mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-14 04:11:30 +00:00

Summary: If a partially inlined function has debug info, we have to add debug locations to the call instruction calling the outlined function. We use the debug location of the first instruction in the outlined function, as the introduced call transfers control to this statement and there is no other equivalent line in the source code. We also use the same debug location for the branch instruction added to jump from artificial entry block for the outlined function, which just jumps to the first actual basic block of the outlined function. Reviewers: davide, aprantl, rriddle, dblaikie, danielcdh, wmi Reviewed By: aprantl, rriddle, danielcdh Subscribers: eraman, JDevlieghere, llvm-commits Differential Revision: https://reviews.llvm.org/D40413 llvm-svn: 320199
1146 lines
42 KiB
C++
1146 lines
42 KiB
C++
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the interface to tear out a code region, such as an
|
|
// individual loop or a parallel section, into a new function, replacing it with
|
|
// a call to the new function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "code-extractor"
|
|
|
|
// Provide a command-line option to aggregate function arguments into a struct
|
|
// for functions produced by the code extractor. This is useful when converting
|
|
// extracted functions to pthread-based code, as only one argument (void*) can
|
|
// be passed in to pthread_create().
|
|
static cl::opt<bool>
|
|
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
|
|
cl::desc("Aggregate arguments to code-extracted functions"));
|
|
|
|
/// \brief Test whether a block is valid for extraction.
|
|
bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB,
|
|
bool AllowVarArgs) {
|
|
// Landing pads must be in the function where they were inserted for cleanup.
|
|
if (BB.isEHPad())
|
|
return false;
|
|
// taking the address of a basic block moved to another function is illegal
|
|
if (BB.hasAddressTaken())
|
|
return false;
|
|
|
|
// don't hoist code that uses another basicblock address, as it's likely to
|
|
// lead to unexpected behavior, like cross-function jumps
|
|
SmallPtrSet<User const *, 16> Visited;
|
|
SmallVector<User const *, 16> ToVisit;
|
|
|
|
for (Instruction const &Inst : BB)
|
|
ToVisit.push_back(&Inst);
|
|
|
|
while (!ToVisit.empty()) {
|
|
User const *Curr = ToVisit.pop_back_val();
|
|
if (!Visited.insert(Curr).second)
|
|
continue;
|
|
if (isa<BlockAddress const>(Curr))
|
|
return false; // even a reference to self is likely to be not compatible
|
|
|
|
if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
|
|
continue;
|
|
|
|
for (auto const &U : Curr->operands()) {
|
|
if (auto *UU = dyn_cast<User>(U))
|
|
ToVisit.push_back(UU);
|
|
}
|
|
}
|
|
|
|
// Don't hoist code containing allocas or invokes. If explicitly requested,
|
|
// allow vastart.
|
|
for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
|
|
if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
|
|
return false;
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
if (const Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::vastart) {
|
|
if (AllowVarArgs)
|
|
continue;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Build a set of blocks to extract if the input blocks are viable.
|
|
static SetVector<BasicBlock *>
|
|
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
|
|
bool AllowVarArgs) {
|
|
assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
|
|
SetVector<BasicBlock *> Result;
|
|
|
|
// Loop over the blocks, adding them to our set-vector, and aborting with an
|
|
// empty set if we encounter invalid blocks.
|
|
for (BasicBlock *BB : BBs) {
|
|
// If this block is dead, don't process it.
|
|
if (DT && !DT->isReachableFromEntry(BB))
|
|
continue;
|
|
|
|
if (!Result.insert(BB))
|
|
llvm_unreachable("Repeated basic blocks in extraction input");
|
|
if (!CodeExtractor::isBlockValidForExtraction(*BB, AllowVarArgs)) {
|
|
Result.clear();
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
|
|
E = Result.end();
|
|
I != E; ++I)
|
|
for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
|
|
PI != PE; ++PI)
|
|
assert(Result.count(*PI) &&
|
|
"No blocks in this region may have entries from outside the region"
|
|
" except for the first block!");
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
|
|
bool AggregateArgs, BlockFrequencyInfo *BFI,
|
|
BranchProbabilityInfo *BPI, bool AllowVarArgs)
|
|
: DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
|
|
BPI(BPI), AllowVarArgs(AllowVarArgs),
|
|
Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs)) {}
|
|
|
|
CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
|
|
BlockFrequencyInfo *BFI,
|
|
BranchProbabilityInfo *BPI)
|
|
: DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
|
|
BPI(BPI), AllowVarArgs(false),
|
|
Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
|
|
/* AllowVarArgs */ false)) {}
|
|
|
|
/// definedInRegion - Return true if the specified value is defined in the
|
|
/// extracted region.
