llvm-capstone/clang-tools-extra/clang-doc/Serialize.cpp

667 lines
26 KiB
C++

//===-- Serialize.cpp - ClangDoc Serializer ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Serialize.h"
#include "BitcodeWriter.h"
#include "clang/AST/Comment.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/SHA1.h"
using clang::comments::FullComment;
namespace clang {
namespace doc {
namespace serialize {
SymbolID hashUSR(llvm::StringRef USR) {
return llvm::SHA1::hash(arrayRefFromStringRef(USR));
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsAnonymousNamespace);
// A function to extract the appropriate relative path for a given info's
// documentation. The path returned is a composite of the parent namespaces.
//
// Example: Given the below, the directory path for class C info will be
// <root>/A/B
//
// namespace A {
// namespace B {
//
// class C {};
//
// }
// }
llvm::SmallString<128>
getInfoRelativePath(const llvm::SmallVectorImpl<doc::Reference> &Namespaces) {
llvm::SmallString<128> Path;
for (auto R = Namespaces.rbegin(), E = Namespaces.rend(); R != E; ++R)
llvm::sys::path::append(Path, R->Name);
return Path;
}
llvm::SmallString<128> getInfoRelativePath(const Decl *D) {
llvm::SmallVector<Reference, 4> Namespaces;
// The third arg in populateParentNamespaces is a boolean passed by reference,
// its value is not relevant in here so it's not used anywhere besides the
// function call
bool B = true;
populateParentNamespaces(Namespaces, D, B);
return getInfoRelativePath(Namespaces);
}
class ClangDocCommentVisitor
: public ConstCommentVisitor<ClangDocCommentVisitor> {
public:
ClangDocCommentVisitor(CommentInfo &CI) : CurrentCI(CI) {}
void parseComment(const comments::Comment *C);
void visitTextComment(const TextComment *C);
void visitInlineCommandComment(const InlineCommandComment *C);
void visitHTMLStartTagComment(const HTMLStartTagComment *C);
void visitHTMLEndTagComment(const HTMLEndTagComment *C);
void visitBlockCommandComment(const BlockCommandComment *C);
void visitParamCommandComment(const ParamCommandComment *C);
void visitTParamCommandComment(const TParamCommandComment *C);
void visitVerbatimBlockComment(const VerbatimBlockComment *C);
void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
void visitVerbatimLineComment(const VerbatimLineComment *C);
private:
std::string getCommandName(unsigned CommandID) const;
bool isWhitespaceOnly(StringRef S) const;
CommentInfo &CurrentCI;
};
void ClangDocCommentVisitor::parseComment(const comments::Comment *C) {
CurrentCI.Kind = C->getCommentKindName();
ConstCommentVisitor<ClangDocCommentVisitor>::visit(C);
for (comments::Comment *Child :
llvm::make_range(C->child_begin(), C->child_end())) {
CurrentCI.Children.emplace_back(std::make_unique<CommentInfo>());
ClangDocCommentVisitor Visitor(*CurrentCI.Children.back());
Visitor.parseComment(Child);
}
}
void ClangDocCommentVisitor::visitTextComment(const TextComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitInlineCommandComment(
const InlineCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I != E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitHTMLStartTagComment(
const HTMLStartTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = C->isSelfClosing();
for (unsigned I = 0, E = C->getNumAttrs(); I < E; ++I) {
const HTMLStartTagComment::Attribute &Attr = C->getAttr(I);
CurrentCI.AttrKeys.push_back(Attr.Name);
CurrentCI.AttrValues.push_back(Attr.Value);
}
}
void ClangDocCommentVisitor::visitHTMLEndTagComment(
const HTMLEndTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = true;
}
void ClangDocCommentVisitor::visitBlockCommandComment(
const BlockCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I < E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitParamCommandComment(
const ParamCommandComment *C) {
CurrentCI.Direction =
ParamCommandComment::getDirectionAsString(C->getDirection());
CurrentCI.Explicit = C->isDirectionExplicit();
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitTParamCommandComment(
const TParamCommandComment *C) {
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitVerbatimBlockComment(
const VerbatimBlockComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
CurrentCI.CloseName = C->getCloseName();
}
void ClangDocCommentVisitor::visitVerbatimBlockLineComment(
const VerbatimBlockLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitVerbatimLineComment(
const VerbatimLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
bool ClangDocCommentVisitor::isWhitespaceOnly(llvm::StringRef S) const {
return std::all_of(S.begin(), S.end(), isspace);
}
std::string ClangDocCommentVisitor::getCommandName(unsigned CommandID) const {
const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
// TODO: Add parsing for \file command.
