mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-01 13:20:25 +00:00
8b8d0055fe
Symbol's dtors are not called because they are allocated using BumpPtrAllocators. So, members of std::unique_ptr type are not freed when symbols are deallocated. This patch is to allocate Thunks using BumpPtrAllocators. llvm-svn: 274896
830 lines
27 KiB
C++
830 lines
27 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Driver.h"
|
|
#include "Error.h"
|
|
#include "InputSection.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::sys::fs;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// Returns "(internal)", "foo.a(bar.o)" or "baz.o".
|
|
std::string elf::getFilename(InputFile *F) {
|
|
if (!F)
|
|
return "(internal)";
|
|
if (!F->ArchiveName.empty())
|
|
return (F->ArchiveName + "(" + F->getName() + ")").str();
|
|
return F->getName();
|
|
}
|
|
|
|
template <class ELFT>
|
|
static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
|
|
std::error_code EC;
|
|
ELFFile<ELFT> F(MB.getBuffer(), EC);
|
|
check(EC);
|
|
return F;
|
|
}
|
|
|
|
template <class ELFT> static ELFKind getELFKind() {
|
|
if (ELFT::TargetEndianness == support::little)
|
|
return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
|
|
return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
|
|
}
|
|
|
|
template <class ELFT>
|
|
ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
|
|
: InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
|
|
EKind = getELFKind<ELFT>();
|
|
EMachine = ELFObj.getHeader()->e_machine;
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
|
|
if (!Symtab)
|
|
return Elf_Sym_Range(nullptr, nullptr);
|
|
Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
|
|
uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
|
|
uint32_t FirstNonLocal = Symtab->sh_info;
|
|
if (FirstNonLocal > NumSymbols)
|
|
fatal("invalid sh_info in symbol table");
|
|
|
|
if (OnlyGlobals)
|
|
return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
|
|
return makeArrayRef(Syms.begin(), Syms.end());
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
|
|
uint32_t I = Sym.st_shndx;
|
|
if (I == ELF::SHN_XINDEX)
|
|
return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
|
|
if (I >= ELF::SHN_LORESERVE)
|
|
return 0;
|
|
return I;
|
|
}
|
|
|
|
template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
|
|
if (!Symtab)
|
|
return;
|
|
StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
|
|
}
|
|
|
|
template <class ELFT>
|
|
elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
|
|
: ELFFileBase<ELFT>(Base::ObjectKind, M) {}
|
|
|
|
template <class ELFT>
|
|
ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
|
|
if (!this->Symtab)
|
|
return this->SymbolBodies;
|
|
uint32_t FirstNonLocal = this->Symtab->sh_info;
|
|
return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
|
|
}
|
|
|
|
template <class ELFT>
|
|
ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
|
|
if (!this->Symtab)
|
|
return this->SymbolBodies;
|
|
uint32_t FirstNonLocal = this->Symtab->sh_info;
|
|
return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
|
|
}
|
|
|
|
template <class ELFT>
|
|
ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
|
|
if (!this->Symtab)
|
|
return this->SymbolBodies;
|
|
return makeArrayRef(this->SymbolBodies).slice(1);
|
|
}
|
|
|
|
template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
|
|
if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
|
|
return MipsOptions->Reginfo->ri_gp_value;
|
|
if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
|
|
return MipsReginfo->Reginfo->ri_gp_value;
|
|
return 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
|
|
// Read section and symbol tables.
|
|
initializeSections(ComdatGroups);
|
|
initializeSymbols();
|
|
}
|
|
|
|
// Sections with SHT_GROUP and comdat bits define comdat section groups.
|
|
// They are identified and deduplicated by group name. This function
|
|
// returns a group name.
|
|
template <class ELFT>
|
|
StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
|
|
const ELFFile<ELFT> &Obj = this->ELFObj;
|
|
uint32_t SymtabdSectionIndex = Sec.sh_link;
|
|
const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex));
|
|
uint32_t SymIndex = Sec.sh_info;
|
|
const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex);
|
|
StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec));
|
|
return check(Sym->getName(StringTable));
|
|
}
|
|
|
|
template <class ELFT>
|
|
ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
|
|
elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
|
|
const ELFFile<ELFT> &Obj = this->ELFObj;
|
|
ArrayRef<Elf_Word> Entries =
|
|
check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
|
|
if (Entries.empty() || Entries[0] != GRP_COMDAT)
|
|
fatal("unsupported SHT_GROUP format");
|
|
return Entries.slice(1);
|
|
}
|
|
|
|
template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) {
|
|
typedef typename ELFT::uint uintX_t;
|
|
|
|
// We don't merge sections if -O0 (default is -O1). This makes sometimes
|
|
// the linker significantly faster, although the output will be bigger.