|
|
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (Blocks.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// definedInCaller - Return true if the specified value is defined in the
|
|
/// function being code extracted, but not in the region being extracted.
|
|
/// These values must be passed in as live-ins to the function.
|
|
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
|
|
if (isa<Argument>(V)) return true;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (!Blocks.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
|
|
BasicBlock *CommonExitBlock = nullptr;
|
|
auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
|
|
for (auto *Succ : successors(Block)) {
|
|
// Internal edges, ok.
|
|
if (Blocks.count(Succ))
|
|
continue;
|
|
if (!CommonExitBlock) {
|
|
CommonExitBlock = Succ;
|
|
continue;
|
|
}
|
|
if (CommonExitBlock == Succ)
|
|
continue;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (any_of(Blocks, hasNonCommonExitSucc))
|
|
return nullptr;
|
|
|
|
return CommonExitBlock;
|
|
}
|
|
|
|
bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
|
|
Instruction *Addr) const {
|
|
AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
|
|
Function *Func = (*Blocks.begin())->getParent();
|
|
for (BasicBlock &BB : *Func) {
|
|
if (Blocks.count(&BB))
|
|
continue;
|
|
for (Instruction &II : BB) {
|
|
if (isa<DbgInfoIntrinsic>(II))
|
|
continue;
|
|
|
|
unsigned Opcode = II.getOpcode();
|
|
Value *MemAddr = nullptr;
|
|
switch (Opcode) {
|
|
case Instruction::Store:
|
|
case Instruction::Load: {
|
|
if (Opcode == Instruction::Store) {
|
|
StoreInst *SI = cast<StoreInst>(&II);
|
|
MemAddr = SI->getPointerOperand();
|
|
} else {
|
|
LoadInst *LI = cast<LoadInst>(&II);
|
|
MemAddr = LI->getPointerOperand();
|
|
}
|
|
// Global variable can not be aliased with locals.
|
|
if (dyn_cast<Constant>(MemAddr))
|
|
break;
|
|
Value *Base = MemAddr->stripInBoundsConstantOffsets();
|
|
if (!dyn_cast<AllocaInst>(Base) || Base == AI)
|
|
return false;
|
|
break;
|
|
}
|
|
default: {
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
|
|
if (IntrInst) {
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
IntrInst->getIntrinsicID() == Intrinsic::lifetime_end)
|
|
break;
|
|
return false;
|
|
}
|
|
// Treat all the other cases conservatively if it has side effects.
|
|
if (II.mayHaveSideEffects())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
BasicBlock *
|
|
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
|
|
BasicBlock *SinglePredFromOutlineRegion = nullptr;
|
|
assert(!Blocks.count(CommonExitBlock) &&
|
|
"Expect a block outside the region!");
|
|
for (auto *Pred : predecessors(CommonExitBlock)) {
|
|
if (!Blocks.count(Pred))
|
|
continue;
|
|
if (!SinglePredFromOutlineRegion) {
|
|
SinglePredFromOutlineRegion = Pred;
|
|
} else if (SinglePredFromOutlineRegion != Pred) {
|
|
SinglePredFromOutlineRegion = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (SinglePredFromOutlineRegion)
|
|
return SinglePredFromOutlineRegion;
|
|
|
|
#ifndef NDEBUG
|
|
auto getFirstPHI = [](BasicBlock *BB) {
|
|
BasicBlock::iterator I = BB->begin();
|
|
PHINode *FirstPhi = nullptr;
|
|
while (I != BB->end()) {
|
|
PHINode *Phi = dyn_cast<PHINode>(I);
|
|
if (!Phi)
|
|
break;
|
|
if (!FirstPhi) {
|
|
FirstPhi = Phi;
|
|
break;
|
|
}
|
|
}
|
|
return FirstPhi;
|
|
};
|
|
// If there are any phi nodes, the single pred either exists or has already
|
|
// be created before code extraction.
|
|
assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
|
|
#endif
|
|
|
|
BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
|
|
CommonExitBlock->getFirstNonPHI()->getIterator());
|
|
|
|
for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
|
|
PI != PE;) {
|
|
BasicBlock *Pred = *PI++;
|
|
if (Blocks.count(Pred))
|
|
continue;
|
|
Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
|
|
}
|
|
// Now add the old exit block to the outline region.