return "<not a builtin command>";
}
// Serializing functions.
template <typename T> static std::string serialize(T &I) {
SmallString<2048> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ClangDocBitcodeWriter Writer(Stream);
Writer.emitBlock(I);
return Buffer.str().str();
}
std::string serialize(std::unique_ptr<Info> &I) {
switch (I->IT) {
case InfoType::IT_namespace:
return serialize(*static_cast<NamespaceInfo *>(I.get()));
case InfoType::IT_record:
return serialize(*static_cast<RecordInfo *>(I.get()));
case InfoType::IT_enum:
return serialize(*static_cast<EnumInfo *>(I.get()));
case InfoType::IT_function:
return serialize(*static_cast<FunctionInfo *>(I.get()));
default:
return "";
}
}
static void parseFullComment(const FullComment *C, CommentInfo &CI) {
ClangDocCommentVisitor Visitor(CI);
Visitor.parseComment(C);
}
static SymbolID getUSRForDecl(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return SymbolID();
return hashUSR(USR);
}
static RecordDecl *getDeclForType(const QualType &T) {
if (const RecordDecl *D = T->getAsRecordDecl())
return D->getDefinition();
return nullptr;
}
static bool isPublic(const clang::AccessSpecifier AS,
const clang::Linkage Link) {
if (AS == clang::AccessSpecifier::AS_private)
return false;
else if ((Link == clang::Linkage::ModuleLinkage) ||
(Link == clang::Linkage::ExternalLinkage))
return true;
return false; // otherwise, linkage is some form of internal linkage
}
static bool shouldSerializeInfo(bool PublicOnly, bool IsInAnonymousNamespace,
const NamedDecl *D) {
bool IsAnonymousNamespace = false;
if (const auto *N = dyn_cast<NamespaceDecl>(D))
IsAnonymousNamespace = N->isAnonymousNamespace();
return !PublicOnly ||
(!IsInAnonymousNamespace && !IsAnonymousNamespace &&
isPublic(D->getAccessUnsafe(), D->getLinkageInternal()));
}
// There are two uses for this function.
// 1) Getting the resulting mode of inheritance of a record.
// Example: class A {}; class B : private A {}; class C : public B {};
// It's explicit that C is publicly inherited from C and B is privately
// inherited from A. It's not explicit but C is also privately inherited from
// A. This is the AS that this function calculates. FirstAS is the
// inheritance mode of `class C : B` and SecondAS is the inheritance mode of
// `class B : A`.
// 2) Getting the inheritance mode of an inherited attribute / method.
// Example : class A { public: int M; }; class B : private A {};
// Class B is inherited from class A, which has a public attribute. This
// attribute is now part of the derived class B but it's not public. This
// will be private because the inheritance is private. This is the AS that
// this function calculates. FirstAS is the inheritance mode and SecondAS is
// the AS of the attribute / method.
static AccessSpecifier getFinalAccessSpecifier(AccessSpecifier FirstAS,
AccessSpecifier SecondAS) {
if (FirstAS == AccessSpecifier::AS_none ||
SecondAS == AccessSpecifier::AS_none)
return AccessSpecifier::AS_none;
if (FirstAS == AccessSpecifier::AS_private ||
SecondAS == AccessSpecifier::AS_private)
return AccessSpecifier::AS_private;
if (FirstAS == AccessSpecifier::AS_protected ||
SecondAS == AccessSpecifier::AS_protected)
return AccessSpecifier::AS_protected;
return AccessSpecifier::AS_public;
}
// The Access parameter is only provided when parsing the field of an inherited
// record, the access specification of the field depends on the inheritance mode
static void parseFields(RecordInfo &I, const RecordDecl *D, bool PublicOnly,
AccessSpecifier Access = AccessSpecifier::AS_public) {
for (const FieldDecl *F : D->fields()) {
if (!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, F))
continue;
if (const auto *T = getDeclForType(F->getTypeSourceInfo()->getType())) {
// Use getAccessUnsafe so that we just get the default AS_none if it's not
// valid, as opposed to an assert.
