mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-06 07:12:24 +00:00

This extracts the string section writer and reader into dedicated classes, which better separates the logic and will also simplify future patches that want to interact with the string section. Differential Revision: https://reviews.llvm.org/D132496
1231 lines
44 KiB
C++
1231 lines
44 KiB
C++
//===- BytecodeReader.cpp - MLIR Bytecode Reader --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TODO: Support for big-endian architectures.
|
|
// TODO: Properly preserve use lists of values.
|
|
|
|
#include "mlir/Bytecode/BytecodeReader.h"
|
|
#include "../Encoding.h"
|
|
#include "mlir/AsmParser/AsmParser.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/Verifier.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/MemoryBufferRef.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
#define DEBUG_TYPE "mlir-bytecode-reader"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Stringify the given section ID.
|
|
static std::string toString(bytecode::Section::ID sectionID) {
|
|
switch (sectionID) {
|
|
case bytecode::Section::kString:
|
|
return "String (0)";
|
|
case bytecode::Section::kDialect:
|
|
return "Dialect (1)";
|
|
case bytecode::Section::kAttrType:
|
|
return "AttrType (2)";
|
|
case bytecode::Section::kAttrTypeOffset:
|
|
return "AttrTypeOffset (3)";
|
|
case bytecode::Section::kIR:
|
|
return "IR (4)";
|
|
default:
|
|
return ("Unknown (" + Twine(static_cast<unsigned>(sectionID)) + ")").str();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EncodingReader
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class EncodingReader {
|
|
public:
|
|
explicit EncodingReader(ArrayRef<uint8_t> contents, Location fileLoc)
|
|
: dataIt(contents.data()), dataEnd(contents.end()), fileLoc(fileLoc) {}
|
|
explicit EncodingReader(StringRef contents, Location fileLoc)
|
|
: EncodingReader({reinterpret_cast<const uint8_t *>(contents.data()),
|
|
contents.size()},
|
|
fileLoc) {}
|
|
|
|
/// Returns true if the entire section has been read.
|
|
bool empty() const { return dataIt == dataEnd; }
|
|
|
|
/// Returns the remaining size of the bytecode.
|
|
size_t size() const { return dataEnd - dataIt; }
|
|
|
|
/// Emit an error using the given arguments.
|
|
template <typename... Args>
|
|
LogicalResult emitError(Args &&...args) const {
|
|
return ::emitError(fileLoc).append(std::forward<Args>(args)...);
|
|
}
|
|
|
|
/// Parse a single byte from the stream.
|
|
template <typename T>
|
|
LogicalResult parseByte(T &value) {
|
|
if (empty())
|
|
return emitError("attempting to parse a byte at the end of the bytecode");
|
|
value = static_cast<T>(*dataIt++);
|
|
return success();
|
|
}
|
|
/// Parse a range of bytes of 'length' into the given result.
|
|
LogicalResult parseBytes(size_t length, ArrayRef<uint8_t> &result) {
|
|
if (length > size()) {
|
|
return emitError("attempting to parse ", length, " bytes when only ",
|
|
size(), " remain");
|
|
}
|
|
result = {dataIt, length};
|
|
dataIt += length;
|
|
return success();
|
|
}
|
|
/// Parse a range of bytes of 'length' into the given result, which can be
|
|
/// assumed to be large enough to hold `length`.
|
|
LogicalResult parseBytes(size_t length, uint8_t *result) {
|
|
if (length > size()) {
|
|
return emitError("attempting to parse ", length, " bytes when only ",
|
|
size(), " remain");
|
|
}
|
|
memcpy(result, dataIt, length);
|
|
dataIt += length;
|
|
return success();
|
|
}
|
|
|
|
/// Parse a variable length encoded integer from the byte stream. The first
|
|
/// encoded byte contains a prefix in the low bits indicating the encoded
|
|
/// length of the value. This length prefix is a bit sequence of '0's followed
|
|
/// by a '1'. The number of '0' bits indicate the number of _additional_ bytes
|
|
/// (not including the prefix byte). All remaining bits in the first byte,
|
|
/// along with all of the bits in additional bytes, provide the value of the
|
|
/// integer encoded in little-endian order.
|
|
LogicalResult parseVarInt(uint64_t &result) {
|
|
// Parse the first byte of the encoding, which contains the length prefix.
|
|
if (failed(parseByte(result)))
|
|
return failure();
|
|
|
|
// Handle the overwhelmingly common case where the value is stored in a
|
|
// single byte. In this case, the first bit is the `1` marker bit.
|
|
if (LLVM_LIKELY(result & 1)) {
|
|
result >>= 1;
|
|
return success();
|
|
}
|
|
|
|
// Handle the overwhelming uncommon case where the value required all 8
|
|
// bytes (i.e. a really really big number). In this case, the marker byte is
|
|
// all zeros: `00000000`.
|
|
if (LLVM_UNLIKELY(result == 0))
|
|
return parseBytes(sizeof(result), reinterpret_cast<uint8_t *>(&result));
|
|
return parseMultiByteVarInt(result);
|
|
}
|
|
|
|
/// Parse a variable length encoded integer whose low bit is used to encode an
|
|
/// unrelated flag, i.e: `(integerValue << 1) | (flag ? 1 : 0)`.
|
|
LogicalResult parseVarIntWithFlag(uint64_t &result, bool &flag) {
|
|
if (failed(parseVarInt(result)))
|
|
return failure();
|
|
flag = result & 1;
|
|
result >>= 1;
|
|
return success();
|
|
}
|
|
|
|
/// Skip the first `length` bytes within the reader.
|
|
LogicalResult skipBytes(size_t length) {
|
|
if (length > size()) {
|
|
return emitError("attempting to skip ", length, " bytes when only ",
|
|
size(), " remain");
|
|
}
|
|
dataIt += length;
|
|
return success();
|
|
}
|
|
|
|
/// Parse a null-terminated string into `result` (without including the NUL
|
|
/// terminator).
