mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-11-23 13:50:11 +00:00
da61c865e7
This is a reboot of the original design and implementation by Nicolai Haehnle <nicolai.haehnle@amd.com>: https://reviews.llvm.org/D85603 This change also obsoletes an earlier attempt at restarting the work on convergence tokens: https://reviews.llvm.org/D104504 Changes relative to D85603: 1. Clean up the definition of a "convergent operation", a convergent call and convergent function. 2. Clean up the relationship between dynamic instances, sets of threads and convergence tokens. 3. Redistribute the formal rules into the definitions of the convergence intrinsics. 4. Expand on the semantics of entering a function from outside LLVM, and the environment-defined outcome of the entry intrinsic. 5. Replace the term "cycle" with "closed path". The static rules are defined in terms of closed paths, and then a relation is established with cycles. 6. Specify that if a function contains a controlled convergent operation, then all convergent operations in that function must be controlled. 7. Describe an optional procedure to infer tokens for uncontrolled convergent operations. 8. Introduce controlled maximal convergence-before and controlled m-converged property as an update to the original properties in UniformityAnalysis. 9. Additional constraint that a cycle heart can only occur in the header of a reducible cycle (natural loop). Reviewed By: nhaehnle Differential Revision: https://reviews.llvm.org/D147116
708 lines
30 KiB
ReStructuredText
708 lines
30 KiB
ReStructuredText
.. _convergence-and-uniformity:
|
|
|
|
==========================
|
|
Convergence And Uniformity
|
|
==========================
|
|
|
|
.. contents::
|
|
:local:
|
|
|
|
Introduction
|
|
============
|
|
|
|
Some parallel environments execute threads in groups that allow
|
|
communication within the group using special primitives called
|
|
*convergent* operations. The outcome of a convergent operation is
|
|
sensitive to the set of threads that executes it "together", i.e.,
|
|
convergently.
|
|
|
|
A value is said to be *uniform* across a set of threads if it is the
|
|
same across those threads, and *divergent* otherwise. Correspondingly,
|
|
a branch is said to be a uniform branch if its condition is uniform,
|
|
and it is a divergent branch otherwise.
|
|
|
|
Whether threads are *converged* or not depends on the paths they take
|
|
through the control flow graph. Threads take different outgoing edges
|
|
at a *divergent branch*. Divergent branches constrain
|
|
program transforms such as changing the CFG or moving a convergent
|
|
operation to a different point of the CFG. Performing these
|
|
transformations across a divergent branch can change the sets of
|
|
threads that execute convergent operations convergently. While these
|
|
constraints are out of scope for this document, the described
|
|
*uniformity analysis* allows these transformations to identify
|
|
uniform branches where these constraints do not hold.
|
|
|
|
Convergence and
|
|
uniformity are inter-dependent: When threads diverge at a divergent
|
|
branch, they may later *reconverge* at a common program point.
|
|
Subsequent operations are performed convergently, but the inputs may
|
|
be non-uniform, thus producing divergent outputs.
|
|
|
|
Uniformity is also useful by itself on targets that execute threads in
|
|
groups with shared execution resources (e.g. waves, warps, or
|
|
subgroups):
|
|
|
|
- Uniform outputs can potentially be computed or stored on shared
|
|
resources.
|
|
- These targets must "linearize" a divergent branch to ensure that
|
|
each side of the branch is followed by the corresponding threads in
|
|
the same group. But linearization is unnecessary at uniform
|
|
branches, since the whole group of threads follows either one side
|
|
of the branch or the other.
|
|
|
|
This document presents a definition of convergence that is reasonable
|
|
for real targets and is compatible with the currently implicit
|
|
semantics of convergent operations in LLVM IR. This is accompanied by
|
|
a *uniformity analysis* that extends previous work on divergence analysis
|
|
[DivergenceSPMD]_ to cover irreducible control-flow.