if (const auto *N = dyn_cast<EnumDecl>(T)) {
I.Members.emplace_back(
getUSRForDecl(T), N->getNameAsString(), InfoType::IT_enum,
getInfoRelativePath(N), F->getNameAsString(),
getFinalAccessSpecifier(Access, N->getAccessUnsafe()));
continue;
} else if (const auto *N = dyn_cast<RecordDecl>(T)) {
I.Members.emplace_back(
getUSRForDecl(T), N->getNameAsString(), InfoType::IT_record,
getInfoRelativePath(N), F->getNameAsString(),
getFinalAccessSpecifier(Access, N->getAccessUnsafe()));
continue;
}
}
I.Members.emplace_back(
F->getTypeSourceInfo()->getType().getAsString(), F->getNameAsString(),
getFinalAccessSpecifier(Access, F->getAccessUnsafe()));
}
}
static void parseEnumerators(EnumInfo &I, const EnumDecl *D) {
for (const EnumConstantDecl *E : D->enumerators())
I.Members.emplace_back(E->getNameAsString());
}
static void parseParameters(FunctionInfo &I, const FunctionDecl *D) {
for (const ParmVarDecl *P : D->parameters()) {
if (const auto *T = getDeclForType(P->getOriginalType())) {
if (const auto *N = dyn_cast<EnumDecl>(T)) {
I.Params.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_enum, getInfoRelativePath(N),
P->getNameAsString());
continue;
} else if (const auto *N = dyn_cast<RecordDecl>(T)) {
I.Params.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_record, getInfoRelativePath(N),
P->getNameAsString());
continue;
}
}
I.Params.emplace_back(P->getOriginalType().getAsString(),
P->getNameAsString());
}
}
// TODO: Remove the serialization of Parents and VirtualParents, this
// information is also extracted in the other definition of parseBases.
static void parseBases(RecordInfo &I, const CXXRecordDecl *D) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (B.isVirtual())
continue;
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
I.Parents.emplace_back(getUSRForDecl(D), B.getType().getAsString(),
InfoType::IT_record);
} else if (const RecordDecl *P = getDeclForType(B.getType()))
I.Parents.emplace_back(getUSRForDecl(P), P->getNameAsString(),
InfoType::IT_record, getInfoRelativePath(P));
else
I.Parents.emplace_back(B.getType().getAsString());
}
for (const CXXBaseSpecifier &B : D->vbases()) {
if (const auto *P = getDeclForType(B.getType()))
I.VirtualParents.emplace_back(getUSRForDecl(P), P->getNameAsString(),
InfoType::IT_record,
getInfoRelativePath(P));
else
I.VirtualParents.emplace_back(B.getType().getAsString());
}
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsInAnonymousNamespace) {
const auto *DC = dyn_cast<DeclContext>(D);
while ((DC = DC->getParent())) {
if (const auto *N = dyn_cast<NamespaceDecl>(DC)) {
std::string Namespace;
if (N->isAnonymousNamespace()) {
Namespace = "@nonymous_namespace";
IsInAnonymousNamespace = true;
} else
Namespace = N->getNameAsString();
Namespaces.emplace_back(getUSRForDecl(N), Namespace,
InfoType::IT_namespace);
} else if (const auto *N = dyn_cast<RecordDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_record);
else if (const auto *N = dyn_cast<FunctionDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_function);
else if (const auto *N = dyn_cast<EnumDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_enum);
}
// The global namespace should be added to the list of namespaces if the decl
// corresponds to a Record and if it doesn't have any namespace (because this
// means it's in the global namespace). Also if its outermost namespace is a
// record because that record matches the previous condition mentioned.