|
|
LogicalResult parseNullTerminatedString(StringRef &result) {
|
|
const char *startIt = (const char *)dataIt;
|
|
const char *nulIt = (const char *)memchr(startIt, 0, size());
|
|
if (!nulIt)
|
|
return emitError(
|
|
"malformed null-terminated string, no null character found");
|
|
|
|
result = StringRef(startIt, nulIt - startIt);
|
|
dataIt = (const uint8_t *)nulIt + 1;
|
|
return success();
|
|
}
|
|
|
|
/// Parse a section header, placing the kind of section in `sectionID` and the
|
|
/// contents of the section in `sectionData`.
|
|
LogicalResult parseSection(bytecode::Section::ID §ionID,
|
|
ArrayRef<uint8_t> §ionData) {
|
|
uint64_t length;
|
|
if (failed(parseByte(sectionID)) || failed(parseVarInt(length)))
|
|
return failure();
|
|
if (sectionID >= bytecode::Section::kNumSections)
|
|
return emitError("invalid section ID: ", unsigned(sectionID));
|
|
|
|
// Parse the actua section data now that we have its length.
|
|
return parseBytes(static_cast<size_t>(length), sectionData);
|
|
}
|
|
|
|
private:
|
|
/// Parse a variable length encoded integer from the byte stream. This method
|
|
/// is a fallback when the number of bytes used to encode the value is greater
|
|
/// than 1, but less than the max (9). The provided `result` value can be
|
|
/// assumed to already contain the first byte of the value.
|
|
/// NOTE: This method is marked noinline to avoid pessimizing the common case
|
|
/// of single byte encoding.
|
|
LLVM_ATTRIBUTE_NOINLINE LogicalResult parseMultiByteVarInt(uint64_t &result) {
|
|
// Count the number of trailing zeros in the marker byte, this indicates the
|
|
// number of trailing bytes that are part of the value. We use `uint32_t`
|
|
// here because we only care about the first byte, and so that be actually
|
|
// get ctz intrinsic calls when possible (the `uint8_t` overload uses a loop
|
|
// implementation).
|
|
uint32_t numBytes =
|
|
llvm::countTrailingZeros<uint32_t>(result, llvm::ZB_Undefined);
|
|
assert(numBytes > 0 && numBytes <= 7 &&
|
|
"unexpected number of trailing zeros in varint encoding");
|
|
|
|
// Parse in the remaining bytes of the value.
|
|
if (failed(parseBytes(numBytes, reinterpret_cast<uint8_t *>(&result) + 1)))
|
|
return failure();
|
|
|
|
// Shift out the low-order bits that were used to mark how the value was
|
|
// encoded.
|
|
result >>= (numBytes + 1);
|
|
return success();
|
|
}
|
|
|
|
/// The current data iterator, and an iterator to the end of the buffer.
|
|
const uint8_t *dataIt, *dataEnd;
|
|
|
|
/// A location for the bytecode used to report errors.
|
|
Location fileLoc;
|
|
};
|
|
} // namespace
|
|
|
|
/// Resolve an index into the given entry list. `entry` may either be a
|
|
/// reference, in which case it is assigned to the corresponding value in
|
|
/// `entries`, or a pointer, in which case it is assigned to the address of the
|
|
/// element in `entries`.
|
|
template <typename RangeT, typename T>
|
|
static LogicalResult resolveEntry(EncodingReader &reader, RangeT &entries,
|
|
uint64_t index, T &entry,
|
|
StringRef entryStr) {
|
|
if (index >= entries.size())
|
|
return reader.emitError("invalid ", entryStr, " index: ", index);
|
|
|
|
// If the provided entry is a pointer, resolve to the address of the entry.
|
|
if constexpr (std::is_convertible_v<llvm::detail::ValueOfRange<RangeT>, T>)
|
|
entry = entries[index];
|
|
else
|
|
entry = &entries[index];
|
|
return success();
|
|
}
|
|
|
|
/// Parse and resolve an index into the given entry list.
|
|
template <typename RangeT, typename T>
|
|
static LogicalResult parseEntry(EncodingReader &reader, RangeT &entries,
|
|
T &entry, StringRef entryStr) {
|
|
uint64_t entryIdx;
|
|
if (failed(reader.parseVarInt(entryIdx)))
|
|
return failure();
|
|
return resolveEntry(reader, entries, entryIdx, entry, entryStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StringSectionReader
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class is used to read references to the string section from the
|
|
/// bytecode.
|
|
class StringSectionReader {
|
|
public:
|
|
/// Initialize the string section reader with the given section data.
|
|
LogicalResult initialize(Location fileLoc, ArrayRef<uint8_t> sectionData);
|
|
|
|
/// Parse a shared string from the string section. The shared string is
|
|
/// encoded using an index to a corresponding string in the string section.
|
|
LogicalResult parseString(EncodingReader &reader, StringRef &result) {
|
|
return parseEntry(reader, strings, result, "string");
|
|
}
|
|
|
|
private:
|
|
/// The table of strings referenced within the bytecode file.
|
|
SmallVector<StringRef> strings;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult StringSectionReader::initialize(Location fileLoc,
|
|
ArrayRef<uint8_t> sectionData) {
|
|
EncodingReader stringReader(sectionData, fileLoc);
|
|
|
|
// Parse the number of strings in the section.
|
|
uint64_t numStrings;
|
|
if (failed(stringReader.parseVarInt(numStrings)))
|
|
return failure();
|
|
strings.resize(numStrings);
|
|
|
|
// Parse each of the strings. The sizes of the strings are encoded in reverse
|
|
// order, so that's the order we populate the table.
|
|
size_t stringDataEndOffset = sectionData.size();
|
|
for (StringRef &string : llvm::reverse(strings)) {
|
|
uint64_t stringSize;
|
|
if (failed(stringReader.parseVarInt(stringSize)))
|
|
return failure();
|
|
if (stringDataEndOffset < stringSize) {
|
|
return stringReader.emitError(
|
|
"string size exceeds the available data size");
|
|
}
|
|
|
|
// Extract the string from the data, dropping the null character.
|
|
size_t stringOffset = stringDataEndOffset - stringSize;
|
|
string = StringRef(
|
|
reinterpret_cast<const char *>(sectionData.data() + stringOffset),
|
|
stringSize - 1);
|
|
stringDataEndOffset = stringOffset;
|
|
}
|
|
|
|
// Check that the only remaining data was for the strings, i.e. the reader
|
|
// should be at the same offset as the first string.