|
|
Blocks.insert(CommonExitBlock);
|
|
return CommonExitBlock;
|
|
}
|
|
|
|
void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
|
|
BasicBlock *&ExitBlock) const {
|
|
Function *Func = (*Blocks.begin())->getParent();
|
|
ExitBlock = getCommonExitBlock(Blocks);
|
|
|
|
for (BasicBlock &BB : *Func) {
|
|
if (Blocks.count(&BB))
|
|
continue;
|
|
for (Instruction &II : BB) {
|
|
auto *AI = dyn_cast<AllocaInst>(&II);
|
|
if (!AI)
|
|
continue;
|
|
|
|
// Find the pair of life time markers for address 'Addr' that are either
|
|
// defined inside the outline region or can legally be shrinkwrapped into
|
|
// the outline region. If there are not other untracked uses of the
|
|
// address, return the pair of markers if found; otherwise return a pair
|
|
// of nullptr.
|
|
auto GetLifeTimeMarkers =
|
|
[&](Instruction *Addr, bool &SinkLifeStart,
|
|
bool &HoistLifeEnd) -> std::pair<Instruction *, Instruction *> {
|
|
Instruction *LifeStart = nullptr, *LifeEnd = nullptr;
|
|
|
|
for (User *U : Addr->users()) {
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
|
|
if (IntrInst) {
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
|
|
// Do not handle the case where AI has multiple start markers.
|
|
if (LifeStart)
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
LifeStart = IntrInst;
|
|
}
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
if (LifeEnd)
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
LifeEnd = IntrInst;
|
|
}
|
|
continue;
|
|
}
|
|
// Find untracked uses of the address, bail.
|
|
if (!definedInRegion(Blocks, U))
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
}
|
|
|
|
if (!LifeStart || !LifeEnd)
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
|
|
SinkLifeStart = !definedInRegion(Blocks, LifeStart);
|
|
HoistLifeEnd = !definedInRegion(Blocks, LifeEnd);
|
|
// Do legality Check.
|
|
if ((SinkLifeStart || HoistLifeEnd) &&
|
|
!isLegalToShrinkwrapLifetimeMarkers(Addr))
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
|
|
// Check to see if we have a place to do hoisting, if not, bail.
|
|
if (HoistLifeEnd && !ExitBlock)
|
|
return std::make_pair<Instruction *>(nullptr, nullptr);
|
|
|
|
return std::make_pair(LifeStart, LifeEnd);
|
|
};
|
|
|
|
bool SinkLifeStart = false, HoistLifeEnd = false;
|
|
auto Markers = GetLifeTimeMarkers(AI, SinkLifeStart, HoistLifeEnd);
|
|
|
|
if (Markers.first) {
|
|
if (SinkLifeStart)
|
|
SinkCands.insert(Markers.first);
|
|
SinkCands.insert(AI);
|
|
if (HoistLifeEnd)
|
|
HoistCands.insert(Markers.second);
|
|
continue;
|
|
}
|
|
|
|
// Follow the bitcast.
|
|
Instruction *MarkerAddr = nullptr;
|
|
for (User *U : AI->users()) {
|
|
if (U->stripInBoundsConstantOffsets() == AI) {
|
|
SinkLifeStart = false;
|
|
HoistLifeEnd = false;
|
|
Instruction *Bitcast = cast<Instruction>(U);
|
|
Markers = GetLifeTimeMarkers(Bitcast, SinkLifeStart, HoistLifeEnd);
|
|
if (Markers.first) {
|
|
MarkerAddr = Bitcast;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Found unknown use of AI.
|
|
if (!definedInRegion(Blocks, U)) {
|
|
MarkerAddr = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MarkerAddr) {
|
|
if (SinkLifeStart)
|
|
SinkCands.insert(Markers.first);
|
|
if (!definedInRegion(Blocks, MarkerAddr))
|
|
SinkCands.insert(MarkerAddr);
|
|
SinkCands.insert(AI);
|
|
if (HoistLifeEnd)
|
|
HoistCands.insert(Markers.second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
|
|
const ValueSet &SinkCands) const {
|
|
for (BasicBlock *BB : Blocks) {
|
|
// If a used value is defined outside the region, it's an input. If an
|
|
// instruction is used outside the region, it's an output.
|
|
for (Instruction &II : *BB) {
|
|
for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
|
|
++OI) {
|
|
Value *V = *OI;
|
|
if (!SinkCands.count(V) && definedInCaller(Blocks, V))
|
|
Inputs.insert(V);
|
|
}
|
|
|
|
for (User *U : II.users())
|
|
if (!definedInRegion(Blocks, U)) {
|
|
Outputs.insert(&II);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
|
|
/// region, we need to split the entry block of the region so that the PHI node
|
|
/// is easier to deal with.
|
|
void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
|
|
unsigned NumPredsFromRegion = 0;
|
|
unsigned NumPredsOutsideRegion = 0;
|
|
|
|
if (Header != &Header->getParent()->getEntryBlock()) {
|
|
PHINode *PN = dyn_cast<PHINode>(Header->begin());
|
|
if (!PN) return; // No PHI nodes.