|
|
if (Config->Optimize == 0)
|
|
return false;
|
|
|
|
uintX_t Flags = Sec.sh_flags;
|
|
if (!(Flags & SHF_MERGE))
|
|
return false;
|
|
if (Flags & SHF_WRITE)
|
|
fatal("writable SHF_MERGE sections are not supported");
|
|
uintX_t EntSize = Sec.sh_entsize;
|
|
if (!EntSize || Sec.sh_size % EntSize)
|
|
fatal("SHF_MERGE section size must be a multiple of sh_entsize");
|
|
|
|
// Don't try to merge if the alignment is larger than the sh_entsize and this
|
|
// is not SHF_STRINGS.
|
|
//
|
|
// Since this is not a SHF_STRINGS, we would need to pad after every entity.
|
|
// It would be equivalent for the producer of the .o to just set a larger
|
|
// sh_entsize.
|
|
if (Flags & SHF_STRINGS)
|
|
return true;
|
|
|
|
return Sec.sh_addralign <= EntSize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void elf::ObjectFile<ELFT>::initializeSections(
|
|
DenseSet<StringRef> &ComdatGroups) {
|
|
uint64_t Size = this->ELFObj.getNumSections();
|
|
Sections.resize(Size);
|
|
unsigned I = -1;
|
|
const ELFFile<ELFT> &Obj = this->ELFObj;
|
|
for (const Elf_Shdr &Sec : Obj.sections()) {
|
|
++I;
|
|
if (Sections[I] == &InputSection<ELFT>::Discarded)
|
|
continue;
|
|
|
|
switch (Sec.sh_type) {
|
|
case SHT_GROUP:
|
|
Sections[I] = &InputSection<ELFT>::Discarded;
|
|
if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
|
|
continue;
|
|
for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
|
|
if (SecIndex >= Size)
|
|
fatal("invalid section index in group");
|
|
Sections[SecIndex] = &InputSection<ELFT>::Discarded;
|
|
}
|
|
break;
|
|
case SHT_SYMTAB:
|
|
this->Symtab = &Sec;
|
|
break;
|
|
case SHT_SYMTAB_SHNDX:
|
|
this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
|
|
break;
|
|
case SHT_STRTAB:
|
|
case SHT_NULL:
|
|
break;
|
|
case SHT_RELA:
|
|
case SHT_REL: {
|
|
// This section contains relocation information.
|
|
// If -r is given, we do not interpret or apply relocation
|
|
// but just copy relocation sections to output.
|
|
if (Config->Relocatable) {
|
|
Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
|
|
break;
|
|
}
|
|
|
|
// Find the relocation target section and associate this
|
|
// section with it.
|
|
InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
|
|
if (!Target)
|
|
break;
|
|
if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
|
|
S->RelocSections.push_back(&Sec);
|
|
break;
|
|
}
|
|
if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
|
|
if (S->RelocSection)
|
|
fatal("multiple relocation sections to .eh_frame are not supported");
|
|
S->RelocSection = &Sec;
|
|
break;
|
|
}
|
|
fatal("relocations pointing to SHF_MERGE are not supported");
|
|
}
|
|
case SHT_ARM_ATTRIBUTES:
|
|
// FIXME: ARM meta-data section. At present attributes are ignored,
|
|
// they can be used to reason about object compatibility.
|
|
Sections[I] = &InputSection<ELFT>::Discarded;
|
|
break;
|
|
default:
|
|
Sections[I] = createInputSection(Sec);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase<ELFT> *
|
|
elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
|
|
uint32_t Idx = Sec.sh_info;
|
|
if (Idx >= Sections.size())
|
|
fatal("invalid relocated section index");
|
|
InputSectionBase<ELFT> *Target = Sections[Idx];
|
|
|
|
// Strictly speaking, a relocation section must be included in the
|
|
// group of the section it relocates. However, LLVM 3.3 and earlier
|
|
// would fail to do so, so we gracefully handle that case.
