm::StringMap<OpPassManager>, 8> opPipelines;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
InlinerPass::InlinerPass() : InlinerPass(defaultInlinerOptPipeline) {}
|
|
InlinerPass::InlinerPass(std::function<void(OpPassManager &)> defaultPipeline)
|
|
: defaultPipeline(defaultPipeline) {
|
|
opPipelines.push_back({});
|
|
|
|
// Initialize the pass options with the provided arguments.
|
|
if (defaultPipeline) {
|
|
OpPassManager fakePM("__mlir_fake_pm_op");
|
|
defaultPipeline(fakePM);
|
|
llvm::raw_string_ostream strStream(defaultPipelineStr);
|
|
fakePM.printAsTextualPipeline(strStream);
|
|
}
|
|
}
|
|
|
|
InlinerPass::InlinerPass(std::function<void(OpPassManager &)> defaultPipeline,
|
|
llvm::StringMap<OpPassManager> opPipelines)
|
|
: InlinerPass(std::move(defaultPipeline)) {
|
|
if (opPipelines.empty())
|
|
return;
|
|
|
|
// Update the option for the op specific optimization pipelines.
|
|
for (auto &it : opPipelines) {
|
|
std::string pipeline;
|
|
llvm::raw_string_ostream pipelineOS(pipeline);
|
|
pipelineOS << it.getKey() << "(";
|
|
it.second.printAsTextualPipeline(pipelineOS);
|
|
pipelineOS << ")";
|
|
opPipelineStrs.addValue(pipeline);
|
|
}
|
|
this->opPipelines.emplace_back(std::move(opPipelines));
|
|
}
|
|
|
|
void InlinerPass::runOnOperation() {
|
|
CallGraph &cg = getAnalysis<CallGraph>();
|
|
auto *context = &getContext();
|
|
|
|
// The inliner should only be run on operations that define a symbol table,
|
|
// as the callgraph will need to resolve references.
|
|
Operation *op = getOperation();
|
|
if (!op->hasTrait<OpTrait::SymbolTable>()) {
|
|
op->emitOpError() << " was scheduled to run under the inliner, but does "
|
|
"not define a symbol table";
|
|
return signalPassFailure();
|
|
}
|
|
|
|
// Run the inline transform in post-order over the SCCs in the callgraph.
|
|
SymbolTableCollection symbolTable;
|
|
Inliner inliner(context, cg, symbolTable);
|
|
CGUseList useList(getOperation(), cg, symbolTable);
|
|
LogicalResult result = runTransformOnCGSCCs(cg, [&](CallGraphSCC &scc) {
|
|
return inlineSCC(inliner, useList, scc, context);
|
|
});
|
|
if (failed(result))
|
|
return signalPassFailure();
|
|
|
|
// After inlining, make sure to erase any callables proven to be dead.
|
|
inliner.eraseDeadCallables();
|
|
}
|
|
|
|
LogicalResult InlinerPass::inlineSCC(Inliner &inliner, CGUseList &useList,
|
|
CallGraphSCC ¤tSCC,
|
|
MLIRContext *context) {
|
|
// Continuously simplify and inline until we either reach a fixed point, or
|
|
// hit the maximum iteration count. Simplifying early helps to refine the cost
|
|
// model, and in future iterations may devirtualize new calls.
|
|
unsigned iterationCount = 0;
|
|
do {
|
|
if (failed(optimizeSCC(inliner.cg, useList, currentSCC, context)))
|
|
return failure();
|
|
if (failed(inlineCallsInSCC(inliner, useList, currentSCC)))
|
|
break;
|
|
} while (++iterationCount < maxInliningIterations);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult InlinerPass::optimizeSCC(CallGraph &cg, CGUseList &useList,
|
|
CallGraphSCC ¤tSCC,
|
|
MLIRContext *context) {
|
|
// Collect the sets of nodes to simplify.
|
|
SmallVector<CallGraphNode *, 4> nodesToVisit;
|
|
for (auto *node : currentSCC) {
|
|
if (node->isExternal())
|
|
continue;
|
|
|
|
// Don't simplify nodes with children. Nodes with children require special
|
|
// handling as we may remove the node during simplification. In the future,
|
|
// we should be able to handle this case with proper node deletion tracking.
|
|
if (node->hasChildren())
|
|
continue;
|
|
|
|
// We also won't apply simplifications to nodes that can't have passes
|
|
// scheduled on them.
|
|
auto *region = node->getCallableRegion();
|
|
if (!region->getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>())
|
|
continue;
|
|
nodesToVisit.push_back(node);
|
|
}
|
|
if (nodesToVisit.empty())
|
|
return success();
|
|
|
|
// Optimize each of the nodes within the SCC in parallel.
|
|
// NOTE: This is simple now, because we don't enable optimizing nodes within
|
|
// children. When we remove this restriction, this logic will need to be
|
|
// reworked.
|
|
if (context->isMultithreadingEnabled()) {
|
|
if (failed(optimizeSCCAsync(nodesToVisit, context)))
|
|
return failure();
|
|
|
|
// Otherwise, we are optimizing within a single thread.
|
|
} else {
|
|
for (CallGraphNode *node : nodesToVisit) {
|
|
if (failed(optimizeCallable(node, opPipelines[0])))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Recompute the uses held by each of the nodes.