|
|
|
|
.. [DivergenceSPMD] Julian Rosemann, Simon Moll, and Sebastian
|
|
Hack. 2021. An Abstract Interpretation for SPMD Divergence on
|
|
Reducible Control Flow Graphs. Proc. ACM Program. Lang. 5, POPL,
|
|
Article 31 (January 2021), 35 pages.
|
|
https://doi.org/10.1145/3434312
|
|
|
|
Terminology
|
|
===========
|
|
|
|
Cycles
|
|
Described in :ref:`cycle-terminology`.
|
|
|
|
Closed path
|
|
Described in :ref:`cycle-closed-path`.
|
|
|
|
Disjoint paths
|
|
Two paths in a CFG are said to be disjoint if the only nodes common
|
|
to both are the start node or the end node, or both.
|
|
|
|
Join node
|
|
A join node of a branch is a node reachable along disjoint paths
|
|
starting from that branch.
|
|
|
|
Diverged path
|
|
A diverged path is a path that starts from a divergent branch and
|
|
either reaches a join node of the branch or reaches the end of the
|
|
function without passing through any join node of the branch.
|
|
|
|
.. _convergence-dynamic-instances:
|
|
|
|
Threads and Dynamic Instances
|
|
=============================
|
|
|
|
Each occurrence of an instruction in the program source is called a
|
|
*static instance*. When a thread executes a program, each execution of
|
|
a static instance produces a distinct *dynamic instance* of that
|
|
instruction.
|
|
|
|
Each thread produces a unique sequence of dynamic instances:
|
|
|
|
- The sequence is generated along branch decisions and loop
|
|
traversals.
|
|
- Starts with a dynamic instance of a "first" instruction.
|
|
- Continues with dynamic instances of successive "next"
|
|
instructions.
|
|
|
|
Threads are independent; some targets may choose to execute them in
|
|
groups in order to share resources when possible.
|
|
|
|
.. figure:: convergence-natural-loop.png
|
|
:name: convergence-natural-loop
|
|
|
|
.. table::
|
|
:name: convergence-thread-example
|
|
:align: left
|
|
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 1 | Entry1 | H1 | B1 | L1 | H3 | | L3 | | | | Exit |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 2 | Entry1 | H2 | | L2 | H4 | B2 | L4 | H5 | B3 | L5 | Exit |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
In the above table, each row is a different thread, listing the
|
|
dynamic instances produced by that thread from left to right. Each
|
|
thread executes the same program that starts with an ``Entry`` node
|
|
and ends with an ``Exit`` node, but different threads may take
|
|
different paths through the control flow of the program. The columns
|
|
are numbered merely for convenience, and empty cells have no special
|
|
meaning. Dynamic instances listed in the same column are converged.
|
|
|
|
.. _convergence-definition:
|
|
|
|
Convergence
|
|
===========
|
|
|
|
*Converged-with* is a transitive symmetric relation over dynamic
|
|
instances produced by *different threads* for the *same static
|
|
instance*. Informally, two threads that produce converged dynamic
|
|
instances are said to be *converged*, and they are said to execute
|
|
that static instance *convergently*, at that point in the execution.
|
|
|
|
*Convergence-before* is a strict partial order over dynamic instances
|
|
that is defined as the transitive closure of:
|
|
|
|
1. If dynamic instance ``P`` is executed strictly before ``Q`` in the
|
|
same thread, then ``P`` is *convergence-before* ``Q``.
|
|
2. If dynamic instance ``P`` is executed strictly before ``Q1`` in the
|
|
same thread, and ``Q1`` is *converged-with* ``Q2``, then ``P`` is
|
|
*convergence-before* ``Q2``.
|
|
3. If dynamic instance ``P1`` is *converged-with* ``P2``, and ``P2``
|
|
is executed strictly before ``Q`` in the same thread, then ``P1``
|
|
is *convergence-before* ``Q``.
