llvm-capstone/lldb/source/Core/Disassembler.cpp
Greg Clayton 1f7460716b <rdar://problem/11757916>
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file". 
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()

Cleaned up header includes a bit as well.

llvm-svn: 162860
2012-08-29 21:13:06 +00:00

1213 lines
36 KiB
C++

//===-- Disassembler.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Disassembler.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/lldb-private.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/EmulateInstruction.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Timer.h"
#include "lldb/Interpreter/OptionValue.h"
#include "lldb/Interpreter/OptionValueArray.h"
#include "lldb/Interpreter/OptionValueDictionary.h"
#include "lldb/Interpreter/OptionValueString.h"
#include "lldb/Interpreter/OptionValueUInt64.h"
#include "lldb/Symbol/ClangNamespaceDecl.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#define DEFAULT_DISASM_BYTE_SIZE 32
using namespace lldb;
using namespace lldb_private;
DisassemblerSP
Disassembler::FindPlugin (const ArchSpec &arch, const char *plugin_name)
{
Timer scoped_timer (__PRETTY_FUNCTION__,
"Disassembler::FindPlugin (arch = %s, plugin_name = %s)",
arch.GetArchitectureName(),
plugin_name);
DisassemblerCreateInstance create_callback = NULL;
if (plugin_name)
{
create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName (plugin_name);
if (create_callback)
{
DisassemblerSP disassembler_sp(create_callback(arch));
if (disassembler_sp.get())
return disassembler_sp;
}
}
else
{
for (uint32_t idx = 0; (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex(idx)) != NULL; ++idx)
{
DisassemblerSP disassembler_sp(create_callback(arch));
if (disassembler_sp.get())
return disassembler_sp;
}
}
return DisassemblerSP();
}
static void
ResolveAddress (const ExecutionContext &exe_ctx,
const Address &addr,
Address &resolved_addr)
{
if (!addr.IsSectionOffset())
{
// If we weren't passed in a section offset address range,
// try and resolve it to something
Target *target = exe_ctx.GetTargetPtr();
if (target)
{
if (target->GetSectionLoadList().IsEmpty())
{
target->GetImages().ResolveFileAddress (addr.GetOffset(), resolved_addr);
}
else
{
target->GetSectionLoadList().ResolveLoadAddress (addr.GetOffset(), resolved_addr);
}
// We weren't able to resolve the address, just treat it as a
// raw address
if (resolved_addr.IsValid())
return;
}
}
resolved_addr = addr;
}
size_t
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
SymbolContextList &sc_list,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
size_t success_count = 0;
const size_t count = sc_list.GetSize();
SymbolContext sc;
AddressRange range;
const uint32_t scope = eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = true;
for (size_t i=0; i<count; ++i)
{
if (sc_list.GetContextAtIndex(i, sc) == false)
break;
for (uint32_t range_idx = 0; sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); ++range_idx)
{
if (Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
range,
num_instructions,
num_mixed_context_lines,
options,
strm))
{
++success_count;
strm.EOL();
}
}
}
return success_count;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const ConstString &name,
Module *module,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
SymbolContextList sc_list;
if (name)
{
const bool include_symbols = true;
const bool include_inlines = true;
if (module)
{
module->FindFunctions (name,
NULL,
eFunctionNameTypeBase |
eFunctionNameTypeFull |
eFunctionNameTypeMethod |
eFunctionNameTypeSelector,
include_symbols,
include_inlines,
true,
sc_list);
}
else if (exe_ctx.GetTargetPtr())
{
exe_ctx.GetTargetPtr()->GetImages().FindFunctions (name,
eFunctionNameTypeBase |
eFunctionNameTypeFull |
eFunctionNameTypeMethod |
eFunctionNameTypeSelector,
include_symbols,
include_inlines,
false,
sc_list);
}
}
if (sc_list.GetSize ())
{
return Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
sc_list,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
return false;
}
lldb::DisassemblerSP
Disassembler::DisassembleRange
(
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const AddressRange &range
)
{
lldb::DisassemblerSP disasm_sp;
if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid())
{
disasm_sp = Disassembler::FindPlugin(arch, plugin_name);
