llvm with tablegen backend for capstone disassembler
Go to file
Valentin Clement 7b917fd284
[flang] Lower elemental calls
This patch adds more lowering of operations sub-expression inside elemental call arguments.
It tests array contexts where an address is needed for each element (for
the argument), but part of the array sub-expression must be lowered by value
(for the operation)

This patch is part of the upstreaming effort from fir-dev branch.

Reviewed By: PeteSteinfeld

Differential Revision: https://reviews.llvm.org/D121606

Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
2022-03-14 17:40:11 +01:00
.github Disable Mailgun click tracking 2022-02-24 19:03:43 +03:00
bolt [BOLT][NFC] Use getShortOpcodeArith in X86MCPlusBuilder 2022-03-12 09:07:28 -08:00
clang Fix the implicit module build 2022-03-14 09:24:17 -07:00
clang-tools-extra clang-tidy: discover binaries in build dir 2022-03-14 09:04:36 -07:00
cmake Correctly find builtins library with clang-cl 2022-03-14 07:49:29 +01:00
compiler-rt [lsan] ppc64: dynamically pick address range for allocator 2022-03-11 20:16:17 -08:00
cross-project-tests [CMake] Rename TARGET_TRIPLE to LLVM_TARGET_TRIPLE 2022-03-11 15:43:01 -08:00
flang [flang] Lower elemental calls 2022-03-14 17:40:11 +01:00
libc [libc] Include -150 to the special cases at the beginning of exp2f function. 2022-03-14 10:06:27 -04:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libc++] Replace _LIBCPP_HAS_NO_CONCEPTS with _LIBCPP_STD_VER > 17. NFCI. 2022-03-13 12:32:06 -04:00
libcxxabi [libcxxabi] Fix cmake order dependency wrt dllexporting 2022-03-07 15:36:04 -05:00
libunwind [runtimes] Remove FOO_TARGET_TRIPLE, FOO_SYSROOT and FOO_GCC_TOOLCHAIN 2022-03-01 08:39:42 -05:00
lld [WebAssembly] Second phase of implemented extended const proposal 2022-03-14 08:55:47 -07:00
lldb [lldb] Skip Test11588 on Windows 2022-03-14 09:26:41 -07:00
llvm [ValueTracking] Simplify llvm::isPointerOffset() 2022-03-14 09:32:36 -07:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir [mlir][vector] Implement unrolling of ReductionOp 2022-03-15 01:21:24 +09:00
openmp [nfc][openmp] Swap arguments to remove noise from upcoming diff 2022-03-11 23:08:37 +00:00
polly [polly] Introduce -polly-print-* passes to replace -analyze. 2022-03-14 10:27:15 -05:00
pstl Bump the trunk major version to 15 2022-02-01 23:54:52 -08:00
runtimes [CMake] Include runtimes test suites in check-all 2022-03-10 10:18:37 -08:00
test fix check-clang-tools tests that fail due to Windows CRLF line endings 2022-02-11 15:23:51 -07:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir][Bazel] Adjust regarding StandardToLLVM -> FuncToLLVM rename. 2022-03-08 09:07:36 +01:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md [README] Add hint, how to use automatically the optimal number of CPU cores 2022-03-07 12:07:11 +01:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.