|
|
if ((sectionData.size() - stringReader.size()) != stringDataEndOffset) {
|
|
return stringReader.emitError("unexpected trailing data between the "
|
|
"offsets for strings and their data");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BytecodeDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This struct represents a dialect entry within the bytecode.
|
|
struct BytecodeDialect {
|
|
/// Load the dialect into the provided context if it hasn't been loaded yet.
|
|
/// Returns failure if the dialect couldn't be loaded *and* the provided
|
|
/// context does not allow unregistered dialects. The provided reader is used
|
|
/// for error emission if necessary.
|
|
LogicalResult load(EncodingReader &reader, MLIRContext *ctx) {
|
|
if (dialect)
|
|
return success();
|
|
Dialect *loadedDialect = ctx->getOrLoadDialect(name);
|
|
if (!loadedDialect && !ctx->allowsUnregisteredDialects()) {
|
|
return reader.emitError(
|
|
"dialect '", name,
|
|
"' is unknown. If this is intended, please call "
|
|
"allowUnregisteredDialects() on the MLIRContext, or use "
|
|
"-allow-unregistered-dialect with the MLIR tool used.");
|
|
}
|
|
dialect = loadedDialect;
|
|
return success();
|
|
}
|
|
|
|
/// The loaded dialect entry. This field is None if we haven't attempted to
|
|
/// load, nullptr if we failed to load, otherwise the loaded dialect.
|
|
Optional<Dialect *> dialect;
|
|
|
|
/// The name of the dialect.
|
|
StringRef name;
|
|
};
|
|
|
|
/// This struct represents an operation name entry within the bytecode.
|
|
struct BytecodeOperationName {
|
|
BytecodeOperationName(BytecodeDialect *dialect, StringRef name)
|
|
: dialect(dialect), name(name) {}
|
|
|
|
/// The loaded operation name, or None if it hasn't been processed yet.
|
|
Optional<OperationName> opName;
|
|
|
|
/// The dialect that owns this operation name.
|
|
BytecodeDialect *dialect;
|
|
|
|
/// The name of the operation, without the dialect prefix.
|
|
StringRef name;
|
|
};
|
|
} // namespace
|
|
|
|
/// Parse a single dialect group encoded in the byte stream.
|
|
static LogicalResult parseDialectGrouping(
|
|
EncodingReader &reader, MutableArrayRef<BytecodeDialect> dialects,
|
|
function_ref<LogicalResult(BytecodeDialect *)> entryCallback) {
|
|
// Parse the dialect and the number of entries in the group.
|
|
BytecodeDialect *dialect;
|
|
if (failed(parseEntry(reader, dialects, dialect, "dialect")))
|
|
return failure();
|
|
uint64_t numEntries;
|
|
if (failed(reader.parseVarInt(numEntries)))
|
|
return failure();
|
|
|
|
for (uint64_t i = 0; i < numEntries; ++i)
|
|
if (failed(entryCallback(dialect)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute/Type Reader
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class provides support for reading attribute and type entries from the
|
|
/// bytecode. Attribute and Type entries are read lazily on demand, so we use
|
|
/// this reader to manage when to actually parse them from the bytecode.
|
|
class AttrTypeReader {
|
|
/// This class represents a single attribute or type entry.
|
|
template <typename T>
|
|
struct Entry {
|
|
/// The entry, or null if it hasn't been resolved yet.
|
|
T entry = {};
|
|
/// The parent dialect of this entry.
|
|
BytecodeDialect *dialect = nullptr;
|
|
/// A flag indicating if the entry was encoded using a custom encoding,
|
|
/// instead of using the textual assembly format.
|
|
bool hasCustomEncoding = false;
|
|
/// The raw data of this entry in the bytecode.
|
|
ArrayRef<uint8_t> data;
|
|
};
|
|
using AttrEntry = Entry<Attribute>;
|
|
using TypeEntry = Entry<Type>;
|
|
|
|
public:
|
|
AttrTypeReader(Location fileLoc) : fileLoc(fileLoc) {}
|
|
|
|
/// Initialize the attribute and type information within the reader.
|
|
LogicalResult initialize(MutableArrayRef<BytecodeDialect> dialects,
|
|
ArrayRef<uint8_t> sectionData,
|
|
ArrayRef<uint8_t> offsetSectionData);
|
|
|
|
/// Resolve the attribute or type at the given index. Returns nullptr on
|
|
/// failure.
|
|
Attribute resolveAttribute(size_t index) {
|
|
return resolveEntry(attributes, index, "Attribute");
|
|
}
|
|
Type resolveType(size_t index) { return resolveEntry(types, index, "Type"); }
|
|
|
|
private:
|
|
/// Resolve the given entry at `index`.
|
|
template <typename T>
|
|
T resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
|
|
StringRef entryType);
|
|
|
|
/// Parse the value defined within the given reader. `code` indicates how the
|
|
/// entry was encoded.
|
|
LogicalResult parseEntry(EncodingReader &reader, bool hasCustomEncoding,
|
|
Attribute &result);
|
|
LogicalResult parseEntry(EncodingReader &reader, bool hasCustomEncoding,
|
|
Type &result);
|
|
|
|
/// The set of attribute and type entries.
|
|
SmallVector<AttrEntry> attributes;
|
|
SmallVector<TypeEntry> types;
|
|
|
|
/// A location used for error emission.
|
|
Location fileLoc;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
AttrTypeReader::initialize(MutableArrayRef<BytecodeDialect> dialects,
|
|
ArrayRef<uint8_t> sectionData,
|
|
ArrayRef<uint8_t> offsetSectionData) {
|
|
EncodingReader offsetReader(offsetSectionData, fileLoc);
|
|
|
|
// Parse the number of attribute and type entries.
|
|
uint64_t numAttributes, numTypes;
|
|
if (failed(offsetReader.parseVarInt(numAttributes)) ||
|
|
failed(offsetReader.parseVarInt(numTypes)))
|
|
return failure();
|
|
attributes.resize(numAttributes);
|
|
types.resize(numTypes);
|
|
|
|
// A functor used to accumulate the offsets for the entries in the given
|
|
// range.