|
|
if (Target == &InputSection<ELFT>::Discarded)
|
|
return nullptr;
|
|
|
|
if (!Target)
|
|
fatal("unsupported relocation reference");
|
|
return Target;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase<ELFT> *
|
|
elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
|
|
StringRef Name = check(this->ELFObj.getSectionName(&Sec));
|
|
|
|
// .note.GNU-stack is a marker section to control the presence of
|
|
// PT_GNU_STACK segment in outputs. Since the presence of the segment
|
|
// is controlled only by the command line option (-z execstack) in LLD,
|
|
// .note.GNU-stack is ignored.
|
|
if (Name == ".note.GNU-stack")
|
|
return &InputSection<ELFT>::Discarded;
|
|
|
|
if (Name == ".note.GNU-split-stack") {
|
|
error("objects using splitstacks are not supported");
|
|
return &InputSection<ELFT>::Discarded;
|
|
}
|
|
|
|
if (Config->StripDebug && Name.startswith(".debug"))
|
|
return &InputSection<ELFT>::Discarded;
|
|
|
|
// A MIPS object file has a special sections that contain register
|
|
// usage info, which need to be handled by the linker specially.
|
|
if (Config->EMachine == EM_MIPS) {
|
|
if (Name == ".reginfo") {
|
|
MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec));
|
|
return MipsReginfo.get();
|
|
}
|
|
if (Name == ".MIPS.options") {
|
|
MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec));
|
|
return MipsOptions.get();
|
|
}
|
|
}
|
|
|
|
// We dont need special handling of .eh_frame sections if relocatable
|
|
// output was choosen. Proccess them as usual input sections.
|
|
if (!Config->Relocatable && Name == ".eh_frame")
|
|
return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec);
|
|
if (shouldMerge<ELFT>(Sec))
|
|
return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec);
|
|
return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
|
|
}
|
|
|
|
// Print the module names which reference the notified
|
|
// symbols provided through -y or --trace-symbol option.
|
|
template <class ELFT>
|
|
void elf::ObjectFile<ELFT>::traceUndefined(StringRef Name) {
|
|
if (!Config->TraceSymbol.empty() && Config->TraceSymbol.count(Name))
|
|
outs() << getFilename(this) << ": reference to " << Name << "\n";
|
|
}
|
|
|
|
template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
|
|
this->initStringTable();
|
|
Elf_Sym_Range Syms = this->getElfSymbols(false);
|
|
uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
|
|
SymbolBodies.reserve(NumSymbols);
|
|
for (const Elf_Sym &Sym : Syms)
|
|
SymbolBodies.push_back(createSymbolBody(&Sym));
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase<ELFT> *
|
|
elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
|
|
uint32_t Index = this->getSectionIndex(Sym);
|
|
if (Index == 0)
|
|
return nullptr;
|
|
if (Index >= Sections.size() || !Sections[Index])
|
|
fatal("invalid section index");
|
|
InputSectionBase<ELFT> *S = Sections[Index];
|
|
if (S == &InputSectionBase<ELFT>::Discarded)
|
|
return S;
|
|
return S->Repl;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
|
|
unsigned char Binding = Sym->getBinding();
|
|
InputSectionBase<ELFT> *Sec = getSection(*Sym);
|
|
if (Binding == STB_LOCAL) {
|
|
if (Sym->st_shndx == SHN_UNDEF)
|
|
return new (this->Alloc)
|
|
Undefined(Sym->st_name, Sym->st_other, Sym->getType());
|
|
return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec);
|
|
}
|
|
|
|
StringRef Name = check(Sym->getName(this->StringTable));
|
|
|
|
switch (Sym->st_shndx) {
|
|
case SHN_UNDEF:
|
|
traceUndefined(Name);
|
|
return elf::Symtab<ELFT>::X
|
|
->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
|
|
/*CanOmitFromDynSym*/ false, this)
|
|
->body();
|
|
case SHN_COMMON:
|
|
return elf::Symtab<ELFT>::X
|
|
->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
|
|
Sym->getType(), this)
|
|
->body();
|
|
}
|
|
|
|
switch (Binding) {
|
|
default:
|
|
fatal("unexpected binding");
|
|
case STB_GLOBAL:
|
|
case STB_WEAK:
|
|
case STB_GNU_UNIQUE:
|
|
if (Sec == &InputSection<ELFT>::Discarded)
|
|
return elf::Symtab<ELFT>::X
|
|
->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
|
|
/*CanOmitFromDynSym*/ false, this)
|
|
->body();
|
|
return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ArchiveFile::parse() {
|
|
File = check(Archive::create(MB), "failed to parse archive");
|
|
|
|
// Read the symbol table to construct Lazy objects.