if (disasm_sp)
{
size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, range, NULL);
if (bytes_disassembled == 0)
disasm_sp.reset();
}
}
return disasm_sp;
}
lldb::DisassemblerSP
Disassembler::DisassembleBytes
(
const ArchSpec &arch,
const char *plugin_name,
const Address &start,
const void *bytes,
size_t length,
uint32_t num_instructions
)
{
lldb::DisassemblerSP disasm_sp;
if (bytes)
{
disasm_sp = Disassembler::FindPlugin(arch, plugin_name);
if (disasm_sp)
{
DataExtractor data(bytes, length, arch.GetByteOrder(), arch.GetAddressByteSize());
(void)disasm_sp->DecodeInstructions (start,
data,
0,
num_instructions,
false);
}
}
return disasm_sp;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const AddressRange &disasm_range,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
if (disasm_range.GetByteSize())
{
lldb::DisassemblerSP disasm_sp (Disassembler::FindPlugin(arch, plugin_name));
if (disasm_sp.get())
{
AddressRange range;
ResolveAddress (exe_ctx, disasm_range.GetBaseAddress(), range.GetBaseAddress());
range.SetByteSize (disasm_range.GetByteSize());
size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, range, &strm);
if (bytes_disassembled == 0)
return false;
return PrintInstructions (disasm_sp.get(),
debugger,
arch,
exe_ctx,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
}
return false;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
const Address &start_address,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
if (num_instructions > 0)
{
lldb::DisassemblerSP disasm_sp (Disassembler::FindPlugin(arch, plugin_name));
if (disasm_sp.get())
{
Address addr;
ResolveAddress (exe_ctx, start_address, addr);
size_t bytes_disassembled = disasm_sp->ParseInstructions (&exe_ctx, addr, num_instructions);
if (bytes_disassembled == 0)
return false;
return PrintInstructions (disasm_sp.get(),
debugger,
arch,
exe_ctx,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
}
return false;
}
bool
Disassembler::PrintInstructions
(
Disassembler *disasm_ptr,
Debugger &debugger,
const ArchSpec &arch,
const ExecutionContext &exe_ctx,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
// We got some things disassembled...
size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize();
if (num_instructions > 0 && num_instructions < num_instructions_found)
num_instructions_found = num_instructions;
const uint32_t max_opcode_byte_size = disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize ();
uint32_t offset = 0;
SymbolContext sc;
SymbolContext prev_sc;
AddressRange sc_range;
const Address *pc_addr_ptr = NULL;
ExecutionContextScope *exe_scope = exe_ctx.GetBestExecutionContextScope();
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame)
pc_addr_ptr = &frame->GetFrameCodeAddress();
const uint32_t scope = eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol;
const bool use_inline_block_range = false;
for (size_t i=0; i<num_instructions_found; ++i)
{
Instruction *inst = disasm_ptr->GetInstructionList().GetInstructionAtIndex (i).get();
if (inst)
{
const Address &addr = inst->GetAddress();
const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr;
prev_sc = sc;
ModuleSP module_sp (addr.GetModule());
if (module_sp)
{
uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress(addr, eSymbolContextEverything, sc);
if (resolved_mask)
{
if (num_mixed_context_lines)
{
if (!sc_range.ContainsFileAddress (addr))
{
sc.GetAddressRange (scope, 0, use_inline_block_range, sc_range);
if (sc != prev_sc)
{
if (offset != 0)
strm.EOL();
sc.DumpStopContext(&strm, exe_ctx.GetProcessPtr(), addr, false, true, false);
strm.EOL();
if (sc.comp_unit && sc.line_entry.IsValid())
{
debugger.GetSourceManager().DisplaySourceLinesWithLineNumbers (sc.line_entry.file,
sc.line_entry.line,
num_mixed_context_lines,
num_mixed_context_lines,
((inst_is_at_pc && (options & eOptionMarkPCSourceLine)) ? "->" : ""),
&strm);
}
}
}
}
else if ((sc.function || sc.symbol) && (sc.function != prev_sc.function || sc.symbol != prev_sc.symbol))
{
if (prev_sc.function || prev_sc.symbol)
strm.EOL();
bool show_fullpaths = false;
bool show_module = true;
bool show_inlined_frames = true;
sc.DumpStopContext (&strm,
exe_scope,
addr,
show_fullpaths,
show_module,
show_inlined_frames);
strm << ":\n";
}
}
else
{
sc.Clear();
}
}
if ((options & eOptionMarkPCAddress) && pc_addr_ptr)