|
|
|
|
// If the header node contains any PHI nodes, check to see if there is more
|
|
// than one entry from outside the region. If so, we need to sever the
|
|
// header block into two.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (Blocks.count(PN->getIncomingBlock(i)))
|
|
++NumPredsFromRegion;
|
|
else
|
|
++NumPredsOutsideRegion;
|
|
|
|
// If there is one (or fewer) predecessor from outside the region, we don't
|
|
// need to do anything special.
|
|
if (NumPredsOutsideRegion <= 1) return;
|
|
}
|
|
|
|
// Otherwise, we need to split the header block into two pieces: one
|
|
// containing PHI nodes merging values from outside of the region, and a
|
|
// second that contains all of the code for the block and merges back any
|
|
// incoming values from inside of the region.
|
|
BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
|
|
|
|
// We only want to code extract the second block now, and it becomes the new
|
|
// header of the region.
|
|
BasicBlock *OldPred = Header;
|
|
Blocks.remove(OldPred);
|
|
Blocks.insert(NewBB);
|
|
Header = NewBB;
|
|
|
|
// Okay, now we need to adjust the PHI nodes and any branches from within the
|
|
// region to go to the new header block instead of the old header block.
|
|
if (NumPredsFromRegion) {
|
|
PHINode *PN = cast<PHINode>(OldPred->begin());
|
|
// Loop over all of the predecessors of OldPred that are in the region,
|
|
// changing them to branch to NewBB instead.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (Blocks.count(PN->getIncomingBlock(i))) {
|
|
TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
|
|
TI->replaceUsesOfWith(OldPred, NewBB);
|
|
}
|
|
|
|
// Okay, everything within the region is now branching to the right block, we
|
|
// just have to update the PHI nodes now, inserting PHI nodes into NewBB.
|
|
BasicBlock::iterator AfterPHIs;
|
|
for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
|
|
PHINode *PN = cast<PHINode>(AfterPHIs);
|
|
// Create a new PHI node in the new region, which has an incoming value
|
|
// from OldPred of PN.
|
|
PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
|
|
PN->getName() + ".ce", &NewBB->front());
|
|
PN->replaceAllUsesWith(NewPN);
|
|
NewPN->addIncoming(PN, OldPred);
|
|
|
|
// Loop over all of the incoming value in PN, moving them to NewPN if they
|
|
// are from the extracted region.
|
|
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
|
|
if (Blocks.count(PN->getIncomingBlock(i))) {
|
|
NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
|
|
PN->removeIncomingValue(i);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::splitReturnBlocks() {
|
|
for (BasicBlock *Block : Blocks)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
|
|
BasicBlock *New =
|
|
Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
|
|
if (DT) {
|
|
// Old dominates New. New node dominates all other nodes dominated
|
|
// by Old.
|
|
DomTreeNode *OldNode = DT->getNode(Block);
|
|
SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
|
|
OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, Block);
|
|
|
|
for (DomTreeNode *I : Children)
|
|
DT->changeImmediateDominator(I, NewNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// constructFunction - make a function based on inputs and outputs, as follows:
|
|
/// f(in0, ..., inN, out0, ..., outN)
|
|
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
|
|
const ValueSet &outputs,
|
|
BasicBlock *header,
|
|
BasicBlock *newRootNode,
|
|
BasicBlock *newHeader,
|
|
Function *oldFunction,
|
|
Module *M) {
|
|
DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
|
|
DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
|
|
|
|
// This function returns unsigned, outputs will go back by reference.
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: RetTy = Type::getVoidTy(header->getContext()); break;
|
|
case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
|
|
default: RetTy = Type::getInt16Ty(header->getContext()); break;
|
|
}
|
|
|
|
std::vector<Type *> paramTy;
|
|
|
|
// Add the types of the input values to the function's argument list
|
|
for (Value *value : inputs) {
|
|
DEBUG(dbgs() << "value used in func: " << *value << "\n");
|
|
paramTy.push_back(value->getType());
|
|
}
|
|
|
|
// Add the types of the output values to the function's argument list.
|
|
for (Value *output : outputs) {
|
|
DEBUG(dbgs() << "instr used in func: " << *output << "\n");
|
|
if (AggregateArgs)
|
|
paramTy.push_back(output->getType());
|
|
else
|
|
paramTy.push_back(PointerType::getUnqual(output->getType()));
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "Function type: " << *RetTy << " f(";
|
|
for (Type *i : paramTy)
|
|
dbgs() << *i << ", ";
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
StructType *StructTy;
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
StructTy = StructType::get(M->getContext(), paramTy);
|
|
paramTy.clear();
|
|
paramTy.push_back(PointerType::getUnqual(StructTy));
|
|
}
|
|
FunctionType *funcType =
|
|
FunctionType::get(RetTy, paramTy,
|
|
AllowVarArgs && oldFunction->isVarArg());
|
|
|
|
// Create the new function
|
|
Function *newFunction = Function::Create(funcType,
|
|
GlobalValue::InternalLinkage,
|
|
oldFunction->getName() + "_" +
|
|
header->getName(), M);
|
|
// If the old function is no-throw, so is the new one.