|
|
for (const Archive::Symbol &Sym : File->symbols())
|
|
Symtab<ELFT>::X->addLazyArchive(this, Sym);
|
|
}
|
|
|
|
// Returns a buffer pointing to a member file containing a given symbol.
|
|
MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
|
|
Archive::Child C =
|
|
check(Sym->getMember(),
|
|
"could not get the member for symbol " + Sym->getName());
|
|
|
|
if (!Seen.insert(C.getChildOffset()).second)
|
|
return MemoryBufferRef();
|
|
|
|
MemoryBufferRef Ret =
|
|
check(C.getMemoryBufferRef(),
|
|
"could not get the buffer for the member defining symbol " +
|
|
Sym->getName());
|
|
|
|
if (C.getParent()->isThin() && Driver->Cpio)
|
|
Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
|
|
Ret.getBuffer());
|
|
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
|
|
: ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
|
|
|
|
template <class ELFT>
|
|
const typename ELFT::Shdr *
|
|
SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
|
|
uint32_t Index = this->getSectionIndex(Sym);
|
|
if (Index == 0)
|
|
return nullptr;
|
|
return check(this->ELFObj.getSection(Index));
|
|
}
|
|
|
|
// Partially parse the shared object file so that we can call
|
|
// getSoName on this object.
|
|
template <class ELFT> void SharedFile<ELFT>::parseSoName() {
|
|
typedef typename ELFT::Dyn Elf_Dyn;
|
|
typedef typename ELFT::uint uintX_t;
|
|
const Elf_Shdr *DynamicSec = nullptr;
|
|
|
|
const ELFFile<ELFT> Obj = this->ELFObj;
|
|
for (const Elf_Shdr &Sec : Obj.sections()) {
|
|
switch (Sec.sh_type) {
|
|
default:
|
|
continue;
|
|
case SHT_DYNSYM:
|
|
this->Symtab = &Sec;
|
|
break;
|
|
case SHT_DYNAMIC:
|
|
DynamicSec = &Sec;
|
|
break;
|
|
case SHT_SYMTAB_SHNDX:
|
|
this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
|
|
break;
|
|
case SHT_GNU_versym:
|
|
this->VersymSec = &Sec;
|
|
break;
|
|
case SHT_GNU_verdef:
|
|
this->VerdefSec = &Sec;
|
|
break;
|
|
}
|
|
}
|
|
|
|
this->initStringTable();
|
|
SoName = this->getName();
|
|
|
|
if (!DynamicSec)
|
|
return;
|
|
auto *Begin =
|
|
reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
|
|
const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
|
|
|
|
for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
|
|
if (Dyn.d_tag == DT_SONAME) {
|
|
uintX_t Val = Dyn.getVal();
|
|
if (Val >= this->StringTable.size())
|
|
fatal("invalid DT_SONAME entry");
|
|
SoName = StringRef(this->StringTable.data() + Val);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse the version definitions in the object file if present. Returns a vector
|
|
// whose nth element contains a pointer to the Elf_Verdef for version identifier
|
|
// n. Version identifiers that are not definitions map to nullptr. The array
|
|
// always has at least length 1.
|
|
template <class ELFT>
|
|
std::vector<const typename ELFT::Verdef *>
|
|
SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
|
|
std::vector<const Elf_Verdef *> Verdefs(1);
|
|
// We only need to process symbol versions for this DSO if it has both a
|
|
// versym and a verdef section, which indicates that the DSO contains symbol
|
|
// version definitions.
|
|
if (!VersymSec || !VerdefSec)
|
|
return Verdefs;
|
|
|
|
// The location of the first global versym entry.