{
strm.PutCString(inst_is_at_pc ? "-> " : " ");
}
const bool show_bytes = (options & eOptionShowBytes) != 0;
inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx);
strm.EOL();
}
else
{
break;
}
}
return true;
}
bool
Disassembler::Disassemble
(
Debugger &debugger,
const ArchSpec &arch,
const char *plugin_name,
const ExecutionContext &exe_ctx,
uint32_t num_instructions,
uint32_t num_mixed_context_lines,
uint32_t options,
Stream &strm
)
{
AddressRange range;
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame)
{
SymbolContext sc(frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol));
if (sc.function)
{
range = sc.function->GetAddressRange();
}
else if (sc.symbol && sc.symbol->ValueIsAddress())
{
range.GetBaseAddress() = sc.symbol->GetAddress();
range.SetByteSize (sc.symbol->GetByteSize());
}
else
{
range.GetBaseAddress() = frame->GetFrameCodeAddress();
}
if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0)
range.SetByteSize (DEFAULT_DISASM_BYTE_SIZE);
}
return Disassemble (debugger,
arch,
plugin_name,
exe_ctx,
range,
num_instructions,
num_mixed_context_lines,
options,
strm);
}
Instruction::Instruction(const Address &address, AddressClass addr_class) :
m_address (address),
m_address_class (addr_class),
m_opcode(),
m_calculated_strings(false)
{
}
Instruction::~Instruction()
{
}
AddressClass
Instruction::GetAddressClass ()
{
if (m_address_class == eAddressClassInvalid)
m_address_class = m_address.GetAddressClass();
return m_address_class;
}
void
Instruction::Dump (lldb_private::Stream *s,
uint32_t max_opcode_byte_size,
bool show_address,
bool show_bytes,
const ExecutionContext* exe_ctx)
{
const size_t opcode_column_width = 7;
const size_t operand_column_width = 25;
CalculateMnemonicOperandsAndCommentIfNeeded (exe_ctx);
StreamString ss;
if (show_address)
{
m_address.Dump(&ss,
exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL,
Address::DumpStyleLoadAddress,
Address::DumpStyleModuleWithFileAddress,
0);
ss.PutCString(": ");
}
if (show_bytes)
{
if (m_opcode.GetType() == Opcode::eTypeBytes)
{
// x86_64 and i386 are the only ones that use bytes right now so
// pad out the byte dump to be able to always show 15 bytes (3 chars each)
// plus a space
if (max_opcode_byte_size > 0)
m_opcode.Dump (&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump (&ss, 15 * 3 + 1);
}
else
{
// Else, we have ARM which can show up to a uint32_t 0x00000000 (10 spaces)
// plus two for padding...
if (max_opcode_byte_size > 0)
m_opcode.Dump (&ss, max_opcode_byte_size * 3 + 1);
else
m_opcode.Dump (&ss, 12);
}
}
const size_t opcode_pos = ss.GetSize();
ss.PutCString (m_opcode_name.c_str());
ss.FillLastLineToColumn (opcode_pos + opcode_column_width, ' ');
ss.PutCString (m_mnemocics.c_str());
if (!m_comment.empty())
{
ss.FillLastLineToColumn (opcode_pos + opcode_column_width + operand_column_width, ' ');
ss.PutCString (" ; ");
ss.PutCString (m_comment.c_str());
}
s->Write (ss.GetData(), ss.GetSize());
}
bool
Instruction::DumpEmulation (const ArchSpec &arch)
{
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
{
insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL);
return insn_emulator_ap->EvaluateInstruction (0);
}
return false;
}
OptionValueSP
Instruction::ReadArray (FILE *in_file, Stream *out_stream, OptionValue::Type data_type)
{
bool done = false;
char buffer[1024];
OptionValueSP option_value_sp (new OptionValueArray (1u << data_type));
int idx = 0;
while (!done)
{
if (!fgets (buffer, 1023, in_file))
{
out_stream->Printf ("Instruction::ReadArray: Error reading file (fgets).\n");
option_value_sp.reset ();
return option_value_sp;
}
std::string line (buffer);
int len = line.size();
if (line[len-1] == '\n')
{
line[len-1] = '\0';
line.resize (len-1);
}
if ((line.size() == 1) && line[0] == ']')
{
done = true;
line.clear();
}
if (line.size() > 0)
{
std::string value;
RegularExpression reg_exp ("^[ \t]*([^ \t]+)[ \t]*$");
bool reg_exp_success = reg_exp.Execute (line.c_str(), 1);
if (reg_exp_success)
reg_exp.GetMatchAtIndex (line.c_str(), 1, value);
else
value = line;
OptionValueSP data_value_sp;
switch (data_type)
{
case OptionValue::eTypeUInt64:
data_value_sp.reset (new OptionValueUInt64 (0, 0));
data_value_sp->SetValueFromCString (value.c_str());
break;
// Other types can be added later as needed.