|
|
|
|
.. table::
|
|
:name: convergence-order-example
|
|
:align: left
|
|
|
|
+----------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|
|
+----------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 1 | Entry | ... | | | | S2 | T | ... | Exit |
|
|
+----------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 2 | Entry | ... | | Q2 | R | S1 | | ... | Exit |
|
|
+----------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 3 | Entry | ... | P | Q1 | | | | ... | |
|
|
+----------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
The above table shows partial sequences of dynamic instances from
|
|
different threads. Dynamic instances in the same column are assumed
|
|
to be converged (i.e., related to each other in the converged-with
|
|
relation). The resulting convergence order includes the edges ``P ->
|
|
Q2``, ``Q1 -> R``, ``P -> R``, ``P -> T``, etc.
|
|
|
|
The fact that *convergence-before* is a strict partial order is a
|
|
constraint on the *converged-with* relation. It is trivially satisfied
|
|
if different dynamic instances are never converged. It is also
|
|
trivially satisfied for all known implementations for which
|
|
convergence plays some role.
|
|
|
|
.. _convergence-note-convergence:
|
|
|
|
.. note::
|
|
|
|
1. The convergence-before relation is not
|
|
directly observable. Program transforms are in general free to
|
|
change the order of instructions, even though that obviously
|
|
changes the convergence-before relation.
|
|
|
|
2. Converged dynamic instances need not be executed at the same
|
|
time or even on the same resource. Converged dynamic instances
|
|
of a convergent operation may appear to do so but that is an
|
|
implementation detail.
|
|
|
|
3. The fact that ``P`` is convergence-before
|
|
``Q`` does not automatically imply that ``P`` happens-before
|
|
``Q`` in a memory model sense.
|
|
|
|
.. _convergence-maximal:
|
|
|
|
Maximal Convergence
|
|
-------------------
|
|
|
|
This section defines a constraint that may be used to
|
|
produce a *maximal converged-with* relation without violating the
|
|
strict *convergence-before* order. This maximal converged-with
|
|
relation is reasonable for real targets and is compatible with
|
|
convergent operations.
|
|
|
|
The maximal converged-with relation is defined in terms of cycle
|
|
headers, with the assumption that threads converge at the header on every
|
|
"iteration" of the cycle. Informally, two threads execute the same iteration of
|
|
a cycle if they both previously executed the cycle header the same number of
|
|
times after they entered that cycle. In general, this needs to account for the
|
|
iterations of parent cycles as well.
|
|
|
|
**Maximal converged-with:**
|
|
|
|
Dynamic instances ``X1`` and ``X2`` produced by different threads
|
|
for the same static instance ``X`` are converged in the maximal
|
|
converged-with relation if and only if for every cycle ``C`` with
|
|
header ``H`` that contains ``X``:
|
|
|
|
- every dynamic instance ``H1`` of ``H`` that precedes ``X1`` in
|
|
the respective thread is convergence-before ``X2``, and,
|
|
- every dynamic instance ``H2`` of ``H`` that precedes ``X2`` in
|
|
the respective thread is convergence-before ``X1``,
|
|
- without assuming that ``X1`` is converged with ``X2``.
|
|
|
|
.. note::
|
|
|
|
Cycle headers may not be unique to a given CFG if it is irreducible. Each
|
|
cycle hierarchy for the same CFG results in a different maximal
|
|
converged-with relation.
|
|
|
|
For brevity, the rest of the document restricts the term
|
|
*converged* to mean "related under the maximal converged-with
|
|
relation for the given cycle hierarchy".
|
|
|
|
Maximal convergence can now be demonstrated in the earlier example as follows:
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 1 | Entry1 | H1 | B1 | L1 | H3 | | L3 | | | | Exit |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread 2 | Entry2 | H2 | | L2 | H4 | B2 | L4 | H5 | B3 | L5 | Exit |
|
|
+----------+--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
- ``Entry1`` and ``Entry2`` are converged.
|
|
- ``H1`` and ``H2`` are converged.
|
|
- ``B1`` and ``B2`` are not converged due to ``H4`` which is not
|
|
convergence-before ``B1``.
|
|
- ``H3`` and ``H4`` are converged.
|
|
- ``H3`` is not converged with ``H5`` due to ``H4`` which is not
|
|
convergence-before ``H3``.
|
|
- ``L1`` and ``L2`` are converged.