|
|
Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
|
|
VersymSec->sh_offset) +
|
|
this->Symtab->sh_info;
|
|
|
|
// We cannot determine the largest verdef identifier without inspecting
|
|
// every Elf_Verdef, but both bfd and gold assign verdef identifiers
|
|
// sequentially starting from 1, so we predict that the largest identifier
|
|
// will be VerdefCount.
|
|
unsigned VerdefCount = VerdefSec->sh_info;
|
|
Verdefs.resize(VerdefCount + 1);
|
|
|
|
// Build the Verdefs array by following the chain of Elf_Verdef objects
|
|
// from the start of the .gnu.version_d section.
|
|
const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
|
|
for (unsigned I = 0; I != VerdefCount; ++I) {
|
|
auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
|
|
Verdef += CurVerdef->vd_next;
|
|
unsigned VerdefIndex = CurVerdef->vd_ndx;
|
|
if (Verdefs.size() <= VerdefIndex)
|
|
Verdefs.resize(VerdefIndex + 1);
|
|
Verdefs[VerdefIndex] = CurVerdef;
|
|
}
|
|
|
|
return Verdefs;
|
|
}
|
|
|
|
// Fully parse the shared object file. This must be called after parseSoName().
|
|
template <class ELFT> void SharedFile<ELFT>::parseRest() {
|
|
// Create mapping from version identifiers to Elf_Verdef entries.
|
|
const Elf_Versym *Versym = nullptr;
|
|
std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
|
|
|
|
Elf_Sym_Range Syms = this->getElfSymbols(true);
|
|
for (const Elf_Sym &Sym : Syms) {
|
|
unsigned VersymIndex = 0;
|
|
if (Versym) {
|
|
VersymIndex = Versym->vs_index;
|
|
++Versym;
|
|
}
|
|
|
|
StringRef Name = check(Sym.getName(this->StringTable));
|
|
if (Sym.isUndefined()) {
|
|
Undefs.push_back(Name);
|
|
continue;
|
|
}
|
|
|
|
if (Versym) {
|
|
// Ignore local symbols and non-default versions.
|
|
if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
|
|
continue;
|
|
}
|
|
|
|
const Elf_Verdef *V =
|
|
VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
|
|
elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
|
|
}
|
|
}
|
|
|
|
static ELFKind getELFKind(MemoryBufferRef MB) {
|
|
std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context);
|
|
Triple TheTriple(TripleStr);
|
|
bool Is64Bits = TheTriple.isArch64Bit();
|
|
if (TheTriple.isLittleEndian())
|
|
return Is64Bits ? ELF64LEKind : ELF32LEKind;
|
|
return Is64Bits ? ELF64BEKind : ELF32BEKind;
|
|
}
|
|
|
|
static uint8_t getMachineKind(MemoryBufferRef MB) {
|
|
std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context);
|
|
switch (Triple(TripleStr).getArch()) {
|
|
case Triple::aarch64:
|
|
return EM_AARCH64;
|
|
case Triple::arm:
|
|
return EM_ARM;
|
|
case Triple::mips:
|
|
case Triple::mipsel:
|
|
case Triple::mips64:
|
|
case Triple::mips64el:
|
|
return EM_MIPS;
|
|
case Triple::ppc:
|
|
return EM_PPC;
|
|
case Triple::ppc64:
|
|
return EM_PPC64;
|
|
case Triple::x86:
|
|
return EM_386;
|
|
case Triple::x86_64:
|
|
return EM_X86_64;
|
|
default:
|
|
fatal("could not infer e_machine from bitcode target triple " + TripleStr);
|
|
}
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
|
|
EKind = getELFKind(MB);
|
|
EMachine = getMachineKind(MB);
|
|
}
|
|
|
|
static uint8_t getGvVisibility(const GlobalValue *GV) {
|
|
switch (GV->getVisibility()) {
|
|
case GlobalValue::DefaultVisibility:
|
|
return STV_DEFAULT;
|
|
case GlobalValue::HiddenVisibility:
|
|
return STV_HIDDEN;
|
|
case GlobalValue::ProtectedVisibility:
|
|
return STV_PROTECTED;
|
|
}
|
|
llvm_unreachable("unknown visibility");
|
|
}
|
|
|
|
template <class ELFT>
|
|
Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
|
|
const IRObjectFile &Obj,
|
|
const BasicSymbolRef &Sym) {
|
|
const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
|
|
|
|
SmallString<64> Name;
|
|
raw_svector_ostream OS(Name);
|
|
Sym.printName(OS);
|
|
StringRef NameRef = Saver.save(StringRef(Name));
|
|
|
|
uint32_t Flags = Sym.getFlags();
|
|
bool IsWeak = Flags & BasicSymbolRef::SF_Weak;
|
|
uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL;
|
|
|
|
uint8_t Type = STT_NOTYPE;
|
|
bool CanOmitFromDynSym = false;
|
|
// FIXME: Expose a thread-local flag for module asm symbols.
