llvm-capstone/libcxx/benchmarks/filesystem.bench.cpp
Louis Dionne ac8c9f1e39
[libc++] Properly guard std::filesystem with >= C++17 (#72701)
<filesystem> is a C++17 addition. In C++11 and C++14 modes, we actually
have all the code for <filesystem> but it is hidden behind a non-inline
namespace __fs so it is not accessible. Instead of doing this unusual
dance, just guard the code for filesystem behind a classic C++17 check
like we normally do.
2023-11-28 18:41:59 -05:00

165 lines
4.8 KiB
C++

#include <filesystem>
#include "GenerateInput.h"
#include "benchmark/benchmark.h"
#include "test_iterators.h"
namespace fs = std::filesystem;
static const size_t TestNumInputs = 1024;
template <class GenInputs>
void BM_PathConstructString(benchmark::State& st, GenInputs gen) {
using fs::path;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
benchmark::DoNotOptimize(PP.native().data());
while (st.KeepRunning()) {
const path P(PP.native());
benchmark::DoNotOptimize(P.native().data());
}
st.SetComplexityN(st.range(0));
}
BENCHMARK_CAPTURE(BM_PathConstructString, large_string, getRandomStringInputs)->Range(8, TestNumInputs)->Complexity();
template <class GenInputs>
void BM_PathConstructCStr(benchmark::State& st, GenInputs gen) {
using fs::path;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
benchmark::DoNotOptimize(PP.native().data());
while (st.KeepRunning()) {
const path P(PP.native().c_str());
benchmark::DoNotOptimize(P.native().data());
}
}
BENCHMARK_CAPTURE(BM_PathConstructCStr, large_string, getRandomStringInputs)->Arg(TestNumInputs);
template <template <class...> class ItType, class GenInputs>
void BM_PathConstructIter(benchmark::State& st, GenInputs gen) {
using fs::path;
using Iter = ItType<std::string::const_iterator>;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
auto Start = Iter(PP.native().begin());
auto End = Iter(PP.native().end());
benchmark::DoNotOptimize(PP.native().data());
benchmark::DoNotOptimize(Start);
benchmark::DoNotOptimize(End);
while (st.KeepRunning()) {
const path P(Start, End);
benchmark::DoNotOptimize(P.native().data());
}
st.SetComplexityN(st.range(0));
}
template <class GenInputs>
void BM_PathConstructInputIter(benchmark::State& st, GenInputs gen) {
BM_PathConstructIter<cpp17_input_iterator>(st, gen);
}
template <class GenInputs>
void BM_PathConstructForwardIter(benchmark::State& st, GenInputs gen) {
BM_PathConstructIter<forward_iterator>(st, gen);
}
BENCHMARK_CAPTURE(BM_PathConstructInputIter, large_string, getRandomStringInputs)
->Range(8, TestNumInputs)
->Complexity();
BENCHMARK_CAPTURE(BM_PathConstructForwardIter, large_string, getRandomStringInputs)
->Range(8, TestNumInputs)
->Complexity();
template <class GenInputs>
void BM_PathIterateMultipleTimes(benchmark::State& st, GenInputs gen) {
using fs::path;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
benchmark::DoNotOptimize(PP.native().data());
while (st.KeepRunning()) {
for (auto const& E : PP) {
benchmark::DoNotOptimize(E.native().data());
}
benchmark::ClobberMemory();
}
st.SetComplexityN(st.range(0));
}
BENCHMARK_CAPTURE(BM_PathIterateMultipleTimes, iterate_elements, getRandomStringInputs)
->Range(8, TestNumInputs)
->Complexity();
template <class GenInputs>
void BM_PathIterateOnce(benchmark::State& st, GenInputs gen) {
using fs::path;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
benchmark::DoNotOptimize(PP.native().data());
while (st.KeepRunning()) {
const path P = PP.native();
for (auto const& E : P) {
benchmark::DoNotOptimize(E.native().data());
}
benchmark::ClobberMemory();
}
st.SetComplexityN(st.range(0));
}
BENCHMARK_CAPTURE(BM_PathIterateOnce, iterate_elements, getRandomStringInputs)->Range(8, TestNumInputs)->Complexity();
template <class GenInputs>
void BM_PathIterateOnceBackwards(benchmark::State& st, GenInputs gen) {
using fs::path;
const auto in = gen(st.range(0));
path PP;
for (auto& Part : in)
PP /= Part;
benchmark::DoNotOptimize(PP.native().data());
while (st.KeepRunning()) {
const path P = PP.native();
const auto B = P.begin();
auto I = P.end();
while (I != B) {
--I;
benchmark::DoNotOptimize(*I);
}
benchmark::DoNotOptimize(*I);
}
}
BENCHMARK_CAPTURE(BM_PathIterateOnceBackwards, iterate_elements, getRandomStringInputs)->Arg(TestNumInputs);
static fs::path getRandomPaths(int NumParts, int PathLen) {
fs::path Result;
while (NumParts--) {
std::string Part = getRandomString(PathLen);
Result /= Part;
}
return Result;
}
template <class GenInput>
void BM_LexicallyNormal(benchmark::State& st, GenInput gen, size_t PathLen) {
using fs::path;
auto In = gen(st.range(0), PathLen);
benchmark::DoNotOptimize(&In);
while (st.KeepRunning()) {
benchmark::DoNotOptimize(In.lexically_normal());
}
st.SetComplexityN(st.range(0));
}
BENCHMARK_CAPTURE(BM_LexicallyNormal, small_path, getRandomPaths, /*PathLen*/ 5)
->RangeMultiplier(2)
->Range(2, 256)
->Complexity();
BENCHMARK_CAPTURE(BM_LexicallyNormal, large_path, getRandomPaths, /*PathLen*/ 32)
->RangeMultiplier(2)
->Range(2, 256)
->Complexity();
BENCHMARK_MAIN();