if ((Namespaces.empty() && dyn_cast<RecordDecl>(D)) ||
(!Namespaces.empty() && Namespaces.back().RefType == InfoType::IT_record))
Namespaces.emplace_back(SymbolID(), "GlobalNamespace",
InfoType::IT_namespace);
}
template <typename T>
static void populateInfo(Info &I, const T *D, const FullComment *C,
bool &IsInAnonymousNamespace) {
I.USR = getUSRForDecl(D);
I.Name = D->getNameAsString();
populateParentNamespaces(I.Namespace, D, IsInAnonymousNamespace);
if (C) {
I.Description.emplace_back();
parseFullComment(C, I.Description.back());
}
}
template <typename T>
static void populateSymbolInfo(SymbolInfo &I, const T *D, const FullComment *C,
int LineNumber, StringRef Filename,
bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateInfo(I, D, C, IsInAnonymousNamespace);
if (D->isThisDeclarationADefinition())
I.DefLoc.emplace(LineNumber, Filename, IsFileInRootDir);
else
I.Loc.emplace_back(LineNumber, Filename, IsFileInRootDir);
}
static void populateFunctionInfo(FunctionInfo &I, const FunctionDecl *D,
const FullComment *FC, int LineNumber,
StringRef Filename, bool IsFileInRootDir,
bool &IsInAnonymousNamespace) {
populateSymbolInfo(I, D, FC, LineNumber, Filename, IsFileInRootDir,
IsInAnonymousNamespace);
if (const auto *T = getDeclForType(D->getReturnType())) {
if (dyn_cast<EnumDecl>(T))
I.ReturnType = TypeInfo(getUSRForDecl(T), T->getNameAsString(),
InfoType::IT_enum, getInfoRelativePath(T));
else if (dyn_cast<RecordDecl>(T))
I.ReturnType = TypeInfo(getUSRForDecl(T), T->getNameAsString(),
InfoType::IT_record, getInfoRelativePath(T));
} else {
I.ReturnType = TypeInfo(D->getReturnType().getAsString());
}
parseParameters(I, D);
}
static void
parseBases(RecordInfo &I, const CXXRecordDecl *D, bool IsFileInRootDir,
bool PublicOnly, bool IsParent,
AccessSpecifier ParentAccess = AccessSpecifier::AS_public) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (const RecordType *Ty = B.getType()->getAs<RecordType>()) {
if (const CXXRecordDecl *Base =
cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition())) {
// Initialized without USR and name, this will be set in the following
// if-else stmt.
BaseRecordInfo BI(
{}, "", getInfoRelativePath(Base), B.isVirtual(),
getFinalAccessSpecifier(ParentAccess, B.getAccessSpecifier()),
IsParent);
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
BI.USR = getUSRForDecl(D);
BI.Name = B.getType().getAsString();
} else {
BI.USR = getUSRForDecl(Base);
BI.Name = Base->getNameAsString();
}
parseFields(BI, Base, PublicOnly, BI.Access);
for (const auto &Decl : Base->decls())
if (const auto *MD = dyn_cast<CXXMethodDecl>(Decl)) {
// Don't serialize private methods
if (MD->getAccessUnsafe() == AccessSpecifier::AS_private ||
!MD->isUserProvided())
continue;
FunctionInfo FI;
FI.IsMethod = true;
// The seventh arg in populateFunctionInfo is a boolean passed by
// reference, its value is not relevant in here so it's not used
// anywhere besides the function call.
bool IsInAnonymousNamespace;
populateFunctionInfo(FI, MD, /*FullComment=*/{}, /*LineNumber=*/{},
/*FileName=*/{}, IsFileInRootDir,
IsInAnonymousNamespace);
FI.Access =
getFinalAccessSpecifier(BI.Access, MD->getAccessUnsafe());
BI.ChildFunctions.emplace_back(std::move(FI));
}
I.Bases.emplace_back(std::move(BI));
// Call this function recursively to get the inherited classes of
// this base; these new bases will also get stored in the original
// RecordInfo: I.
parseBases(I, Base, IsFileInRootDir, PublicOnly, false,
I.Bases.back().Access);
}
}
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const NamespaceDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<NamespaceInfo>();
bool IsInAnonymousNamespace = false;
populateInfo(*I, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->Name = D->isAnonymousNamespace()
? llvm::SmallString<16>("@nonymous_namespace")
: I->Name;
I->Path = getInfoRelativePath(I->Namespace);
if (I->Namespace.empty() && I->USR == SymbolID())
return {std::unique_ptr<Info>{std::move(I)}, nullptr};
auto ParentI = std::make_unique<NamespaceInfo>();
ParentI->USR = I->Namespace.empty() ? SymbolID() : I->Namespace[0].USR;
ParentI->ChildNamespaces.emplace_back(I->USR, I->Name, InfoType::IT_namespace,
getInfoRelativePath(I->Namespace));
if (I->Namespace.empty())
ParentI->Path = getInfoRelativePath(ParentI->Namespace);
return {std::unique_ptr<Info>{std::move(I)},
std::unique_ptr<Info>{std::move(ParentI)}};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const RecordDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