|
|
- ``L3`` and ``L4`` are converged.
|
|
- ``L3`` is not converged with ``L5`` due to ``H5`` which is not
|
|
convergence-before ``L3``.
|
|
|
|
.. _convergence-cycle-headers:
|
|
|
|
Dependence on Cycles Headers
|
|
----------------------------
|
|
|
|
Contradictions in *convergence-before* are possible only between two
|
|
nodes that are inside some cycle. The dynamic instances of such nodes
|
|
may be interleaved in the same thread, and this interleaving may be
|
|
different for different threads.
|
|
|
|
When a thread executes a node ``X`` once and then executes it again,
|
|
it must have followed a closed path in the CFG that includes ``X``.
|
|
Such a path must pass through the header of at least one cycle --- the
|
|
smallest cycle that includes the entire closed path. In a given
|
|
thread, two dynamic instances of ``X`` are either separated by the
|
|
execution of at least one cycle header, or ``X`` itself is a cycle
|
|
header.
|
|
|
|
In reducible cycles (natural loops), each execution of the header is
|
|
equivalent to the start of a new iteration of the cycle. But this
|
|
analogy breaks down in the presence of explicit constraints on the
|
|
converged-with relation, such as those described in :ref:`future
|
|
work<convergence-note-convergence>`. Instead, cycle headers should be
|
|
treated as implicit *points of convergence* in a maximal
|
|
converged-with relation.
|
|
|
|
Consider a sequence of nested cycles ``C1``, ``C2``, ..., ``Ck`` such
|
|
that ``C1`` is the outermost cycle and ``Ck`` is the innermost cycle,
|
|
with headers ``H1``, ``H2``, ..., ``Hk`` respectively. When a thread
|
|
enters the cycle ``Ck``, any of the following is possible:
|
|
|
|
1. The thread directly entered cycle ``Ck`` without having executed
|
|
any of the headers ``H1`` to ``Hk``.
|
|
|
|
2. The thread executed some or all of the nested headers one or more
|
|
times.
|
|
|
|
The maximal converged-with relation captures the following intuition
|
|
about cycles:
|
|
|
|
1. When two threads enter a top-level cycle ``C1``, they execute
|
|
converged dynamic instances of every node that is a :ref:`child
|
|
<cycle-parent-block>` of ``C1``.
|
|
|
|
2. When two threads enter a nested cycle ``Ck``, they execute
|
|
converged dynamic instances of every node that is a child of
|
|
``Ck``, until either thread exits ``Ck``, if and only if they
|
|
executed converged dynamic instances of the last nested header that
|
|
either thread encountered.
|
|
|
|
Note that when a thread exits a nested cycle ``Ck``, it must follow
|
|
a closed path outside ``Ck`` to reenter it. This requires executing
|
|
the header of some outer cycle, as described earlier.
|
|
|
|
Consider two dynamic instances ``X1`` and ``X2`` produced by threads ``T1``
|
|
and ``T2`` for a node ``X`` that is a child of nested cycle ``Ck``.
|
|
Maximal convergence relates ``X1`` and ``X2`` as follows:
|
|
|
|
1. If neither thread executed any header from ``H1`` to ``Hk``, then
|
|
``X1`` and ``X2`` are converged.
|
|
|
|
2. Otherwise, if there are no converged dynamic instances ``Q1`` and
|
|
``Q2`` of any header ``Q`` from ``H1`` to ``Hk`` (where ``Q`` is
|
|
possibly the same as ``X``), such that ``Q1`` precedes ``X1`` and
|
|
``Q2`` precedes ``X2`` in the respective threads, then ``X1`` and
|
|
``X2`` are not converged.
|
|
|
|
3. Otherwise, consider the pair ``Q1`` and ``Q2`` of converged dynamic
|
|
instances of a header ``Q`` from ``H1`` to ``Hk`` that occur most
|
|
recently before ``X1`` and ``X2`` in the respective threads. Then
|
|
``X1`` and ``X2`` are converged if and only if there is no dynamic
|
|
instance of any header from ``H1`` to ``Hk`` that occurs between
|
|
``Q1`` and ``X1`` in thread ``T1``, or between ``Q2`` and ``X2`` in
|
|
thread ``T2``. In other words, ``Q1`` and ``Q2`` represent the last
|
|
point of convergence, with no other header being executed before
|
|
executing ``X``.
