mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-01 13:20:25 +00:00
438f7fc068
Summary: To get the target order correct, the benchmarks directory has been moved one level higher. Previously, it was living in the utils directory. The utils directory is a collection of utils which are to be used by the tests and implementations. However, benchmarks *use* the implementations. So, moving it out of utils helps us setup proper target level dependencies. Reviewers: gchatelet Differential Revision: https://reviews.llvm.org/D81910
325 lines
12 KiB
C++
325 lines
12 KiB
C++
//===-- Benchmark function --------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This file mainly defines a `Benchmark` function.
|
|
//
|
|
// The benchmarking process is as follows:
|
|
// - We start by measuring the time it takes to run the function
|
|
// `InitialIterations` times. This is called a Sample. From this we can derive
|
|
// the time it took to run a single iteration.
|
|
//
|
|
// - We repeat the previous step with a greater number of iterations to lower
|
|
// the impact of the measurement. We can derive a more precise estimation of the
|
|
// runtime for a single iteration.
|
|
//
|
|
// - Each sample gives a more accurate estimation of the runtime for a single
|
|
// iteration but also takes more time to run. We stop the process when:
|
|
// * The measure stabilize under a certain precision (Epsilon),
|
|
// * The overall benchmarking time is greater than MaxDuration,
|
|
// * The overall sample count is greater than MaxSamples,
|
|
// * The last sample used more than MaxIterations iterations.
|
|
//
|
|
// - We also makes sure that the benchmark doesn't run for a too short period of
|
|
// time by defining MinDuration and MinSamples.
|
|
|
|
#ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
|
|
#define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
|
|
|
|
#include "benchmark/benchmark.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <array>
|
|
#include <chrono>
|
|
#include <cstdint>
|
|
|
|
namespace llvm {
|
|
namespace libc_benchmarks {
|
|
|
|
// Makes sure the binary was compiled in release mode and that frequency
|
|
// governor is set on performance.
|
|
void checkRequirements();
|
|
|
|
using Duration = std::chrono::duration<double>;
|
|
|
|
enum class BenchmarkLog {
|
|
None, // Don't keep the internal state of the benchmark.
|
|
Last, // Keep only the last batch.
|
|
Full // Keep all iterations states, useful for testing or debugging.
|
|
};
|
|
|
|
// An object to configure the benchmark stopping conditions.
|
|
// See documentation at the beginning of the file for the overall algorithm and
|
|
// meaning of each field.
|
|
struct BenchmarkOptions {
|
|
// The minimum time for which the benchmark is running.
|
|
Duration MinDuration = std::chrono::seconds(0);
|
|
// The maximum time for which the benchmark is running.
|
|
Duration MaxDuration = std::chrono::seconds(10);
|
|
// The number of iterations in the first sample.
|
|
uint32_t InitialIterations = 1;
|
|
// The maximum number of iterations for any given sample.
|
|
uint32_t MaxIterations = 10000000;
|
|
// The minimum number of samples.
|
|
uint32_t MinSamples = 4;
|
|
// The maximum number of samples.
|
|
uint32_t MaxSamples = 1000;
|
|
// The benchmark will stop is the relative difference between the current and
|
|
// the last estimation is less than epsilon. This is 1% by default.
|
|
double Epsilon = 0.01;
|
|
// The number of iterations grows exponentially between each sample.
|
|
// Must be greater or equal to 1.
|
|
double ScalingFactor = 1.4;
|
|
BenchmarkLog Log = BenchmarkLog::None;
|
|
};
|
|
|
|
// The state of a benchmark.
|
|
enum class BenchmarkStatus {
|
|
Running,
|
|
MaxDurationReached,
|
|
MaxIterationsReached,
|
|
MaxSamplesReached,
|
|
PrecisionReached,
|
|
};
|
|
|
|
// The internal state of the benchmark, useful to debug, test or report
|
|
// statistics.
|
|
struct BenchmarkState {
|
|
size_t LastSampleIterations;
|
|
Duration LastBatchElapsed;
|
|
BenchmarkStatus CurrentStatus;
|
|
Duration CurrentBestGuess; // The time estimation for a single run of `foo`.
|
|
double ChangeRatio; // The change in time estimation between previous and
|
|
// current samples.
|
|
};
|
|
|
|
// A lightweight result for a benchmark.
|
|
struct BenchmarkResult {
|
|
BenchmarkStatus TerminationStatus = BenchmarkStatus::Running;
|
|
Duration BestGuess = {};
|
|
llvm::Optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog;
|
|
};
|
|
|
|
// Stores information about a cache in the host memory system.