|
|
uint64_t currentOffset = 0;
|
|
auto parseEntries = [&](auto &&range) {
|
|
size_t currentIndex = 0, endIndex = range.size();
|
|
|
|
// Parse an individual entry.
|
|
auto parseEntryFn = [&](BytecodeDialect *dialect) {
|
|
auto &entry = range[currentIndex++];
|
|
|
|
uint64_t entrySize;
|
|
if (failed(offsetReader.parseVarIntWithFlag(entrySize,
|
|
entry.hasCustomEncoding)))
|
|
return failure();
|
|
|
|
// Verify that the offset is actually valid.
|
|
if (currentOffset + entrySize > sectionData.size()) {
|
|
return offsetReader.emitError(
|
|
"Attribute or Type entry offset points past the end of section");
|
|
}
|
|
|
|
entry.data = sectionData.slice(currentOffset, entrySize);
|
|
entry.dialect = dialect;
|
|
currentOffset += entrySize;
|
|
return success();
|
|
};
|
|
while (currentIndex != endIndex)
|
|
if (failed(parseDialectGrouping(offsetReader, dialects, parseEntryFn)))
|
|
return failure();
|
|
return success();
|
|
};
|
|
|
|
// Process each of the attributes, and then the types.
|
|
if (failed(parseEntries(attributes)) || failed(parseEntries(types)))
|
|
return failure();
|
|
|
|
// Ensure that we read everything from the section.
|
|
if (!offsetReader.empty()) {
|
|
return offsetReader.emitError(
|
|
"unexpected trailing data in the Attribute/Type offset section");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
template <typename T>
|
|
T AttrTypeReader::resolveEntry(SmallVectorImpl<Entry<T>> &entries, size_t index,
|
|
StringRef entryType) {
|
|
if (index >= entries.size()) {
|
|
emitError(fileLoc) << "invalid " << entryType << " index: " << index;
|
|
return {};
|
|
}
|
|
|
|
// If the entry has already been resolved, there is nothing left to do.
|
|
Entry<T> &entry = entries[index];
|
|
if (entry.entry)
|
|
return entry.entry;
|
|
|
|
// Parse the entry.
|
|
EncodingReader reader(entry.data, fileLoc);
|
|
if (failed(parseEntry(reader, entry.hasCustomEncoding, entry.entry)))
|
|
return T();
|
|
if (!reader.empty()) {
|
|
(void)reader.emitError("unexpected trailing bytes after " + entryType +
|
|
" entry");
|
|
return T();
|
|
}
|
|
return entry.entry;
|
|
}
|
|
|
|
LogicalResult AttrTypeReader::parseEntry(EncodingReader &reader,
|
|
bool hasCustomEncoding,
|
|
Attribute &result) {
|
|
// Handle the fallback case, where the attribute was encoded using its
|
|
// assembly format.
|
|
if (!hasCustomEncoding) {
|
|
StringRef attrStr;
|
|
if (failed(reader.parseNullTerminatedString(attrStr)))
|
|
return failure();
|
|
|
|
size_t numRead = 0;
|
|
if (!(result = parseAttribute(attrStr, fileLoc->getContext(), numRead)))
|
|
return failure();
|
|
if (numRead != attrStr.size()) {
|
|
return reader.emitError(
|
|
"trailing characters found after Attribute assembly format: ",
|
|
attrStr.drop_front(numRead));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
return reader.emitError("unexpected Attribute encoding");
|
|
}
|
|
|
|
LogicalResult AttrTypeReader::parseEntry(EncodingReader &reader,
|
|
bool hasCustomEncoding, Type &result) {
|
|
// Handle the fallback case, where the type was encoded using its
|
|
// assembly format.
|
|
if (!hasCustomEncoding) {
|
|
StringRef typeStr;
|
|
if (failed(reader.parseNullTerminatedString(typeStr)))
|
|
return failure();
|
|
|
|
size_t numRead = 0;
|
|
if (!(result = parseType(typeStr, fileLoc->getContext(), numRead)))
|
|
return failure();
|
|
if (numRead != typeStr.size()) {
|
|
return reader.emitError(
|
|
"trailing characters found after Type assembly format: " +
|
|
typeStr.drop_front(numRead));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
return reader.emitError("unexpected Type encoding");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bytecode Reader
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class is used to read a bytecode buffer and translate it into MLIR.
|
|
class BytecodeReader {
|
|
public:
|
|
BytecodeReader(Location fileLoc, const ParserConfig &config)
|
|
: config(config), fileLoc(fileLoc), attrTypeReader(fileLoc),
|
|
// Use the builtin unrealized conversion cast operation to represent
|
|
// forward references to values that aren't yet defined.
|
|
forwardRefOpState(UnknownLoc::get(config.getContext()),
|
|
"builtin.unrealized_conversion_cast", ValueRange(),
|
|
NoneType::get(config.getContext())) {}
|
|
|
|
/// Read the bytecode defined within `buffer` into the given block.
|
|
LogicalResult read(llvm::MemoryBufferRef buffer, Block *block);
|
|
|
|
private:
|
|
/// Return the context for this config.
|
|
MLIRContext *getContext() const { return config.getContext(); }
|
|
|
|
/// Parse the bytecode version.
|
|
LogicalResult parseVersion(EncodingReader &reader);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Dialect Section
|
|
|
|
LogicalResult parseDialectSection(ArrayRef<uint8_t> sectionData);
|
|
|
|
/// Parse an operation name reference using the given reader.
|
|
FailureOr<OperationName> parseOpName(EncodingReader &reader);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Attribute/Type Section
|
|
|
|
/// Parse an attribute or type using the given reader. Returns nullptr in the
|
|
/// case of failure.
|
|
Attribute parseAttribute(EncodingReader &reader);
|
|
Type parseType(EncodingReader &reader);
|
|
|
|
template <typename T>
|
|
T parseAttribute(EncodingReader &reader) {
|
|
if (Attribute attr = parseAttribute(reader)) {
|
|
if (auto derivedAttr = attr.dyn_cast<T>())
|
|
return derivedAttr;
|
|
(void)reader.emitError("expected attribute of type: ",
|
|
llvm::getTypeName<T>(), ", but got: ", attr);
|
|
}
|
|
return T();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// IR Section
|
|
|
|
/// This struct represents the current read state of a range of regions. This
|
|
/// struct is used to enable iterative parsing of regions.