auto I = std::make_unique<RecordInfo>();
bool IsInAnonymousNamespace = false;
populateSymbolInfo(*I, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
I->TagType = D->getTagKind();
parseFields(*I, D, PublicOnly);
if (const auto *C = dyn_cast<CXXRecordDecl>(D)) {
if (const TypedefNameDecl *TD = C->getTypedefNameForAnonDecl()) {
I->Name = TD->getNameAsString();
I->IsTypeDef = true;
}
// TODO: remove first call to parseBases, that function should be deleted
parseBases(*I, C);
parseBases(*I, C, IsFileInRootDir, PublicOnly, true);
}
I->Path = getInfoRelativePath(I->Namespace);
switch (I->Namespace[0].RefType) {
case InfoType::IT_namespace: {
auto ParentI = std::make_unique<NamespaceInfo>();
ParentI->USR = I->Namespace[0].USR;
ParentI->ChildRecords.emplace_back(I->USR, I->Name, InfoType::IT_record,
getInfoRelativePath(I->Namespace));
return {std::unique_ptr<Info>{std::move(I)},
std::unique_ptr<Info>{std::move(ParentI)}};
}
case InfoType::IT_record: {
auto ParentI = std::make_unique<RecordInfo>();
ParentI->USR = I->Namespace[0].USR;
ParentI->ChildRecords.emplace_back(I->USR, I->Name, InfoType::IT_record,
getInfoRelativePath(I->Namespace));
return {std::unique_ptr<Info>{std::move(I)},
std::unique_ptr<Info>{std::move(ParentI)}};
}
default:
llvm_unreachable("Invalid reference type for parent namespace");
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const FunctionDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
Func.Access = clang::AccessSpecifier::AS_none;
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
// Wrap in enclosing scope
auto ParentI = std::make_unique<NamespaceInfo>();
if (!Func.Namespace.empty())
ParentI->USR = Func.Namespace[0].USR;
else
ParentI->USR = SymbolID();
if (Func.Namespace.empty())
ParentI->Path = getInfoRelativePath(ParentI->Namespace);
ParentI->ChildFunctions.emplace_back(std::move(Func));
// Info is wrapped in its parent scope so it's returned in the second position
return {nullptr, std::unique_ptr<Info>{std::move(ParentI)}};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const CXXMethodDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Func.IsMethod = true;
const NamedDecl *Parent = nullptr;
if (const auto *SD =
dyn_cast<ClassTemplateSpecializationDecl>(D->getParent()))
Parent = SD->getSpecializedTemplate();
else
Parent = D->getParent();
SymbolID ParentUSR = getUSRForDecl(Parent);
Func.Parent =
Reference{ParentUSR, Parent->getNameAsString(), InfoType::IT_record};
Func.Access = D->getAccess();
// Wrap in enclosing scope
auto ParentI = std::make_unique<RecordInfo>();
ParentI->USR = ParentUSR;
ParentI->ChildFunctions.emplace_back(std::move(Func));
// Info is wrapped in its parent scope so it's returned in the second position
return {nullptr, std::unique_ptr<Info>{std::move(ParentI)}};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const EnumDecl *D, const FullComment *FC, int LineNumber,
llvm::StringRef File, bool IsFileInRootDir, bool PublicOnly) {
EnumInfo Enum;
bool IsInAnonymousNamespace = false;
populateSymbolInfo(Enum, D, FC, LineNumber, File, IsFileInRootDir,
IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Enum.Scoped = D->isScoped();
parseEnumerators(Enum, D);
// Put in global namespace
if (Enum.Namespace.empty()) {
auto ParentI = std::make_unique<NamespaceInfo>();
ParentI->USR = SymbolID();
ParentI->ChildEnums.emplace_back(std::move(Enum));
ParentI->Path = getInfoRelativePath(ParentI->Namespace);
// Info is wrapped in its parent scope so it's returned in the second
// position
return {nullptr, std::unique_ptr<Info>{std::move(ParentI)}};
}
// Wrap in enclosing scope
switch (Enum.Namespace[0].RefType) {
case InfoType::IT_namespace: {
auto ParentI = std::make_unique<NamespaceInfo>();
ParentI->USR = Enum.Namespace[0].USR;
ParentI->ChildEnums.emplace_back(std::move(Enum));
// Info is wrapped in its parent scope so it's returned in the second
// position
return {nullptr, std::unique_ptr<Info>{std::move(ParentI)}};
}
case InfoType::IT_record: {
auto ParentI = std::make_unique<RecordInfo>();
ParentI->USR = Enum.Namespace[0].USR;
ParentI->ChildEnums.emplace_back(std::move(Enum));
// Info is wrapped in its parent scope so it's returned in the second
// position
return {nullptr, std::unique_ptr<Info>{std::move(ParentI)}};
}
default:
llvm_unreachable("Invalid reference type for parent namespace");
}
}
} // namespace serialize
} // namespace doc
} // namespace clang