llvm with tablegen backend for capstone disassembler
Go to file
Vitaly Buka 8df3e1fd86 Add option to symbolize inline frames for InternalSymbolizer
Summary:
Currently, there is no way to let the `InternalSymbolizer` implemented
functions know if inline frames should be symbolized. This patch updates
the function `__sanitizer_symbolize_code` to include a parameter for
this ASAN option and toggle between LLVM symbolization functions when
appropriate.

Fixes the following two failing tests when internal symbolization is
enabled:
```
SanitizerCommon-*-x86_64-Linux :: print-stack-trace.cpp
SanitizerCommon-*-x86_64-Linux :: symbolize_pc_inline.cpp
```

Reviewers: vitalybuka, kcc, filcab

Reviewed By: vitalybuka

Subscribers: #sanitizers

Tags: #sanitizers

Differential Revision: https://reviews.llvm.org/D79280
2020-06-23 19:56:53 -07:00
clang [PowerPC] Add support for vector bool __int128 for Power10 2020-06-23 21:25:56 -05:00
clang-tools-extra [openmp] Add missing dependencies for OMP.h.inc after d90443b 2020-06-23 11:48:04 -04:00
compiler-rt Add option to symbolize inline frames for InternalSymbolizer 2020-06-23 19:56:53 -07:00
debuginfo-tests [Dexter] Add --source-dir-root flag 2020-06-18 09:29:08 -07:00
flang [flang] add RTBuilder.h 2020-06-23 14:54:45 -07:00
libc [libc][Obvious] Fix few typos in tests. 2020-06-23 13:11:41 -07:00
libclc
libcxx [Coroutines] Fix a few failing tests 2020-06-23 10:48:17 -07:00
libcxxabi [libc++abi] Allow code-signing executables when running the tests 2020-06-23 09:03:22 -04:00
libunwind unwind: EHABISectionIterator operator!=, constify operator- 2020-06-18 08:54:34 -07:00
lld [lld][ELF][AArch64] Handle R_AARCH64_PLT32 relocation 2020-06-23 16:10:07 -07:00
lldb [lldb/Lua] Fix typo: s/stdout/stderr/ 2020-06-23 14:19:03 -07:00
llvm [BitcodeReader] Fix DelayedShuffle handling for ConstantExpr shuffles. 2020-06-23 19:50:30 -07:00
mlir [MLIR] [NFC] Add new line and empty line before printing modified loop 2020-06-23 17:27:43 -07:00
openmp [OpenMP][OMPT] Pass mutexinoutset to the tool 2020-06-19 12:51:18 +02:00
parallel-libs
polly
pstl
utils/arcanist
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore Add GNU idutils tag filename to .gitignore. 2020-06-12 16:06:44 -04:00
CONTRIBUTING.md
README.md Revert 'This is a test commit - ded57e1a06 2020-06-18 01:03:42 +05:30

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.