|
|
struct RegionReadState {
|
|
RegionReadState(Operation *op, bool isIsolatedFromAbove)
|
|
: RegionReadState(op->getRegions(), isIsolatedFromAbove) {}
|
|
RegionReadState(MutableArrayRef<Region> regions, bool isIsolatedFromAbove)
|
|
: curRegion(regions.begin()), endRegion(regions.end()),
|
|
isIsolatedFromAbove(isIsolatedFromAbove) {}
|
|
|
|
/// The current regions being read.
|
|
MutableArrayRef<Region>::iterator curRegion, endRegion;
|
|
|
|
/// The number of values defined immediately within this region.
|
|
unsigned numValues = 0;
|
|
|
|
/// The current blocks of the region being read.
|
|
SmallVector<Block *> curBlocks;
|
|
Region::iterator curBlock = {};
|
|
|
|
/// The number of operations remaining to be read from the current block
|
|
/// being read.
|
|
uint64_t numOpsRemaining = 0;
|
|
|
|
/// A flag indicating if the regions being read are isolated from above.
|
|
bool isIsolatedFromAbove = false;
|
|
};
|
|
|
|
LogicalResult parseIRSection(ArrayRef<uint8_t> sectionData, Block *block);
|
|
LogicalResult parseRegions(EncodingReader &reader,
|
|
std::vector<RegionReadState> ®ionStack,
|
|
RegionReadState &readState);
|
|
FailureOr<Operation *> parseOpWithoutRegions(EncodingReader &reader,
|
|
RegionReadState &readState,
|
|
bool &isIsolatedFromAbove);
|
|
|
|
LogicalResult parseRegion(EncodingReader &reader, RegionReadState &readState);
|
|
LogicalResult parseBlock(EncodingReader &reader, RegionReadState &readState);
|
|
LogicalResult parseBlockArguments(EncodingReader &reader, Block *block);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Value Processing
|
|
|
|
/// Parse an operand reference using the given reader. Returns nullptr in the
|
|
/// case of failure.
|
|
Value parseOperand(EncodingReader &reader);
|
|
|
|
/// Sequentially define the given value range.
|
|
LogicalResult defineValues(EncodingReader &reader, ValueRange values);
|
|
|
|
/// Create a value to use for a forward reference.
|
|
Value createForwardRef();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Fields
|
|
|
|
/// This class represents a single value scope, in which a value scope is
|
|
/// delimited by isolated from above regions.
|
|
struct ValueScope {
|
|
/// Push a new region state onto this scope, reserving enough values for
|
|
/// those defined within the current region of the provided state.
|
|
void push(RegionReadState &readState) {
|
|
nextValueIDs.push_back(values.size());
|
|
values.resize(values.size() + readState.numValues);
|
|
}
|
|
|
|
/// Pop the values defined for the current region within the provided region
|
|
/// state.
|
|
void pop(RegionReadState &readState) {
|
|
values.resize(values.size() - readState.numValues);
|
|
nextValueIDs.pop_back();
|
|
}
|
|
|
|
/// The set of values defined in this scope.
|
|
std::vector<Value> values;
|
|
|
|
/// The ID for the next defined value for each region current being
|
|
/// processed in this scope.
|
|
SmallVector<unsigned, 4> nextValueIDs;
|
|
};
|
|
|
|
/// The configuration of the parser.
|
|
const ParserConfig &config;
|
|
|
|
/// A location to use when emitting errors.
|
|
Location fileLoc;
|
|
|
|
/// The reader used to process attribute and types within the bytecode.
|
|
AttrTypeReader attrTypeReader;
|
|
|
|
/// The version of the bytecode being read.
|
|
uint64_t version = 0;
|
|
|
|
/// The producer of the bytecode being read.
|
|
StringRef producer;
|
|
|
|
/// The table of IR units referenced within the bytecode file.
|
|
SmallVector<BytecodeDialect> dialects;
|
|
SmallVector<BytecodeOperationName> opNames;
|
|
|
|
/// The table of strings referenced within the bytecode file.
|
|
StringSectionReader stringReader;
|
|
|
|
/// The current set of available IR value scopes.
|
|
std::vector<ValueScope> valueScopes;
|
|
/// A block containing the set of operations defined to create forward
|
|
/// references.
|
|
Block forwardRefOps;
|
|
/// A block containing previously created, and no longer used, forward
|
|
/// reference operations.
|
|
Block openForwardRefOps;
|
|
/// An operation state used when instantiating forward references.
|
|
OperationState forwardRefOpState;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult BytecodeReader::read(llvm::MemoryBufferRef buffer, Block *block) {
|
|
EncodingReader reader(buffer.getBuffer(), fileLoc);
|
|
|
|
// Skip over the bytecode header, this should have already been checked.
|
|
if (failed(reader.skipBytes(StringRef("ML\xefR").size())))
|
|
return failure();
|
|
// Parse the bytecode version and producer.
|
|
if (failed(parseVersion(reader)) ||
|
|
failed(reader.parseNullTerminatedString(producer)))
|
|
return failure();
|
|
|
|
// Add a diagnostic handler that attaches a note that includes the original
|
|
// producer of the bytecode.
|
|
ScopedDiagnosticHandler diagHandler(getContext(), [&](Diagnostic &diag) {
|
|
diag.attachNote() << "in bytecode version " << version
|
|
<< " produced by: " << producer;
|
|
return failure();
|
|
});
|
|
|
|
// Parse the raw data for each of the top-level sections of the bytecode.
|
|
Optional<ArrayRef<uint8_t>> sectionDatas[bytecode::Section::kNumSections];
|
|
while (!reader.empty()) {
|
|
// Read the next section from the bytecode.
|
|
bytecode::Section::ID sectionID;
|
|
ArrayRef<uint8_t> sectionData;
|
|
if (failed(reader.parseSection(sectionID, sectionData)))
|
|
return failure();
|
|
|
|
// Check for duplicate sections, we only expect one instance of each.