|
|
if (oldFunction->doesNotThrow())
|
|
newFunction->setDoesNotThrow();
|
|
|
|
// Inherit the uwtable attribute if we need to.
|
|
if (oldFunction->hasUWTable())
|
|
newFunction->setHasUWTable();
|
|
|
|
// Inherit all of the target dependent attributes.
|
|
// (e.g. If the extracted region contains a call to an x86.sse
|
|
// instruction we need to make sure that the extracted region has the
|
|
// "target-features" attribute allowing it to be lowered.
|
|
// FIXME: This should be changed to check to see if a specific
|
|
// attribute can not be inherited.
|
|
AttrBuilder AB(oldFunction->getAttributes().getFnAttributes());
|
|
for (const auto &Attr : AB.td_attrs())
|
|
newFunction->addFnAttr(Attr.first, Attr.second);
|
|
|
|
newFunction->getBasicBlockList().push_back(newRootNode);
|
|
|
|
// Create an iterator to name all of the arguments we inserted.
|
|
Function::arg_iterator AI = newFunction->arg_begin();
|
|
|
|
// Rewrite all users of the inputs in the extracted region to use the
|
|
// arguments (or appropriate addressing into struct) instead.
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *RewriteVal;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
|
|
TerminatorInst *TI = newFunction->begin()->getTerminator();
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
|
|
RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
|
|
} else
|
|
RewriteVal = &*AI++;
|
|
|
|
std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
|
|
for (User *use : Users)
|
|
if (Instruction *inst = dyn_cast<Instruction>(use))
|
|
if (Blocks.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(inputs[i], RewriteVal);
|
|
}
|
|
|
|
// Set names for input and output arguments.
|
|
if (!AggregateArgs) {
|
|
AI = newFunction->arg_begin();
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(inputs[i]->getName());
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(outputs[i]->getName()+".out");
|
|
}
|
|
|
|
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
|
|
// within the new function. This must be done before we lose track of which
|
|
// blocks were originally in the code region.
|
|
std::vector<User *> Users(header->user_begin(), header->user_end());
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i)
|
|
// The BasicBlock which contains the branch is not in the region
|
|
// modify the branch target to a new block
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
|
|
if (!Blocks.count(TI->getParent()) &&
|
|
TI->getParent()->getParent() == oldFunction)
|
|
TI->replaceUsesOfWith(header, newHeader);
|
|
|
|
return newFunction;
|
|
}
|
|
|
|
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
|
|
/// the call instruction, splitting any PHI nodes in the header block as
|
|
/// necessary.
|
|
void CodeExtractor::
|
|
emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
|
|
ValueSet &inputs, ValueSet &outputs) {
|
|
// Emit a call to the new function, passing in: *pointer to struct (if
|
|
// aggregating parameters), or plan inputs and allocated memory for outputs
|
|
std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
|
|
|
|
Module *M = newFunction->getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
const DataLayout &DL = M->getDataLayout();
|
|
|
|
// Add inputs as params, or to be filled into the struct
|
|
for (Value *input : inputs)
|
|
if (AggregateArgs)
|
|
StructValues.push_back(input);
|
|
else
|
|
params.push_back(input);
|
|
|
|
// Create allocas for the outputs
|
|
for (Value *output : outputs) {
|
|
if (AggregateArgs) {
|
|
StructValues.push_back(output);
|
|
} else {
|
|
AllocaInst *alloca =
|
|
new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
|
|
nullptr, output->getName() + ".loc",
|
|
&codeReplacer->getParent()->front().front());
|
|
ReloadOutputs.push_back(alloca);
|
|
params.push_back(alloca);
|
|
}
|
|
}
|
|
|
|
StructType *StructArgTy = nullptr;
|
|
AllocaInst *Struct = nullptr;
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
std::vector<Type *> ArgTypes;
|
|
for (ValueSet::iterator v = StructValues.begin(),
|
|
ve = StructValues.end(); v != ve; ++v)
|
|
ArgTypes.push_back((*v)->getType());
|
|
|
|
// Allocate a struct at the beginning of this function
|
|
StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
|
|
Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
|
|
"structArg",
|
|
&codeReplacer->getParent()->front().front());
|
|
params.push_back(Struct);
|
|
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
StoreInst *SI = new StoreInst(StructValues[i], GEP);
|
|
codeReplacer->getInstList().push_back(SI);
|
|
}
|
|
}
|
|
|
|
// Emit the call to the function
|
|
CallInst *call = CallInst::Create(newFunction, params,
|
|
NumExitBlocks > 1 ? "targetBlock" : "");
|
|
// Add debug location to the new call, if the original function has debug
|
|
// info. In that case, the terminator of the entry block of the extracted
|
|
// function contains the first debug location of the extracted function,
|
|
// set in extractCodeRegion.