default:
data_value_sp.reset (new OptionValueString (value.c_str(), ""));
break;
}
option_value_sp->GetAsArray()->InsertValue (idx, data_value_sp);
++idx;
}
}
return option_value_sp;
}
OptionValueSP
Instruction::ReadDictionary (FILE *in_file, Stream *out_stream)
{
bool done = false;
char buffer[1024];
OptionValueSP option_value_sp (new OptionValueDictionary());
static ConstString encoding_key ("data_encoding");
OptionValue::Type data_type = OptionValue::eTypeInvalid;
while (!done)
{
// Read the next line in the file
if (!fgets (buffer, 1023, in_file))
{
out_stream->Printf ("Instruction::ReadDictionary: Error reading file (fgets).\n");
option_value_sp.reset ();
return option_value_sp;
}
// Check to see if the line contains the end-of-dictionary marker ("}")
std::string line (buffer);
int len = line.size();
if (line[len-1] == '\n')
{
line[len-1] = '\0';
line.resize (len-1);
}
if ((line.size() == 1) && (line[0] == '}'))
{
done = true;
line.clear();
}
// Try to find a key-value pair in the current line and add it to the dictionary.
if (line.size() > 0)
{
RegularExpression reg_exp ("^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$");
bool reg_exp_success = reg_exp.Execute (line.c_str(), 2);
std::string key;
std::string value;
if (reg_exp_success)
{
reg_exp.GetMatchAtIndex (line.c_str(), 1, key);
reg_exp.GetMatchAtIndex (line.c_str(), 2, value);
}
else
{
out_stream->Printf ("Instruction::ReadDictionary: Failure executing regular expression.\n");
option_value_sp.reset();
return option_value_sp;
}
ConstString const_key (key.c_str());
// Check value to see if it's the start of an array or dictionary.
lldb::OptionValueSP value_sp;
assert (value.empty() == false);
assert (key.empty() == false);
if (value[0] == '{')
{
assert (value.size() == 1);
// value is a dictionary
value_sp = ReadDictionary (in_file, out_stream);
if (value_sp.get() == NULL)
{
option_value_sp.reset ();
return option_value_sp;
}
}
else if (value[0] == '[')
{
assert (value.size() == 1);
// value is an array
value_sp = ReadArray (in_file, out_stream, data_type);
if (value_sp.get() == NULL)
{
option_value_sp.reset ();
return option_value_sp;
}
// We've used the data_type to read an array; re-set the type to Invalid
data_type = OptionValue::eTypeInvalid;
}
else if ((value[0] == '0') && (value[1] == 'x'))
{
value_sp.reset (new OptionValueUInt64 (0, 0));
value_sp->SetValueFromCString (value.c_str());
}
else
{
int len = value.size();
if ((value[0] == '"') && (value[len-1] == '"'))
value = value.substr (1, len-2);
value_sp.reset (new OptionValueString (value.c_str(), ""));
}
if (const_key == encoding_key)
{
// A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data indicating the
// data type of an upcoming array (usually the next bit of data to be read in).
if (strcmp (value.c_str(), "uint32_t") == 0)
data_type = OptionValue::eTypeUInt64;
}
else
option_value_sp->GetAsDictionary()->SetValueForKey (const_key, value_sp, false);
}
}
return option_value_sp;
}
bool
Instruction::TestEmulation (Stream *out_stream, const char *file_name)
{
if (!out_stream)
return false;
if (!file_name)
{
out_stream->Printf ("Instruction::TestEmulation: Missing file_name.");
return false;
}
FILE *test_file = fopen (file_name, "r");
if (!test_file)
{
out_stream->Printf ("Instruction::TestEmulation: Attempt to open test file failed.");
return false;
}
char buffer[256];
if (!fgets (buffer, 255, test_file))
{
out_stream->Printf ("Instruction::TestEmulation: Error reading first line of test file.\n");
fclose (test_file);
return false;
}
if (strncmp (buffer, "InstructionEmulationState={", 27) != 0)
{
out_stream->Printf ("Instructin::TestEmulation: Test file does not contain emulation state dictionary\n");
fclose (test_file);
return false;
}
// Read all the test information from the test file into an OptionValueDictionary.