|
|
if (sectionDatas[sectionID]) {
|
|
return reader.emitError("duplicate top-level section: ",
|
|
toString(sectionID));
|
|
}
|
|
sectionDatas[sectionID] = sectionData;
|
|
}
|
|
// Check that all of the sections were found.
|
|
for (int i = 0; i < bytecode::Section::kNumSections; ++i) {
|
|
if (!sectionDatas[i]) {
|
|
return reader.emitError("missing data for top-level section: ",
|
|
toString(bytecode::Section::ID(i)));
|
|
}
|
|
}
|
|
|
|
// Process the string section first.
|
|
if (failed(stringReader.initialize(
|
|
fileLoc, *sectionDatas[bytecode::Section::kString])))
|
|
return failure();
|
|
|
|
// Process the dialect section.
|
|
if (failed(parseDialectSection(*sectionDatas[bytecode::Section::kDialect])))
|
|
return failure();
|
|
|
|
// Process the attribute and type section.
|
|
if (failed(attrTypeReader.initialize(
|
|
dialects, *sectionDatas[bytecode::Section::kAttrType],
|
|
*sectionDatas[bytecode::Section::kAttrTypeOffset])))
|
|
return failure();
|
|
|
|
// Finally, process the IR section.
|
|
return parseIRSection(*sectionDatas[bytecode::Section::kIR], block);
|
|
}
|
|
|
|
LogicalResult BytecodeReader::parseVersion(EncodingReader &reader) {
|
|
if (failed(reader.parseVarInt(version)))
|
|
return failure();
|
|
|
|
// Validate the bytecode version.
|
|
uint64_t currentVersion = bytecode::kVersion;
|
|
if (version < currentVersion) {
|
|
return reader.emitError("bytecode version ", version,
|
|
" is older than the current version of ",
|
|
currentVersion, ", and upgrade is not supported");
|
|
}
|
|
if (version > currentVersion) {
|
|
return reader.emitError("bytecode version ", version,
|
|
" is newer than the current version ",
|
|
currentVersion);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect Section
|
|
|
|
LogicalResult
|
|
BytecodeReader::parseDialectSection(ArrayRef<uint8_t> sectionData) {
|
|
EncodingReader sectionReader(sectionData, fileLoc);
|
|
|
|
// Parse the number of dialects in the section.
|
|
uint64_t numDialects;
|
|
if (failed(sectionReader.parseVarInt(numDialects)))
|
|
return failure();
|
|
dialects.resize(numDialects);
|
|
|
|
// Parse each of the dialects.
|
|
for (uint64_t i = 0; i < numDialects; ++i)
|
|
if (failed(stringReader.parseString(sectionReader, dialects[i].name)))
|
|
return failure();
|
|
|
|
// Parse the operation names, which are grouped by dialect.
|
|
auto parseOpName = [&](BytecodeDialect *dialect) {
|
|
StringRef opName;
|
|
if (failed(stringReader.parseString(sectionReader, opName)))
|
|
return failure();
|
|
opNames.emplace_back(dialect, opName);
|
|
return success();
|
|
};
|
|
while (!sectionReader.empty())
|
|
if (failed(parseDialectGrouping(sectionReader, dialects, parseOpName)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
FailureOr<OperationName> BytecodeReader::parseOpName(EncodingReader &reader) {
|
|
BytecodeOperationName *opName = nullptr;
|
|
if (failed(parseEntry(reader, opNames, opName, "operation name")))
|
|
return failure();
|
|
|
|
// Check to see if this operation name has already been resolved. If we
|
|
// haven't, load the dialect and build the operation name.
|
|
if (!opName->opName) {
|
|
if (failed(opName->dialect->load(reader, getContext())))
|
|
return failure();
|
|
opName->opName.emplace((opName->dialect->name + "." + opName->name).str(),
|
|
getContext());
|
|
}
|
|
return *opName->opName;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute/Type Section
|
|
|
|
Attribute BytecodeReader::parseAttribute(EncodingReader &reader) {
|
|
uint64_t attrIdx;
|
|
if (failed(reader.parseVarInt(attrIdx)))
|
|
return Attribute();
|
|
return attrTypeReader.resolveAttribute(attrIdx);
|
|
}
|
|
|
|
Type BytecodeReader::parseType(EncodingReader &reader) {
|
|
uint64_t typeIdx;
|
|
if (failed(reader.parseVarInt(typeIdx)))
|
|
return Type();
|
|
return attrTypeReader.resolveType(typeIdx);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IR Section
|
|
|
|
LogicalResult BytecodeReader::parseIRSection(ArrayRef<uint8_t> sectionData,
|
|
Block *block) {
|
|
EncodingReader reader(sectionData, fileLoc);
|
|
|
|
// A stack of operation regions currently being read from the bytecode.
|
|
std::vector<RegionReadState> regionStack;
|
|
|
|
// Parse the top-level block using a temporary module operation.
|
|
OwningOpRef<ModuleOp> moduleOp = ModuleOp::create(fileLoc);
|
|
regionStack.emplace_back(*moduleOp, /*isIsolatedFromAbove=*/true);
|
|
regionStack.back().curBlocks.push_back(moduleOp->getBody());
|
|
regionStack.back().curBlock = regionStack.back().curRegion->begin();
|
|
if (failed(parseBlock(reader, regionStack.back())))
|
|
return failure();
|
|
valueScopes.emplace_back(ValueScope());
|
|
valueScopes.back().push(regionStack.back());
|
|
|
|
// Iteratively parse regions until everything has been resolved.
|
|
while (!regionStack.empty())
|
|
if (failed(parseRegions(reader, regionStack, regionStack.back())))
|
|
return failure();
|
|
if (!forwardRefOps.empty()) {
|
|
return reader.emitError(
|
|
"not all forward unresolved forward operand references");
|
|
}
|
|
|
|
// Verify that the parsed operations are valid.
|
|
if (failed(verify(*moduleOp)))
|
|
return failure();
|
|
|
|
// Splice the parsed operations over to the provided top-level block.