|
|
if (codeReplacer->getParent()->getSubprogram()) {
|
|
if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
|
|
call->setDebugLoc(DL);
|
|
}
|
|
codeReplacer->getInstList().push_back(call);
|
|
|
|
Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
|
|
unsigned FirstOut = inputs.size();
|
|
if (!AggregateArgs)
|
|
std::advance(OutputArgBegin, inputs.size());
|
|
|
|
// Reload the outputs passed in by reference.
|
|
Function::arg_iterator OAI = OutputArgBegin;
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
|
|
Value *Output = nullptr;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
Output = GEP;
|
|
} else {
|
|
Output = ReloadOutputs[i];
|
|
}
|
|
LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
|
|
Reloads.push_back(load);
|
|
codeReplacer->getInstList().push_back(load);
|
|
std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
|
|
for (unsigned u = 0, e = Users.size(); u != e; ++u) {
|
|
Instruction *inst = cast<Instruction>(Users[u]);
|
|
if (!Blocks.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(outputs[i], load);
|
|
}
|
|
|
|
// Store to argument right after the definition of output value.
|
|
auto *OutI = dyn_cast<Instruction>(outputs[i]);
|
|
if (!OutI)
|
|
continue;
|
|
// Find proper insertion point.
|
|
Instruction *InsertPt = OutI->getNextNode();
|
|
// Let's assume that there is no other guy interleave non-PHI in PHIs.
|
|
if (isa<PHINode>(InsertPt))
|
|
InsertPt = InsertPt->getParent()->getFirstNonPHI();
|
|
|
|
assert(OAI != newFunction->arg_end() &&
|
|
"Number of output arguments should match "
|
|
"the amount of defined values");
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(), InsertPt);
|
|
new StoreInst(outputs[i], GEP, InsertPt);
|
|
// Since there should be only one struct argument aggregating
|
|
// all the output values, we shouldn't increment OAI, which always
|
|
// points to the struct argument, in this case.
|
|
} else {
|
|
new StoreInst(outputs[i], &*OAI, InsertPt);
|
|
++OAI;
|
|
}
|
|
}
|
|
|
|
// Now we can emit a switch statement using the call as a value.
|
|
SwitchInst *TheSwitch =
|
|
SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
|
|
codeReplacer, 0, codeReplacer);
|
|
|
|
// Since there may be multiple exits from the original region, make the new
|
|
// function return an unsigned, switch on that number. This loop iterates
|
|
// over all of the blocks in the extracted region, updating any terminator
|
|
// instructions in the to-be-extracted region that branch to blocks that are
|
|
// not in the region to be extracted.
|
|
std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
|
|
|
|
unsigned switchVal = 0;
|
|
for (BasicBlock *Block : Blocks) {
|
|
TerminatorInst *TI = Block->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!Blocks.count(TI->getSuccessor(i))) {
|
|
BasicBlock *OldTarget = TI->getSuccessor(i);
|
|
// add a new basic block which returns the appropriate value
|
|
BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
|
|
if (!NewTarget) {
|
|
// If we don't already have an exit stub for this non-extracted
|
|
// destination, create one now!
|
|
NewTarget = BasicBlock::Create(Context,
|
|
OldTarget->getName() + ".exitStub",
|
|
newFunction);
|
|
unsigned SuccNum = switchVal++;
|
|
|
|
Value *brVal = nullptr;
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: break; // No value needed.
|
|
case 2: // Conditional branch, return a bool
|
|
brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
|
|
break;
|
|
default:
|
|
brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
|
|
break;
|
|
}
|
|
|
|
ReturnInst::Create(Context, brVal, NewTarget);
|
|
|
|
// Update the switch instruction.
|
|
TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
|
|
SuccNum),
|
|
OldTarget);
|
|
}
|
|
|
|
// rewrite the original branch instruction with this new target
|
|
TI->setSuccessor(i, NewTarget);
|
|
}
|
|
}
|
|
|
|
// Now that we've done the deed, simplify the switch instruction.
|
|
Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
// There are no successors (the block containing the switch itself), which
|
|
// means that previously this was the last part of the function, and hence
|
|
// this should be rewritten as a `ret'
|
|
|
|
// Check if the function should return a value
|
|
if (OldFnRetTy->isVoidTy()) {
|
|
ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
|
|
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
|
|
// return what we have
|
|
ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
|
|
} else {
|
|
// Otherwise we must have code extracted an unwind or something, just
|
|
// return whatever we want.
|
|
ReturnInst::Create(Context,
|
|
Constant::getNullValue(OldFnRetTy), TheSwitch);
|
|
}
|
|
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 1:
|
|
// Only a single destination, change the switch into an unconditional
|
|
// branch.