|
|
|
|
**Example:**
|
|
|
|
.. figure:: convergence-both-diverged-nested.png
|
|
:name: convergence-both-diverged-nested
|
|
|
|
The above figure shows two nested irreducible cycles with headers
|
|
``R`` and ``S``. The nodes ``Entry`` and ``Q`` have divergent
|
|
branches. The table below shows the convergence between three threads
|
|
taking different paths through the CFG. Dynamic instances listed in
|
|
the same column are converged.
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread1 | Entry | P1 | Q1 | S1 | P3 | Q3 | R1 | S2 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread2 | Entry | P2 | Q2 | | | | R2 | S3 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread3 | Entry | | | | | | R3 | S4 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
- ``P2`` and ``P3`` are not converged due to ``S1``
|
|
- ``Q2`` and ``Q3`` are not converged due to ``S1``
|
|
- ``S1`` and ``S3`` are not converged due to ``R2``
|
|
- ``S1`` and ``S4`` are not converged due to ``R3``
|
|
|
|
Informally, ``T1`` and ``T2`` execute the inner cycle a different
|
|
number of times, without executing the header of the outer cycle. All
|
|
threads converge in the outer cycle when they first execute the header
|
|
of the outer cycle.
|
|
|
|
.. _convergence-uniformity:
|
|
|
|
Uniformity
|
|
==========
|
|
|
|
1. The output of two converged dynamic instances is uniform if and
|
|
only if it compares equal for those two dynamic instances.
|
|
2. The output of a static instance ``X`` is uniform *for a given set
|
|
of threads* if and only if it is uniform for every pair of
|
|
converged dynamic instances of ``X`` produced by those threads.
|
|
|
|
A non-uniform value is said to be *divergent*.
|
|
|
|
For a set ``S`` of threads, the uniformity of each output of a static
|
|
instance is determined as follows:
|
|
|
|
1. The semantics of the instruction may specify the output to be
|
|
uniform.
|
|
2. Otherwise, the output is divergent if the static instance is not
|
|
:ref:`m-converged <convergence-m-converged>`.
|
|
3. Otherwise, if the static instance is m-converged:
|
|
|
|
1. If it is a PHI node, its output is uniform if and only
|
|
if for every pair of converged dynamic instances produced by all
|
|
threads in ``S``:
|
|
|
|
a. Both instances choose the same output from converged
|
|
dynamic instances, and,
|
|
b. That output is uniform for all threads in ``S``.
|
|
2. Otherwise, the output is uniform if and only if the input
|
|
operands are uniform for all threads in ``S``.
|
|
|
|
Divergent Cycle Exits
|
|
---------------------
|
|
|
|
When a divergent branch occurs inside a cycle, it is possible that a
|
|
diverged path continues to an exit of the cycle. This is called a
|
|
divergent cycle exit. If the cycle is irreducible, the diverged path
|
|
may re-enter and eventually reach a join within the cycle. Such a join
|
|
should be examined for the :ref:`diverged entry
|
|
<convergence-diverged-entry>` criterion.
|
|
|
|
Nodes along the diverged path that lie outside the cycle experience
|
|
*temporal divergence*, when two threads executing convergently inside
|
|
the cycle produce uniform values, but exit the cycle along the same
|
|
divergent path after executing the header a different number of times
|
|
(informally, on different iterations of the cycle). For a node ``N``
|
|
inside the cycle the outputs may be uniform for the two threads, but
|
|
any use ``U`` outside the cycle receives a value from non-converged
|
|
dynamic instances of ``N``. An output of ``U`` may be divergent,
|
|
depending on the semantics of the instruction.