|
|
auto &parsedOps = moduleOp->getBody()->getOperations();
|
|
auto &destOps = block->getOperations();
|
|
destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()),
|
|
parsedOps, parsedOps.begin(), parsedOps.end());
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
BytecodeReader::parseRegions(EncodingReader &reader,
|
|
std::vector<RegionReadState> ®ionStack,
|
|
RegionReadState &readState) {
|
|
// Read the regions of this operation.
|
|
for (; readState.curRegion != readState.endRegion; ++readState.curRegion) {
|
|
// If the current block hasn't been setup yet, parse the header for this
|
|
// region.
|
|
if (readState.curBlock == Region::iterator()) {
|
|
if (failed(parseRegion(reader, readState)))
|
|
return failure();
|
|
|
|
// If the region is empty, there is nothing to more to do.
|
|
if (readState.curRegion->empty())
|
|
continue;
|
|
}
|
|
|
|
// Parse the blocks within the region.
|
|
do {
|
|
while (readState.numOpsRemaining--) {
|
|
// Read in the next operation. We don't read its regions directly, we
|
|
// handle those afterwards as necessary.
|
|
bool isIsolatedFromAbove = false;
|
|
FailureOr<Operation *> op =
|
|
parseOpWithoutRegions(reader, readState, isIsolatedFromAbove);
|
|
if (failed(op))
|
|
return failure();
|
|
|
|
// If the op has regions, add it to the stack for processing.
|
|
if ((*op)->getNumRegions()) {
|
|
regionStack.emplace_back(*op, isIsolatedFromAbove);
|
|
|
|
// If the op is isolated from above, push a new value scope.
|
|
if (isIsolatedFromAbove)
|
|
valueScopes.emplace_back(ValueScope());
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Move to the next block of the region.
|
|
if (++readState.curBlock == readState.curRegion->end())
|
|
break;
|
|
if (failed(parseBlock(reader, readState)))
|
|
return failure();
|
|
} while (true);
|
|
|
|
// Reset the current block and any values reserved for this region.
|
|
readState.curBlock = {};
|
|
valueScopes.back().pop(readState);
|
|
}
|
|
|
|
// When the regions have been fully parsed, pop them off of the read stack. If
|
|
// the regions were isolated from above, we also pop the last value scope.
|
|
if (readState.isIsolatedFromAbove)
|
|
valueScopes.pop_back();
|
|
regionStack.pop_back();
|
|
return success();
|
|
}
|
|
|
|
FailureOr<Operation *>
|
|
BytecodeReader::parseOpWithoutRegions(EncodingReader &reader,
|
|
RegionReadState &readState,
|
|
bool &isIsolatedFromAbove) {
|
|
// Parse the name of the operation.
|
|
FailureOr<OperationName> opName = parseOpName(reader);
|
|
if (failed(opName))
|
|
return failure();
|
|
|
|
// Parse the operation mask, which indicates which components of the operation
|
|
// are present.
|
|
uint8_t opMask;
|
|
if (failed(reader.parseByte(opMask)))
|
|
return failure();
|
|
|
|
/// Parse the location.
|
|
LocationAttr opLoc = parseAttribute<LocationAttr>(reader);
|
|
if (!opLoc)
|
|
return failure();
|
|
|
|
// With the location and name resolved, we can start building the operation
|
|
// state.
|
|
OperationState opState(opLoc, *opName);
|
|
|
|
// Parse the attributes of the operation.
|
|
if (opMask & bytecode::OpEncodingMask::kHasAttrs) {
|
|
DictionaryAttr dictAttr = parseAttribute<DictionaryAttr>(reader);
|
|
if (!dictAttr)
|
|
return failure();
|
|
opState.attributes = dictAttr;
|
|
}
|
|
|
|
/// Parse the results of the operation.
|
|
if (opMask & bytecode::OpEncodingMask::kHasResults) {
|
|
uint64_t numResults;
|
|
if (failed(reader.parseVarInt(numResults)))
|
|
return failure();
|
|
opState.types.resize(numResults);
|
|
for (int i = 0, e = numResults; i < e; ++i)
|
|
if (!(opState.types[i] = parseType(reader)))
|
|
return failure();
|
|
}
|
|
|
|
/// Parse the operands of the operation.
|
|
if (opMask & bytecode::OpEncodingMask::kHasOperands) {
|
|
uint64_t numOperands;
|
|
if (failed(reader.parseVarInt(numOperands)))
|
|
return failure();
|
|
opState.operands.resize(numOperands);
|
|
for (int i = 0, e = numOperands; i < e; ++i)
|
|
if (!(opState.operands[i] = parseOperand(reader)))
|
|
return failure();
|
|
}
|
|
|
|
/// Parse the successors of the operation.
|
|
if (opMask & bytecode::OpEncodingMask::kHasSuccessors) {
|
|
uint64_t numSuccs;
|
|
if (failed(reader.parseVarInt(numSuccs)))
|
|
return failure();
|
|
opState.successors.resize(numSuccs);
|
|
for (int i = 0, e = numSuccs; i < e; ++i) {
|
|
if (failed(parseEntry(reader, readState.curBlocks, opState.successors[i],
|
|
"successor")))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
/// Parse the regions of the operation.
|
|
if (opMask & bytecode::OpEncodingMask::kHasInlineRegions) {
|
|
uint64_t numRegions;
|
|
if (failed(reader.parseVarIntWithFlag(numRegions, isIsolatedFromAbove)))
|
|
return failure();
|
|
|
|
opState.regions.reserve(numRegions);
|
|
for (int i = 0, e = numRegions; i < e; ++i)
|
|
opState.regions.push_back(std::make_unique<Region>());
|
|
}
|
|
|
|
// Create the operation at the back of the current block.
|
|
Operation *op = Operation::create(opState);
|
|
readState.curBlock->push_back(op);
|
|
|
|
// If the operation had results, update the value references.
|
|
if (op->getNumResults() && failed(defineValues(reader, op->getResults())))
|
|
return failure();
|
|
|
|
return op;
|
|
}
|
|
|
|
LogicalResult BytecodeReader::parseRegion(EncodingReader &reader,
|
|
RegionReadState &readState) {
|
|
// Parse the number of blocks in the region.