|
|
for (CallGraphNode *node : nodesToVisit)
|
|
useList.recomputeUses(node, cg);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
InlinerPass::optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
|
|
MLIRContext *context) {
|
|
// Ensure that there are enough pipeline maps for the optimizer to run in
|
|
// parallel.
|
|
size_t numThreads = llvm::hardware_concurrency().compute_thread_count();
|
|
if (opPipelines.size() != numThreads) {
|
|
// Reserve before resizing so that we can use a reference to the first
|
|
// element.
|
|
opPipelines.reserve(numThreads);
|
|
opPipelines.resize(numThreads, opPipelines.front());
|
|
}
|
|
|
|
// Ensure an analysis manager has been constructed for each of the nodes.
|
|
// This prevents thread races when running the nested pipelines.
|
|
for (CallGraphNode *node : nodesToVisit)
|
|
getAnalysisManager().nest(node->getCallableRegion()->getParentOp());
|
|
|
|
// An index for the current node to optimize.
|
|
std::atomic<unsigned> nodeIt(0);
|
|
|
|
// Optimize the nodes of the SCC in parallel.
|
|
ParallelDiagnosticHandler optimizerHandler(context);
|
|
return llvm::parallelTransformReduce(
|
|
llvm::seq<size_t>(0, numThreads), success(),
|
|
[](LogicalResult lhs, LogicalResult rhs) {
|
|
return success(succeeded(lhs) && succeeded(rhs));
|
|
},
|
|
[&](size_t index) {
|
|
LogicalResult result = success();
|
|
for (auto e = nodesToVisit.size(); nodeIt < e && succeeded(result);) {
|
|
// Get the next available operation index.
|
|
unsigned nextID = nodeIt++;
|
|
if (nextID >= e)
|
|
break;
|
|
|
|
// Set the order for this thread so that diagnostics will be
|
|
// properly ordered, and reset after optimization has finished.
|
|
optimizerHandler.setOrderIDForThread(nextID);
|
|
result = optimizeCallable(nodesToVisit[nextID], opPipelines[index]);
|
|
optimizerHandler.eraseOrderIDForThread();
|
|
}
|
|
return result;
|
|
});
|
|
}
|
|
|
|
LogicalResult
|
|
InlinerPass::optimizeCallable(CallGraphNode *node,
|
|
llvm::StringMap<OpPassManager> &pipelines) {
|
|
Operation *callable = node->getCallableRegion()->getParentOp();
|
|
StringRef opName = callable->getName().getStringRef();
|
|
auto pipelineIt = pipelines.find(opName);
|
|
if (pipelineIt == pipelines.end()) {
|
|
// If a pipeline didn't exist, use the default if possible.
|
|
if (!defaultPipeline)
|
|
return success();
|
|
|
|
OpPassManager defaultPM(opName);
|
|
defaultPipeline(defaultPM);
|
|
pipelineIt = pipelines.try_emplace(opName, std::move(defaultPM)).first;
|
|
}
|
|
return runPipeline(pipelineIt->second, callable);
|
|
}
|
|
|
|
LogicalResult InlinerPass::initializeOptions(StringRef options) {
|
|
if (failed(Pass::initializeOptions(options)))
|
|
return failure();
|
|
|
|
// Initialize the default pipeline builder to use the option string.
|
|
if (!defaultPipelineStr.empty()) {
|
|
std::string defaultPipelineCopy = defaultPipelineStr;
|
|
defaultPipeline = [=](OpPassManager &pm) {
|
|
(void)parsePassPipeline(defaultPipelineCopy, pm);
|
|
};
|
|
} else if (defaultPipelineStr.getNumOccurrences()) {
|
|
defaultPipeline = nullptr;
|
|
}
|
|
|
|
// Initialize the op specific pass pipelines.
|
|
llvm::StringMap<OpPassManager> pipelines;
|
|
for (StringRef pipeline : opPipelineStrs) {
|
|
// Skip empty pipelines.
|
|
if (pipeline.empty())
|
|
continue;
|
|
|
|
// Pipelines are expected to be of the form `<op-name>(<pipeline>)`.
|
|
size_t pipelineStart = pipeline.find_first_of('(');
|
|
if (pipelineStart == StringRef::npos || !pipeline.consume_back(")"))
|
|
return failure();
|
|
StringRef opName = pipeline.take_front(pipelineStart);
|
|
OpPassManager pm(opName);
|
|
if (failed(parsePassPipeline(pipeline.drop_front(1 + pipelineStart), pm)))
|
|
return failure();
|
|
pipelines.try_emplace(opName, std::move(pm));
|
|
}
|
|
opPipelines.assign({std::move(pipelines)});
|
|
|
|
return success();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createInlinerPass() {
|
|
return std::make_unique<InlinerPass>();
|
|
}
|
|
std::unique_ptr<Pass>
|
|
mlir::createInlinerPass(llvm::StringMap<OpPassManager> opPipelines) {
|
|
return std::make_unique<InlinerPass>(defaultInlinerOptPipeline,
|
|
std::move(opPipelines));
|
|
}
|
|
std::unique_ptr<Pass>
|
|
createInlinerPass(llvm::StringMap<OpPassManager> opPipelines,
|
|
std::function<void(OpPassManager &)> defaultPipelineBuilder) {
|
|
return std::make_unique<InlinerPass>(std::move(defaultPipelineBuilder),
|
|
std::move(opPipelines));
|
|
}
|