llvm with tablegen backend for capstone disassembler
Go to file
Arthur O'Dwyer 8b29b84c99 [libc++] Fix LWG3422 "Issues of seed_seq's constructors"
https://cplusplus.github.io/LWG/issue3422

Also add a static_assert to check the "Mandates:" on the
iterator-pair constructor. Oddly, the `InputIterator` parameter
itself is merely preconditioned, not constrained, to satisfy the
input iterator requirements.

Also drive-by rename `init` to `__init`.

Differential Revision: https://reviews.llvm.org/D117962
2022-01-24 20:14:25 -05:00
.github workflows: Make issue-subscriber more robust for labels with special characters 2022-01-14 22:04:54 -08:00
bolt DWARFv5 default: Switch bolt tests to use DWARFv4 since Bolt doesn't support v5 yet 2022-01-24 15:09:35 -08:00
clang [clang][dataflow] Avoid MaxIterations overflow 2022-01-24 15:58:38 -08:00
clang-tools-extra [NFC][clangd] Use table to collect option aliases 2022-01-24 14:27:14 -08:00
cmake Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
compiler-rt Use -gdwarf-4 in compiler-rt/test/profile/Linux/instrprof-debug-info-correlate.c 2022-01-24 19:03:08 +01:00
cross-project-tests [mlir] Finish removing Identifier from the C++ API 2022-01-12 11:58:23 -08:00
flang [flang] Add MemoryAllocation pass to the pipeline 2022-01-24 16:32:39 +01:00
libc [libc] Let header generator generate the type header inclusion boiler plate. 2022-01-24 23:25:19 +00:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libc++] Fix LWG3422 "Issues of seed_seq's constructors" 2022-01-24 20:14:25 -05:00
libcxxabi [demangler][NFC] Refactor some parsing 2022-01-24 05:28:38 -08:00
libunwind Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
lld [ELF] Fix the branch range computation when reusing a thunk 2022-01-24 09:03:21 -08:00
lldb [lldb] Add ConstString memory usage statistics 2022-01-24 15:13:17 -08:00
llvm [llvm-profgen] Support to load debug info from a second binary 2022-01-24 17:14:05 -08:00
mlir [mlir] Add support for ExpM1 to GLSL/OpenCL SPIRV Backends 2022-01-24 15:38:34 -08:00
openmp [openmp] Allow x87 fp functions only in Openmp runtime for x86. 2022-01-22 22:09:44 +00:00
polly Add missing llvm/support/Regex.h include in polly/lib/Analysis/ScopDetection.cpp 2022-01-21 16:04:37 +01:00
pstl [cmake] Make include(GNUInstallDirs) always below project(..) 2022-01-20 18:59:17 +00:00
runtimes Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [libc] Add bazel definition for hypot/hypotf. 2022-01-24 09:54:23 -08:00
.arcconfig
.arclint
.clang-format
.clang-tidy Add modernize-use-default-member-init.UseAssignment to .clang-tidy 2022-01-23 20:32:52 -08:00
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Remove unused parallel-libs project 2021-10-21 14:34:39 -07:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, compiler-rt,cross-project-tests, flang, libc, libclc, libcxx, libcxxabi, libunwind, lld, lldb, mlir, openmp, polly, or pstl.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.