OptionValueSP data_dictionary_sp (ReadDictionary (test_file, out_stream));
if (data_dictionary_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Error reading Dictionary Object.\n");
fclose (test_file);
return false;
}
fclose (test_file);
OptionValueDictionary *data_dictionary = data_dictionary_sp->GetAsDictionary();
static ConstString description_key ("assembly_string");
static ConstString triple_key ("triple");
OptionValueSP value_sp = data_dictionary->GetValueForKey (description_key);
if (value_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Test file does not contain description string.\n");
return false;
}
SetDescription (value_sp->GetStringValue());
value_sp = data_dictionary->GetValueForKey (triple_key);
if (value_sp.get() == NULL)
{
out_stream->Printf ("Instruction::TestEmulation: Test file does not contain triple.\n");
return false;
}
ArchSpec arch;
arch.SetTriple (llvm::Triple (value_sp->GetStringValue()));
bool success = false;
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
success = insn_emulator_ap->TestEmulation (out_stream, arch, data_dictionary);
if (success)
out_stream->Printf ("Emulation test succeeded.");
else
out_stream->Printf ("Emulation test failed.");
return success;
}
bool
Instruction::Emulate (const ArchSpec &arch,
uint32_t evaluate_options,
void *baton,
EmulateInstruction::ReadMemoryCallback read_mem_callback,
EmulateInstruction::WriteMemoryCallback write_mem_callback,
EmulateInstruction::ReadRegisterCallback read_reg_callback,
EmulateInstruction::WriteRegisterCallback write_reg_callback)
{
std::auto_ptr<EmulateInstruction> insn_emulator_ap (EmulateInstruction::FindPlugin (arch, eInstructionTypeAny, NULL));
if (insn_emulator_ap.get())
{
insn_emulator_ap->SetBaton (baton);
insn_emulator_ap->SetCallbacks (read_mem_callback, write_mem_callback, read_reg_callback, write_reg_callback);
insn_emulator_ap->SetInstruction (GetOpcode(), GetAddress(), NULL);
return insn_emulator_ap->EvaluateInstruction (evaluate_options);
}
return false;
}
uint32_t
Instruction::GetData (DataExtractor &data)
{
return m_opcode.GetData(data);
}
InstructionList::InstructionList() :
m_instructions()
{
}
InstructionList::~InstructionList()
{
}
size_t
InstructionList::GetSize() const
{
return m_instructions.size();
}
uint32_t
InstructionList::GetMaxOpcocdeByteSize () const
{
uint32_t max_inst_size = 0;
collection::const_iterator pos, end;
for (pos = m_instructions.begin(), end = m_instructions.end();
pos != end;
++pos)
{
uint32_t inst_size = (*pos)->GetOpcode().GetByteSize();
if (max_inst_size < inst_size)
max_inst_size = inst_size;
}
return max_inst_size;
}
InstructionSP
InstructionList::GetInstructionAtIndex (uint32_t idx) const
{
InstructionSP inst_sp;
if (idx < m_instructions.size())
inst_sp = m_instructions[idx];
return inst_sp;
}
void
InstructionList::Dump (Stream *s,
bool show_address,
bool show_bytes,
const ExecutionContext* exe_ctx)
{
const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize();
collection::const_iterator pos, begin, end;
for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin;
pos != end;
++pos)
{
if (pos != begin)
s->EOL();
(*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx);
}
}
void
InstructionList::Clear()
{
m_instructions.clear();
}
void
InstructionList::Append (lldb::InstructionSP &inst_sp)
{
if (inst_sp)
m_instructions.push_back(inst_sp);
}
uint32_t
InstructionList::GetIndexOfNextBranchInstruction(uint32_t start) const
{
size_t num_instructions = m_instructions.size();
uint32_t next_branch = UINT32_MAX;
for (size_t i = start; i < num_instructions; i++)
{
if (m_instructions[i]->DoesBranch())
{
next_branch = i;
break;
}
}
return next_branch;
}
uint32_t
InstructionList::GetIndexOfInstructionAtLoadAddress (lldb::addr_t load_addr, Target &target)
{
Address address;
address.SetLoadAddress(load_addr, &target);
uint32_t num_instructions = m_instructions.size();
uint32_t index = UINT32_MAX;
for (int i = 0; i < num_instructions; i++)
{
if (m_instructions[i]->GetAddress() == address)
{
index = i;
break;
}