|
|
struct CacheInfo {
|
|
std::string Type; // e.g. "Instruction", "Data", "Unified".
|
|
int Level; // 0 is closest to processing unit.
|
|
int Size; // In bytes.
|
|
int NumSharing; // The number of processing units (Hyper-Threading Thread)
|
|
// with which this cache is shared.
|
|
};
|
|
|
|
// Stores information about the host.
|
|
struct HostState {
|
|
std::string CpuName; // returns a string compatible with the -march option.
|
|
double CpuFrequency; // in Hertz.
|
|
std::vector<CacheInfo> Caches;
|
|
|
|
static HostState get();
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
struct Measurement {
|
|
size_t Iterations = 0;
|
|
Duration Elapsed = {};
|
|
};
|
|
|
|
// Updates the estimation of the elapsed time for a single iteration.
|
|
class RefinableRuntimeEstimation {
|
|
Duration TotalTime = {};
|
|
size_t TotalIterations = 0;
|
|
|
|
public:
|
|
Duration update(const Measurement &M) {
|
|
assert(M.Iterations > 0);
|
|
// Duration is encoded as a double (see definition).
|
|
// `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect
|
|
// loss of precision due to radically different scales.
|
|
TotalTime += M.Elapsed;
|
|
TotalIterations += M.Iterations;
|
|
return TotalTime / TotalIterations;
|
|
}
|
|
};
|
|
|
|
// This class tracks the progression of the runtime estimation.
|
|
class RuntimeEstimationProgression {
|
|
RefinableRuntimeEstimation RRE;
|
|
|
|
public:
|
|
Duration CurrentEstimation = {};
|
|
|
|
// Returns the change ratio between our best guess so far and the one from the
|
|
// new measurement.
|
|
double computeImprovement(const Measurement &M) {
|
|
const Duration NewEstimation = RRE.update(M);
|
|
const double Ratio = fabs(((CurrentEstimation / NewEstimation) - 1.0));
|
|
CurrentEstimation = NewEstimation;
|
|
return Ratio;
|
|
}
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Measures the runtime of `foo` until conditions defined by `Options` are met.
|
|
//
|
|
// To avoid measurement's imprecisions we measure batches of `foo`.
|
|
// The batch size is growing by `ScalingFactor` to minimize the effect of
|
|
// measuring.
|
|
//
|
|
// Note: The benchmark is not responsible for serializing the executions of
|
|
// `foo`. It is not suitable for measuring, very small & side effect free
|
|
// functions, as the processor is free to execute several executions in
|
|
// parallel.
|
|
//
|
|
// - Options: A set of parameters controlling the stopping conditions for the
|
|
// benchmark.
|
|
// - foo: The function under test. It takes one value and returns one value.
|
|
// The input value is used to randomize the execution of `foo` as part of a
|
|
// batch to mitigate the effect of the branch predictor. Signature:
|
|
// `ProductType foo(ParameterProvider::value_type value);`
|
|
// The output value is a product of the execution of `foo` and prevents the
|
|
// compiler from optimizing out foo's body.
|
|
// - ParameterProvider: An object responsible for providing a range of
|
|
// `Iterations` values to use as input for `foo`. The `value_type` of the
|
|
// returned container has to be compatible with `foo` argument.
|
|
// Must implement one of:
|
|
// `Container<ParameterType> generateBatch(size_t Iterations);`
|
|
// `const Container<ParameterType>& generateBatch(size_t Iterations);`
|
|
// - Clock: An object providing the current time. Must implement:
|
|
// `std::chrono::time_point now();`
|
|
template <typename Function, typename ParameterProvider,
|
|
typename BenchmarkClock = const std::chrono::high_resolution_clock>
|
|
BenchmarkResult benchmark(const BenchmarkOptions &Options,
|
|
ParameterProvider &PP, Function foo,
|
|
BenchmarkClock &Clock = BenchmarkClock()) {
|
|
BenchmarkResult Result;
|
|
internal::RuntimeEstimationProgression REP;
|
|
Duration TotalBenchmarkDuration = {};
|
|
size_t Iterations = std::max(Options.InitialIterations, uint32_t(1));
|
|
size_t Samples = 0;
|
|
if (Options.ScalingFactor < 1.0)
|
|
report_fatal_error("ScalingFactor should be >= 1");
|
|
if (Options.Log != BenchmarkLog::None)
|
|
Result.MaybeBenchmarkLog.emplace();
|
|
for (;;) {
|
|
// Request a new Batch of size `Iterations`.