|
|
uint64_t numBlocks;
|
|
if (failed(reader.parseVarInt(numBlocks)))
|
|
return failure();
|
|
|
|
// If the region is empty, there is nothing else to do.
|
|
if (numBlocks == 0)
|
|
return success();
|
|
|
|
// Parse the number of values defined in this region.
|
|
uint64_t numValues;
|
|
if (failed(reader.parseVarInt(numValues)))
|
|
return failure();
|
|
readState.numValues = numValues;
|
|
|
|
// Create the blocks within this region. We do this before processing so that
|
|
// we can rely on the blocks existing when creating operations.
|
|
readState.curBlocks.clear();
|
|
readState.curBlocks.reserve(numBlocks);
|
|
for (uint64_t i = 0; i < numBlocks; ++i) {
|
|
readState.curBlocks.push_back(new Block());
|
|
readState.curRegion->push_back(readState.curBlocks.back());
|
|
}
|
|
|
|
// Prepare the current value scope for this region.
|
|
valueScopes.back().push(readState);
|
|
|
|
// Parse the entry block of the region.
|
|
readState.curBlock = readState.curRegion->begin();
|
|
return parseBlock(reader, readState);
|
|
}
|
|
|
|
LogicalResult BytecodeReader::parseBlock(EncodingReader &reader,
|
|
RegionReadState &readState) {
|
|
bool hasArgs;
|
|
if (failed(reader.parseVarIntWithFlag(readState.numOpsRemaining, hasArgs)))
|
|
return failure();
|
|
|
|
// Parse the arguments of the block.
|
|
if (hasArgs && failed(parseBlockArguments(reader, &*readState.curBlock)))
|
|
return failure();
|
|
|
|
// We don't parse the operations of the block here, that's done elsewhere.
|
|
return success();
|
|
}
|
|
|
|
LogicalResult BytecodeReader::parseBlockArguments(EncodingReader &reader,
|
|
Block *block) {
|
|
// Parse the value ID for the first argument, and the number of arguments.
|
|
uint64_t numArgs;
|
|
if (failed(reader.parseVarInt(numArgs)))
|
|
return failure();
|
|
|
|
SmallVector<Type> argTypes;
|
|
SmallVector<Location> argLocs;
|
|
argTypes.reserve(numArgs);
|
|
argLocs.reserve(numArgs);
|
|
|
|
while (numArgs--) {
|
|
Type argType = parseType(reader);
|
|
if (!argType)
|
|
return failure();
|
|
LocationAttr argLoc = parseAttribute<LocationAttr>(reader);
|
|
if (!argLoc)
|
|
return failure();
|
|
|
|
argTypes.push_back(argType);
|
|
argLocs.push_back(argLoc);
|
|
}
|
|
block->addArguments(argTypes, argLocs);
|
|
return defineValues(reader, block->getArguments());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Processing
|
|
|
|
Value BytecodeReader::parseOperand(EncodingReader &reader) {
|
|
std::vector<Value> &values = valueScopes.back().values;
|
|
Value *value = nullptr;
|
|
if (failed(parseEntry(reader, values, value, "value")))
|
|
return Value();
|
|
|
|
// Create a new forward reference if necessary.
|
|
if (!*value)
|
|
*value = createForwardRef();
|
|
return *value;
|
|
}
|
|
|
|
LogicalResult BytecodeReader::defineValues(EncodingReader &reader,
|
|
ValueRange newValues) {
|
|
ValueScope &valueScope = valueScopes.back();
|
|
std::vector<Value> &values = valueScope.values;
|
|
|
|
unsigned &valueID = valueScope.nextValueIDs.back();
|
|
unsigned valueIDEnd = valueID + newValues.size();
|
|
if (valueIDEnd > values.size()) {
|
|
return reader.emitError(
|
|
"value index range was outside of the expected range for "
|
|
"the parent region, got [",
|
|
valueID, ", ", valueIDEnd, "), but the maximum index was ",
|
|
values.size() - 1);
|
|
}
|
|
|
|
// Assign the values and update any forward references.
|
|
for (unsigned i = 0, e = newValues.size(); i != e; ++i, ++valueID) {
|
|
Value newValue = newValues[i];
|
|
|
|
// Check to see if a definition for this value already exists.
|
|
if (Value oldValue = std::exchange(values[valueID], newValue)) {
|
|
Operation *forwardRefOp = oldValue.getDefiningOp();
|
|
|
|
// Assert that this is a forward reference operation. Given how we compute
|
|
// definition ids (incrementally as we parse), it shouldn't be possible
|
|
// for the value to be defined any other way.
|
|
assert(forwardRefOp && forwardRefOp->getBlock() == &forwardRefOps &&
|
|
"value index was already defined?");
|
|
|
|
oldValue.replaceAllUsesWith(newValue);
|
|
forwardRefOp->moveBefore(&openForwardRefOps, openForwardRefOps.end());
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
Value BytecodeReader::createForwardRef() {
|
|
// Check for an avaliable existing operation to use. Otherwise, create a new
|
|
// fake operation to use for the reference.
|
|
if (!openForwardRefOps.empty()) {
|
|
Operation *op = &openForwardRefOps.back();
|
|
op->moveBefore(&forwardRefOps, forwardRefOps.end());
|
|
} else {
|
|
forwardRefOps.push_back(Operation::create(forwardRefOpState));
|
|
}
|
|
return forwardRefOps.back().getResult(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool mlir::isBytecode(llvm::MemoryBufferRef buffer) {
|
|
return buffer.getBuffer().startswith("ML\xefR");
|
|
}
|
|
|
|
LogicalResult mlir::readBytecodeFile(llvm::MemoryBufferRef buffer, Block *block,
|
|
const ParserConfig &config) {
|
|
Location sourceFileLoc =
|
|
FileLineColLoc::get(config.getContext(), buffer.getBufferIdentifier(),
|
|
/*line=*/0, /*column=*/0);
|
|
if (!isBytecode(buffer)) {
|
|
return emitError(sourceFileLoc,
|
|
"input buffer is not an MLIR bytecode file");
|
|
}
|
|
|
|
BytecodeReader reader(sourceFileLoc, config);
|
|
return reader.read(buffer, block);
|
|
}
|