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 2:
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
|
|
call, TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
default:
|
|
// Otherwise, make the default destination of the switch instruction be one
|
|
// of the other successors.
|
|
TheSwitch->setCondition(call);
|
|
TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
|
|
// Remove redundant case
|
|
TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
|
|
Function *oldFunc = (*Blocks.begin())->getParent();
|
|
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
|
|
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
|
|
|
|
for (BasicBlock *Block : Blocks) {
|
|
// Delete the basic block from the old function, and the list of blocks
|
|
oldBlocks.remove(Block);
|
|
|
|
// Insert this basic block into the new function
|
|
newBlocks.push_back(Block);
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::calculateNewCallTerminatorWeights(
|
|
BasicBlock *CodeReplacer,
|
|
DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
|
|
BranchProbabilityInfo *BPI) {
|
|
using Distribution = BlockFrequencyInfoImplBase::Distribution;
|
|
using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
|
|
|
|
// Update the branch weights for the exit block.
|
|
TerminatorInst *TI = CodeReplacer->getTerminator();
|
|
SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
|
|
|
|
// Block Frequency distribution with dummy node.
|
|
Distribution BranchDist;
|
|
|
|
// Add each of the frequencies of the successors.
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
|
|
BlockNode ExitNode(i);
|
|
uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
|
|
if (ExitFreq != 0)
|
|
BranchDist.addExit(ExitNode, ExitFreq);
|
|
else
|
|
BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
|
|
}
|
|
|
|
// Check for no total weight.
|
|
if (BranchDist.Total == 0)
|
|
return;
|
|
|
|
// Normalize the distribution so that they can fit in unsigned.
|
|
BranchDist.normalize();
|
|
|
|
// Create normalized branch weights and set the metadata.
|
|
for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
|
|
const auto &Weight = BranchDist.Weights[I];
|
|
|
|
// Get the weight and update the current BFI.
|
|
BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
|
|
BranchProbability BP(Weight.Amount, BranchDist.Total);
|
|
BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
|
|
}
|
|
TI->setMetadata(
|
|
LLVMContext::MD_prof,
|
|
MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
|
|
}
|
|
|
|
Function *CodeExtractor::extractCodeRegion() {
|
|
if (!isEligible())
|
|
return nullptr;
|
|
|
|
// Assumption: this is a single-entry code region, and the header is the first
|
|
// block in the region.
|
|
BasicBlock *header = *Blocks.begin();
|
|
Function *oldFunction = header->getParent();
|
|
|
|
// For functions with varargs, check that varargs handling is only done in the
|
|
// outlined function, i.e vastart and vaend are only used in outlined blocks.
|
|
if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
|
|
auto containsVarArgIntrinsic = [](Instruction &I) {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (const Function *F = CI->getCalledFunction())
|
|
return F->getIntrinsicID() == Intrinsic::vastart ||
|
|
F->getIntrinsicID() == Intrinsic::vaend;
|
|
return false;
|
|
};
|
|
|
|
for (auto &BB : *oldFunction) {
|
|
if (Blocks.count(&BB))
|
|
continue;
|
|
if (llvm::any_of(BB, containsVarArgIntrinsic))
|
|
return nullptr;
|
|
}
|
|
}
|
|
ValueSet inputs, outputs, SinkingCands, HoistingCands;
|
|
BasicBlock *CommonExit = nullptr;
|
|
|
|
// Calculate the entry frequency of the new function before we change the root
|
|
// block.
|
|
BlockFrequency EntryFreq;
|
|
if (BFI) {
|
|
assert(BPI && "Both BPI and BFI are required to preserve profile info");
|
|
for (BasicBlock *Pred : predecessors(header)) {
|
|
if (Blocks.count(Pred))
|
|
continue;
|
|
EntryFreq +=
|
|
BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
|
|
}
|
|
}
|
|
|
|
// If we have to split PHI nodes or the entry block, do so now.
|
|
severSplitPHINodes(header);
|
|
|
|
// If we have any return instructions in the region, split those blocks so
|
|
// that the return is not in the region.