|
|
|
|
.. _uniformity-analysis:
|
|
|
|
Static Uniformity Analysis
|
|
==========================
|
|
|
|
Irreducible control flow results in different cycle hierarchies
|
|
depending on the choice of headers during depth-first traversal. As a
|
|
result, a static analysis cannot always determine the convergence of
|
|
nodes in irreducible cycles, and any uniformity analysis is limited to
|
|
those static instances whose convergence is independent of the cycle
|
|
hierarchy:
|
|
|
|
.. _convergence-m-converged:
|
|
|
|
**m-converged static instances:**
|
|
|
|
A static instance ``X`` is *m-converged* for a given CFG if and only
|
|
if the maximal converged-with relation for its dynamic instances is
|
|
the same in every cycle hierarchy that can be constructed for that CFG.
|
|
|
|
.. note::
|
|
|
|
In other words, two dynamic instances ``X1`` and ``X2`` of an
|
|
m-converged static instance ``X`` are converged in some cycle
|
|
hierarchy if and only if they are also converged in every other
|
|
cycle hierarchy for the same CFG.
|
|
|
|
As noted earlier, for brevity, we restrict the term *converged* to
|
|
mean "related under the maximal converged-with relation for a given
|
|
cycle hierarchy".
|
|
|
|
|
|
Each node ``X`` in a given CFG is reported to be m-converged if and
|
|
only if every cycle that contains ``X`` satisfies the following necessary
|
|
conditions:
|
|
|
|
1. Every divergent branch inside the cycle satisfies the
|
|
:ref:`diverged entry criterion<convergence-diverged-entry>`, and,
|
|
2. There are no :ref:`diverged paths reaching the
|
|
cycle<convergence-diverged-outside>` from a divergent branch
|
|
outside it.
|
|
|
|
.. note::
|
|
|
|
A reducible cycle :ref:`trivially satisfies
|
|
<convergence-reducible-cycle>` the above conditions. In particular,
|
|
if the whole CFG is reducible, then all nodes in the CFG are
|
|
m-converged.
|
|
|
|
The uniformity of each output of a static instance
|
|
is determined using the criteria
|
|
:ref:`described earlier <convergence-uniformity>`. The discovery of
|
|
divergent outputs may cause their uses (including branches) to also
|
|
become divergent. The analysis propagates this divergence until a
|
|
fixed point is reached.
|
|
|
|
The convergence inferred using these criteria is a safe subset of the
|
|
maximal converged-with relation for any cycle hierarchy. In
|
|
particular, it is sufficient to determine if a static instance is
|
|
m-converged for a given cycle hierarchy ``T``, even if that fact is
|
|
not detected when examining some other cycle hierarchy ``T'``.
|
|
|
|
This property allows compiler transforms to use the uniformity
|
|
analysis without being affected by DFS choices made in the underlying
|
|
cycle analysis. When two transforms use different instances of the
|
|
uniformity analysis for the same CFG, a "divergent value" result in
|
|
one analysis instance cannot contradict a "uniform value" result in
|
|
the other.
|
|
|
|
Generic transforms such as SimplifyCFG, CSE, and loop transforms
|
|
commonly change the program in ways that change the maximal
|
|
converged-with relations. This also means that a value that was
|
|
previously uniform can become divergent after such a transform.
|
|
Uniformity has to be recomputed after such transforms.
|
|
|
|
Divergent Branch inside a Cycle
|
|
-------------------------------
|
|
|
|
.. figure:: convergence-divergent-inside.png
|
|
:name: convergence-divergent-inside
|
|
|
|
The above figure shows a divergent branch ``Q`` inside an irreducible
|
|
cyclic region. When two threads diverge at ``Q``, the convergence of
|
|
dynamic instances within the cyclic region depends on the cycle
|
|
hierarchy chosen:
|
|
|
|
1. In an implementation that detects a single cycle ``C`` with header
|
|
``P``, convergence inside the cycle is determined by ``P``.
|
|
|
|
2. In an implementation that detects two nested cycles with headers
|
|
``R`` and ``S``, convergence inside those cycles is determined by
|
|
their respective headers.