|
|
if (GV) {
|
|
if (GV->isThreadLocal())
|
|
Type = STT_TLS;
|
|
CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
|
|
}
|
|
|
|
uint8_t Visibility;
|
|
if (GV)
|
|
Visibility = getGvVisibility(GV);
|
|
else
|
|
// FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
|
|
// protected visibility.
|
|
Visibility = STV_DEFAULT;
|
|
|
|
if (GV)
|
|
if (const Comdat *C = GV->getComdat())
|
|
if (!KeptComdats.count(C))
|
|
return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
|
|
CanOmitFromDynSym, this);
|
|
|
|
const Module &M = Obj.getModule();
|
|
if (Flags & BasicSymbolRef::SF_Undefined)
|
|
return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
|
|
CanOmitFromDynSym, this);
|
|
if (Flags & BasicSymbolRef::SF_Common) {
|
|
// FIXME: Set SF_Common flag correctly for module asm symbols, and expose
|
|
// size and alignment.
|
|
assert(GV);
|
|
const DataLayout &DL = M.getDataLayout();
|
|
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
|
|
return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
|
|
Binding, Visibility, STT_OBJECT, this);
|
|
}
|
|
return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type,
|
|
CanOmitFromDynSym, this);
|
|
}
|
|
|
|
bool BitcodeFile::shouldSkip(uint32_t Flags) {
|
|
return !(Flags & BasicSymbolRef::SF_Global) ||
|
|
(Flags & BasicSymbolRef::SF_FormatSpecific);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
|
|
Obj = check(IRObjectFile::create(MB, Driver->Context));
|
|
const Module &M = Obj->getModule();
|
|
|
|
DenseSet<const Comdat *> KeptComdats;
|
|
for (const auto &P : M.getComdatSymbolTable()) {
|
|
StringRef N = Saver.save(P.first());
|
|
if (ComdatGroups.insert(N).second)
|
|
KeptComdats.insert(&P.second);
|
|
}
|
|
|
|
for (const BasicSymbolRef &Sym : Obj->symbols())
|
|
if (!shouldSkip(Sym.getFlags()))
|
|
Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
|
|
}
|
|
|
|
template <template <class> class T>
|
|
static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
|
|
unsigned char Size;
|
|
unsigned char Endian;
|
|
std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
|
|
if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
|
|
fatal("invalid data encoding: " + MB.getBufferIdentifier());
|
|
|
|
std::unique_ptr<InputFile> Obj;
|
|
if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
|
|
Obj.reset(new T<ELF32LE>(MB));
|
|
else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
|
|
Obj.reset(new T<ELF32BE>(MB));
|
|
else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
|
|
Obj.reset(new T<ELF64LE>(MB));
|
|
else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
|
|
Obj.reset(new T<ELF64BE>(MB));
|
|
else
|
|
fatal("invalid file class: " + MB.getBufferIdentifier());
|
|
|
|
if (!Config->FirstElf)
|
|
Config->FirstElf = Obj.get();
|
|
return Obj;
|
|
}
|
|
|
|
static bool isBitcode(MemoryBufferRef MB) {
|
|
using namespace sys::fs;
|
|
return identify_magic(MB.getBuffer()) == file_magic::bitcode;
|
|
}
|
|
|
|
std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
|
|
StringRef ArchiveName) {
|
|
std::unique_ptr<InputFile> F;
|
|
if (isBitcode(MB))
|
|
F.reset(new BitcodeFile(MB));
|
|
else
|
|
F = createELFFile<ObjectFile>(MB);
|
|
F->ArchiveName = ArchiveName;
|
|
return F;
|
|
}
|
|
|
|
std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
|
|
return createELFFile<SharedFile>(MB);
|
|
}
|
|
|
|