|
|
splitReturnBlocks();
|
|
|
|
// This takes place of the original loop
|
|
BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
|
|
"codeRepl", oldFunction,
|
|
header);
|
|
|
|
// The new function needs a root node because other nodes can branch to the
|
|
// head of the region, but the entry node of a function cannot have preds.
|
|
BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
|
|
"newFuncRoot");
|
|
auto *BranchI = BranchInst::Create(header);
|
|
// If the original function has debug info, we have to add a debug location
|
|
// to the new branch instruction from the artificial entry block.
|
|
// We use the debug location of the first instruction in the extracted
|
|
// blocks, as there is no other equivalent line in the source code.
|
|
if (oldFunction->getSubprogram()) {
|
|
any_of(Blocks, [&BranchI](const BasicBlock *BB) {
|
|
return any_of(*BB, [&BranchI](const Instruction &I) {
|
|
if (!I.getDebugLoc())
|
|
return false;
|
|
BranchI->setDebugLoc(I.getDebugLoc());
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
newFuncRoot->getInstList().push_back(BranchI);
|
|
|
|
findAllocas(SinkingCands, HoistingCands, CommonExit);
|
|
assert(HoistingCands.empty() || CommonExit);
|
|
|
|
// Find inputs to, outputs from the code region.
|
|
findInputsOutputs(inputs, outputs, SinkingCands);
|
|
|
|
// Now sink all instructions which only have non-phi uses inside the region
|
|
for (auto *II : SinkingCands)
|
|
cast<Instruction>(II)->moveBefore(*newFuncRoot,
|
|
newFuncRoot->getFirstInsertionPt());
|
|
|
|
if (!HoistingCands.empty()) {
|
|
auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
|
|
Instruction *TI = HoistToBlock->getTerminator();
|
|
for (auto *II : HoistingCands)
|
|
cast<Instruction>(II)->moveBefore(TI);
|
|
}
|
|
|
|
// Calculate the exit blocks for the extracted region and the total exit
|
|
// weights for each of those blocks.
|
|
DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
|
|
SmallPtrSet<BasicBlock *, 1> ExitBlocks;
|
|
for (BasicBlock *Block : Blocks) {
|
|
for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
|
|
++SI) {
|
|
if (!Blocks.count(*SI)) {
|
|
// Update the branch weight for this successor.
|
|
if (BFI) {
|
|
BlockFrequency &BF = ExitWeights[*SI];
|
|
BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
|
|
}
|
|
ExitBlocks.insert(*SI);
|
|
}
|
|
}
|
|
}
|
|
NumExitBlocks = ExitBlocks.size();
|
|
|
|
// Construct new function based on inputs/outputs & add allocas for all defs.
|
|
Function *newFunction = constructFunction(inputs, outputs, header,
|
|
newFuncRoot,
|
|
codeReplacer, oldFunction,
|
|
oldFunction->getParent());
|
|
|
|
// Update the entry count of the function.
|
|
if (BFI) {
|
|
Optional<uint64_t> EntryCount =
|
|
BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
|
|
if (EntryCount.hasValue())
|
|
newFunction->setEntryCount(EntryCount.getValue());
|
|
BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
|
|
}
|
|
|
|
emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
|
|
|
|
moveCodeToFunction(newFunction);
|
|
|
|
// Update the branch weights for the exit block.
|
|
if (BFI && NumExitBlocks > 1)
|
|
calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
|
|
|
|
// Loop over all of the PHI nodes in the header block, and change any
|
|
// references to the old incoming edge to be the new incoming edge.
|
|
for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!Blocks.count(PN->getIncomingBlock(i)))
|
|
PN->setIncomingBlock(i, newFuncRoot);
|
|
}
|
|
|
|
// Look at all successors of the codeReplacer block. If any of these blocks
|
|
// had PHI nodes in them, we need to update the "from" block to be the code
|
|
// replacer, not the original block in the extracted region.
|
|
std::vector<BasicBlock *> Succs(succ_begin(codeReplacer),
|
|
succ_end(codeReplacer));
|
|
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
|
|
for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
std::set<BasicBlock*> ProcessedPreds;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (Blocks.count(PN->getIncomingBlock(i))) {
|
|
if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
|
|
PN->setIncomingBlock(i, codeReplacer);
|
|
else {
|
|
// There were multiple entries in the PHI for this block, now there
|
|
// is only one, so remove the duplicated entries.
|
|
PN->removeIncomingValue(i, false);
|
|
--i; --e;
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(if (verifyFunction(*newFunction))
|
|
report_fatal_error("verifyFunction failed!"));
|
|
return newFunction;
|
|
}
|