}
return index;
}
size_t
Disassembler::ParseInstructions
(
const ExecutionContext *exe_ctx,
const AddressRange &range,
Stream *error_strm_ptr
)
{
if (exe_ctx)
{
Target *target = exe_ctx->GetTargetPtr();
const addr_t byte_size = range.GetByteSize();
if (target == NULL || byte_size == 0 || !range.GetBaseAddress().IsValid())
return 0;
DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0');
DataBufferSP data_sp(heap_buffer);
Error error;
const bool prefer_file_cache = true;
const size_t bytes_read = target->ReadMemory (range.GetBaseAddress(),
prefer_file_cache,
heap_buffer->GetBytes(),
heap_buffer->GetByteSize(),
error);
if (bytes_read > 0)
{
if (bytes_read != heap_buffer->GetByteSize())
heap_buffer->SetByteSize (bytes_read);
DataExtractor data (data_sp,
m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
return DecodeInstructions (range.GetBaseAddress(), data, 0, UINT32_MAX, false);
}
else if (error_strm_ptr)
{
const char *error_cstr = error.AsCString();
if (error_cstr)
{
error_strm_ptr->Printf("error: %s\n", error_cstr);
}
}
}
else if (error_strm_ptr)
{
error_strm_ptr->PutCString("error: invalid execution context\n");
}
return 0;
}
size_t
Disassembler::ParseInstructions
(
const ExecutionContext *exe_ctx,
const Address &start,
uint32_t num_instructions
)
{
m_instruction_list.Clear();
if (exe_ctx == NULL || num_instructions == 0 || !start.IsValid())
return 0;
Target *target = exe_ctx->GetTargetPtr();
// Calculate the max buffer size we will need in order to disassemble
const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize();
if (target == NULL || byte_size == 0)
return 0;
DataBufferHeap *heap_buffer = new DataBufferHeap (byte_size, '\0');
DataBufferSP data_sp (heap_buffer);
Error error;
bool prefer_file_cache = true;
const size_t bytes_read = target->ReadMemory (start,
prefer_file_cache,
heap_buffer->GetBytes(),
byte_size,
error);
if (bytes_read == 0)
return 0;
DataExtractor data (data_sp,
m_arch.GetByteOrder(),
m_arch.GetAddressByteSize());
const bool append_instructions = true;
DecodeInstructions (start,
data,
0,
num_instructions,
append_instructions);
return m_instruction_list.GetSize();
}
//----------------------------------------------------------------------
// Disassembler copy constructor
//----------------------------------------------------------------------
Disassembler::Disassembler(const ArchSpec& arch) :
m_arch (arch),
m_instruction_list(),
m_base_addr(LLDB_INVALID_ADDRESS)
{
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Disassembler::~Disassembler()
{
}
InstructionList &
Disassembler::GetInstructionList ()
{
return m_instruction_list;
}
const InstructionList &
Disassembler::GetInstructionList () const
{
return m_instruction_list;
}
//----------------------------------------------------------------------
// Class PseudoInstruction
//----------------------------------------------------------------------
PseudoInstruction::PseudoInstruction () :
Instruction (Address(), eAddressClassUnknown),
m_description ()
{
}
PseudoInstruction::~PseudoInstruction ()
{
}
bool
PseudoInstruction::DoesBranch () const
{
// This is NOT a valid question for a pseudo instruction.
return false;
}
size_t
PseudoInstruction::Decode (const lldb_private::Disassembler &disassembler,
const lldb_private::DataExtractor &data,
uint32_t data_offset)
{
return m_opcode.GetByteSize();
}
void
PseudoInstruction::SetOpcode (size_t opcode_size, void *opcode_data)
{
if (!opcode_data)
return;
switch (opcode_size)
{
case 8:
{
uint8_t value8 = *((uint8_t *) opcode_data);
m_opcode.SetOpcode8 (value8);
break;
}
case 16:
{
uint16_t value16 = *((uint16_t *) opcode_data);
m_opcode.SetOpcode16 (value16);
break;
}
case 32:
{
uint32_t value32 = *((uint32_t *) opcode_data);
m_opcode.SetOpcode32 (value32);
break;
}
case 64:
{
uint64_t value64 = *((uint64_t *) opcode_data);
m_opcode.SetOpcode64 (value64);
break;
}
default:
break;
}
}
void
PseudoInstruction::SetDescription (const char *description)
{
if (description && strlen (description) > 0)
m_description = description;
}