MemoryBufferRef LazyObjectFile::getBuffer() {
|
|
if (Seen)
|
|
return MemoryBufferRef();
|
|
Seen = true;
|
|
return MB;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void LazyObjectFile::parse() {
|
|
for (StringRef Sym : getSymbols())
|
|
Symtab<ELFT>::X->addLazyObject(Sym, *this);
|
|
}
|
|
|
|
template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
|
|
typedef typename ELFT::Shdr Elf_Shdr;
|
|
typedef typename ELFT::Sym Elf_Sym;
|
|
typedef typename ELFT::SymRange Elf_Sym_Range;
|
|
|
|
const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
|
|
for (const Elf_Shdr &Sec : Obj.sections()) {
|
|
if (Sec.sh_type != SHT_SYMTAB)
|
|
continue;
|
|
Elf_Sym_Range Syms = Obj.symbols(&Sec);
|
|
uint32_t FirstNonLocal = Sec.sh_info;
|
|
StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
|
|
std::vector<StringRef> V;
|
|
for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
|
|
if (Sym.st_shndx != SHN_UNDEF)
|
|
V.push_back(check(Sym.getName(StringTable)));
|
|
return V;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
|
|
LLVMContext Context;
|
|
std::unique_ptr<IRObjectFile> Obj =
|
|
check(IRObjectFile::create(this->MB, Context));
|
|
std::vector<StringRef> V;
|
|
for (const BasicSymbolRef &Sym : Obj->symbols()) {
|
|
uint32_t Flags = Sym.getFlags();
|
|
if (BitcodeFile::shouldSkip(Flags))
|
|
continue;
|
|
if (Flags & BasicSymbolRef::SF_Undefined)
|
|
continue;
|
|
SmallString<64> Name;
|
|
raw_svector_ostream OS(Name);
|
|
Sym.printName(OS);
|
|
V.push_back(Saver.save(StringRef(Name)));
|
|
}
|
|
return V;
|
|
}
|
|
|
|
// Returns a vector of globally-visible defined symbol names.
|
|
std::vector<StringRef> LazyObjectFile::getSymbols() {
|
|
if (isBitcode(this->MB))
|
|
return getBitcodeSymbols();
|
|
|
|
unsigned char Size;
|
|
unsigned char Endian;
|
|
std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
|
|
if (Size == ELFCLASS32) {
|
|
if (Endian == ELFDATA2LSB)
|
|
return getElfSymbols<ELF32LE>();
|
|
return getElfSymbols<ELF32BE>();
|
|
}
|
|
if (Endian == ELFDATA2LSB)
|
|
return getElfSymbols<ELF64LE>();
|
|
return getElfSymbols<ELF64BE>();
|
|
}
|
|
|
|
template void ArchiveFile::parse<ELF32LE>();
|
|
template void ArchiveFile::parse<ELF32BE>();
|
|
template void ArchiveFile::parse<ELF64LE>();
|
|
template void ArchiveFile::parse<ELF64BE>();
|
|
|
|
template void BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &);
|
|
template void BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &);
|
|
template void BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &);
|
|
template void BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &);
|
|
|
|
template void LazyObjectFile::parse<ELF32LE>();
|
|
template void LazyObjectFile::parse<ELF32BE>();
|
|
template void LazyObjectFile::parse<ELF64LE>();
|
|
template void LazyObjectFile::parse<ELF64BE>();
|
|
|
|
template class elf::ELFFileBase<ELF32LE>;
|
|
template class elf::ELFFileBase<ELF32BE>;
|
|
template class elf::ELFFileBase<ELF64LE>;
|
|
template class elf::ELFFileBase<ELF64BE>;
|
|
|
|
template class elf::ObjectFile<ELF32LE>;
|
|
template class elf::ObjectFile<ELF32BE>;
|
|
template class elf::ObjectFile<ELF64LE>;
|
|
template class elf::ObjectFile<ELF64BE>;
|
|
|
|
template class elf::SharedFile<ELF32LE>;
|
|
template class elf::SharedFile<ELF32BE>;
|
|
template class elf::SharedFile<ELF64LE>;
|
|
template class elf::SharedFile<ELF64BE>;
|