|
|
|
|
.. _convergence-diverged-entry:
|
|
|
|
A conservative approach would be to simply report all nodes inside
|
|
irreducible cycles as having divergent outputs. But it is desirable to
|
|
recognize m-converged nodes in the CFG in order to maximize
|
|
uniformity. This section describes one such pattern of nodes derived
|
|
from *closed paths*, which are a property of the CFG and do not depend
|
|
on the cycle hierarchy.
|
|
|
|
**Diverged Entry Criterion:**
|
|
|
|
The dynamic instances of all the nodes in a closed path ``P`` are
|
|
m-converged only if for every divergent branch ``B`` and its
|
|
join node ``J`` that lie on ``P``, there is no entry to ``P`` which
|
|
lies on a diverged path from ``B`` to ``J``.
|
|
|
|
.. figure:: convergence-closed-path.png
|
|
:name: convergence-closed-path
|
|
|
|
Consider the closed path ``P -> Q -> R -> S`` in the above figure.
|
|
``P`` and ``R`` are :ref:`entries to the closed
|
|
path<cycle-closed-path>`. ``Q`` is a divergent branch and ``S`` is a
|
|
join for that branch, with diverged paths ``Q -> R -> S`` and ``Q ->
|
|
S``.
|
|
|
|
- If a diverged entry ``R`` exists, then in some cycle hierarchy,
|
|
``R`` is the header of the smallest cycle ``C`` containing the
|
|
closed path and a :ref:`child cycle<cycle-definition>` ``C'``
|
|
exists in the set ``C - R``, containing both branch ``Q`` and join
|
|
``S``. When threads diverge at ``Q``, one subset ``M`` continues
|
|
inside cycle ``C'``, while the complement ``N`` exits ``C'`` and
|
|
reaches ``R``. Dynamic instances of ``S`` executed by threads in set
|
|
``M`` are not converged with those executed in set ``N`` due to the
|
|
presence of ``R``. Informally, threads that diverge at ``Q``
|
|
reconverge in the same iteration of the outer cycle ``C``, but they
|
|
may have executed the inner cycle ``C'`` differently.
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread1 | Entry | P1 | Q1 | | | | R1 | S1 | P3 | ... | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread2 | Entry | P2 | Q2 | S2 | P4 | Q4 | R2 | S4 | | | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
In the table above, ``S2`` is not converged with ``S1`` due to ``R1``.
|
|
|
|
|
|
|
|
|
- If ``R`` does not exist, or if any node other than ``R`` is the
|
|
header of ``C``, then no such child cycle ``C'`` is detected.
|
|
Threads that diverge at ``Q`` execute converged dynamic instances of
|
|
``S`` since they do not encounter the cycle header on any path from
|
|
``Q`` to ``S``. Informally, threads that diverge at ``Q``
|
|
reconverge at ``S`` in the same iteration of ``C``.
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread1 | Entry | P1 | Q1 | R1 | S1 | P3 | Q3 | R3 | S3 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread2 | Entry | P2 | Q2 | | S2 | P4 | Q4 | R2 | S4 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
In general, the cycle ``C`` in the above statements is not
|
|
expected to be the same cycle for different headers. Cycles and
|
|
their headers are tightly coupled; for different headers in the
|
|
same outermost cycle, the child cycles detected may be different.
|
|
The property relevant to the above examples is that for every
|
|
closed path, there is a cycle ``C`` that contains the path and
|
|
whose header is on that path.
|
|
|
|
The diverged entry criterion must be checked for every closed path
|
|
passing through a divergent branch ``B`` and its join ``J``. Since
|
|
:ref:`every closed path passes through the header of some
|
|
cycle<cycle-closed-path-header>`, this amounts to checking every cycle
|
|
``C`` that contains ``B`` and ``J``. When the header of ``C``
|
|
dominates the join ``J``, there can be no entry to any path from the
|
|
header to ``J``, which includes any diverged path from ``B`` to ``J``.
|
|
This is also true for any closed paths passing through the header of
|
|
an outer cycle that contains ``C``.