|
|
const auto &Batch = PP.generateBatch(Iterations);
|
|
|
|
// Measuring this Batch.
|
|
const auto StartTime = Clock.now();
|
|
for (const auto Parameter : Batch) {
|
|
const auto Production = foo(Parameter);
|
|
benchmark::DoNotOptimize(Production);
|
|
}
|
|
const auto EndTime = Clock.now();
|
|
const Duration Elapsed = EndTime - StartTime;
|
|
|
|
// Updating statistics.
|
|
++Samples;
|
|
TotalBenchmarkDuration += Elapsed;
|
|
const double ChangeRatio = REP.computeImprovement({Iterations, Elapsed});
|
|
Result.BestGuess = REP.CurrentEstimation;
|
|
|
|
// Stopping condition.
|
|
if (TotalBenchmarkDuration >= Options.MinDuration &&
|
|
Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon)
|
|
Result.TerminationStatus = BenchmarkStatus::PrecisionReached;
|
|
else if (Samples >= Options.MaxSamples)
|
|
Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached;
|
|
else if (TotalBenchmarkDuration >= Options.MaxDuration)
|
|
Result.TerminationStatus = BenchmarkStatus::MaxDurationReached;
|
|
else if (Iterations >= Options.MaxIterations)
|
|
Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached;
|
|
|
|
if (Result.MaybeBenchmarkLog) {
|
|
auto &BenchmarkLog = *Result.MaybeBenchmarkLog;
|
|
if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty())
|
|
BenchmarkLog.pop_back();
|
|
BenchmarkState BS;
|
|
BS.LastSampleIterations = Iterations;
|
|
BS.LastBatchElapsed = Elapsed;
|
|
BS.CurrentStatus = Result.TerminationStatus;
|
|
BS.CurrentBestGuess = Result.BestGuess;
|
|
BS.ChangeRatio = ChangeRatio;
|
|
BenchmarkLog.push_back(BS);
|
|
}
|
|
|
|
if (Result.TerminationStatus != BenchmarkStatus::Running)
|
|
return Result;
|
|
|
|
if (Options.ScalingFactor > 1 &&
|
|
Iterations * Options.ScalingFactor == Iterations)
|
|
report_fatal_error(
|
|
"`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor "
|
|
"or InitialIterations.");
|
|
|
|
Iterations *= Options.ScalingFactor;
|
|
}
|
|
}
|
|
|
|
// Interprets `Array` as a circular buffer of `Size` elements.
|
|
template <typename T> class CircularArrayRef {
|
|
llvm::ArrayRef<T> Array;
|
|
size_t Size;
|
|
|
|
public:
|
|
using value_type = T;
|
|
using reference = T &;
|
|
using const_reference = const T &;
|
|
using difference_type = ssize_t;
|
|
using size_type = size_t;
|
|
|
|
class const_iterator
|
|
: public std::iterator<std::input_iterator_tag, T, ssize_t> {
|
|
llvm::ArrayRef<T> Array;
|
|
size_t Index;
|
|
|
|
public:
|
|
explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0)
|
|
: Array(Array), Index(Index) {}
|
|
const_iterator &operator++() {
|
|
++Index;
|
|
return *this;
|
|
}
|
|
bool operator==(const_iterator Other) const { return Index == Other.Index; }
|
|
bool operator!=(const_iterator Other) const { return !(*this == Other); }
|
|
const T &operator*() const { return Array[Index % Array.size()]; }
|
|
};
|
|
|
|
CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size)
|
|
: Array(Array), Size(Size) {
|
|
assert(Array.size() > 0);
|
|
}
|
|
|
|
const_iterator begin() const { return const_iterator(Array); }
|
|
const_iterator end() const { return const_iterator(Array, Size); }
|
|
};
|
|
|
|
// A convenient helper to produce a CircularArrayRef from an ArrayRef.
|
|
template <typename T>
|
|
CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) {
|
|
return {Array, Size};
|
|
}
|
|
|
|
// Creates an std::array which storage size is constrained under `Bytes`.
|
|
template <typename T, size_t Bytes>
|
|
using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>;
|
|
|
|
// A convenient helper to produce a CircularArrayRef from a
|
|
// ByteConstrainedArray.
|
|
template <typename T, size_t N>
|
|
CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) {
|
|
return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size};
|
|
}
|
|
|
|
} // namespace libc_benchmarks
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
|