|
|
|
|
Thus, the diverged entry criterion can be conservatively simplified
|
|
as follows:
|
|
|
|
For a divergent branch ``B`` and its join node ``J``, the nodes in a
|
|
cycle ``C`` that contains both ``B`` and ``J`` are m-converged only
|
|
if:
|
|
|
|
- ``B`` strictly dominates ``J``, or,
|
|
- The header ``H`` of ``C`` strictly dominates ``J``, or,
|
|
- Recursively, there is cycle ``C'`` inside ``C`` that satisfies the
|
|
same condition.
|
|
|
|
When ``J`` is the same as ``H`` or ``B``, the trivial dominance is
|
|
insufficient to make any statement about entries to diverged paths.
|
|
|
|
.. _convergence-diverged-outside:
|
|
|
|
Diverged Paths reaching a Cycle
|
|
-------------------------------
|
|
|
|
.. figure:: convergence-divergent-outside.png
|
|
:name: convergence-divergent-outside
|
|
|
|
The figure shows two cycle hierarchies with a divergent branch in
|
|
``Entry`` instead of ``Q``. For two threads that enter the closed path
|
|
``P -> Q -> R -> S`` at ``P`` and ``R`` respectively, the convergence
|
|
of dynamic instances generated along the path depends on whether ``P``
|
|
or ``R`` is the header.
|
|
|
|
- Convergence when ``P`` is the header.
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread1 | Entry | | | | P1 | Q1 | R1 | S1 | P3 | Q3 | | S3 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread2 | Entry | | R2 | S2 | P2 | Q2 | | S2 | P4 | Q4 | R3 | S4 | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
|
|
|
|
|
- Convergence when ``R`` is the header.
|
|
|
|
.. table::
|
|
:align: left
|
|
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread1 | Entry | | P1 | Q1 | R1 | S1 | P3 | Q3 | S3 | | | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
| Thread2 | Entry | | | | R2 | S2 | P2 | Q2 | S2 | P4 | ... | Exit |
|
|
+---------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------+
|
|
|
|
|
|
|
|
|
Thus, when diverged paths reach different entries of an irreducible
|
|
cycle from outside the cycle, the static analysis conservatively
|
|
reports every node in the cycle as not m-converged.
|
|
|
|
.. _convergence-reducible-cycle:
|
|
|
|
Reducible Cycle
|
|
---------------
|
|
|
|
If ``C`` is a reducible cycle with header ``H``, then in any DFS,
|
|
``H`` :ref:`must be the header of some cycle<cycle-reducible-headers>`
|
|
``C'`` that contains ``C``. Independent of the DFS, there is no entry
|
|
to the subgraph ``C`` other than ``H`` itself. Thus, we have the
|
|
following:
|
|
|
|
1. The diverged entry criterion is trivially satisfied for a divergent
|
|
branch and its join, where both are inside subgraph ``C``.
|
|
2. When diverged paths reach the subgraph ``C`` from outside, their
|
|
convergence is always determined by the same header ``H``.
|
|
|
|
Clearly, this can be determined only in a cycle hierarchy ``T`` where
|
|
``C`` is detected as a reducible cycle. No such conclusion can be made
|
|
in a different cycle hierarchy ``T'`` where ``C`` is part of a larger
|
|
cycle ``C'`` with the same header, but this does not contradict the
|
|
conclusion in ``T``.
|
|
|
|
Controlled Convergence
|
|
======================
|
|
|
|
:ref:`Convergence control tokens <dynamic_instances_and_convergence_tokens>`
|
|
provide an explicit semantics for determining which threads are converged at a
|
|
given point in the program. The impact of this is incorporated in a
|
|
:ref:`controlled maximal converged-with <controlled_maximal_converged_with>`
|
|
relation over dynamic instances and a :ref:`controlled m-converged
|
|
<controlled_m_converged>` property of static instances. The :ref:`uniformity
|
|
analysis <uniformity-analysis>` implemented in LLVM includes this for targets
|
|
that support convergence control tokens.
|