llvm-capstone/clang/lib/StaticAnalyzer/Checkers/CallAndMessageChecker.cpp
Kristof Umann 8fd74ebfc0 [analyzer] Reimplement dependencies between checkers
Unfortunately, up until now, the fact that certain checkers depended on one
another was known, but how these actually unfolded was hidden deep within the
implementation. For example, many checkers (like RetainCount, Malloc or CString)
modelled a certain functionality, and exposed certain reportable bug types to
the user. For example, while MallocChecker models many many different types of
memory handling, the actual "unix.MallocChecker" checker the user was exposed to
was merely and option to this modeling part.

Other than this being an ugly mess, this issue made resolving the checker naming
issue almost impossible. (The checker naming issue being that if a checker
registered more than one checker within its registry function, both checker
object recieved the same name) Also, if the user explicitly disabled a checker
that was a dependency of another that _was_ explicitly enabled, it implicitly,
without "telling" the user, reenabled it.

Clearly, changing this to a well structured, declarative form, where the
handling of dependencies are done on a higher level is very much preferred.

This patch, among the detailed things later, makes checkers declare their
dependencies within the TableGen file Checkers.td, and exposes the same
functionality to plugins and statically linked non-generated checkers through
CheckerRegistry::addDependency. CheckerRegistry now resolves these dependencies,
makes sure that checkers are added to CheckerManager in the correct order,
and makes sure that if a dependency is disabled, so will be every checker that
depends on it.

In detail:

* Add a new field to the Checker class in CheckerBase.td called Dependencies,
which is a list of Checkers.
* Move unix checkers before cplusplus, as there is no forward declaration in
tblgen :/
* Add the following new checkers:
  - StackAddrEscapeBase
  - StackAddrEscapeBase
  - CStringModeling
  - DynamicMemoryModeling (base of the MallocChecker family)
  - IteratorModeling (base of the IteratorChecker family)
  - ValistBase
  - SecuritySyntaxChecker (base of bcmp, bcopy, etc...)
  - NSOrCFErrorDerefChecker (base of NSErrorChecker and  CFErrorChecker)
  - IvarInvalidationModeling (base of IvarInvalidation checker family)
  - RetainCountBase (base of RetainCount and OSObjectRetainCount)
* Clear up and registry functions in MallocChecker, happily remove old FIXMEs.
* Add a new addDependency function to CheckerRegistry.
* Neatly format RUN lines in files I looked at while debugging.

Big thanks to Artem Degrachev for all the guidance through this project!

Differential Revision: https://reviews.llvm.org/D54438

llvm-svn: 352287
2019-01-26 20:06:54 +00:00

621 lines
22 KiB
C++

//===--- CallAndMessageChecker.cpp ------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This defines CallAndMessageChecker, a builtin checker that checks for various
// errors of call and objc message expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace {
class CallAndMessageChecker
: public Checker< check::PreStmt<CallExpr>,
check::PreStmt<CXXDeleteExpr>,
check::PreObjCMessage,
check::ObjCMessageNil,
check::PreCall > {
mutable std::unique_ptr<BugType> BT_call_null;
mutable std::unique_ptr<BugType> BT_call_undef;
mutable std::unique_ptr<BugType> BT_cxx_call_null;
mutable std::unique_ptr<BugType> BT_cxx_call_undef;
mutable std::unique_ptr<BugType> BT_call_arg;
mutable std::unique_ptr<BugType> BT_cxx_delete_undef;
mutable std::unique_ptr<BugType> BT_msg_undef;
mutable std::unique_ptr<BugType> BT_objc_prop_undef;
mutable std::unique_ptr<BugType> BT_objc_subscript_undef;
mutable std::unique_ptr<BugType> BT_msg_arg;
mutable std::unique_ptr<BugType> BT_msg_ret;
mutable std::unique_ptr<BugType> BT_call_few_args;
public:
DefaultBool Check_CallAndMessageUnInitRefArg;
CheckName CheckName_CallAndMessageUnInitRefArg;
void checkPreStmt(const CallExpr *CE, CheckerContext &C) const;
void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
/// Fill in the return value that results from messaging nil based on the
/// return type and architecture and diagnose if the return value will be
/// garbage.
void checkObjCMessageNil(const ObjCMethodCall &msg, CheckerContext &C) const;
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
private:
bool PreVisitProcessArg(CheckerContext &C, SVal V, SourceRange ArgRange,
const Expr *ArgEx, int ArgumentNumber,
bool CheckUninitFields, const CallEvent &Call,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl) const;
static void emitBadCall(BugType *BT, CheckerContext &C, const Expr *BadE);
void emitNilReceiverBug(CheckerContext &C, const ObjCMethodCall &msg,
ExplodedNode *N) const;
void HandleNilReceiver(CheckerContext &C,
ProgramStateRef state,
const ObjCMethodCall &msg) const;
void LazyInit_BT(const char *desc, std::unique_ptr<BugType> &BT) const {
if (!BT)
BT.reset(new BuiltinBug(this, desc));
}
bool uninitRefOrPointer(CheckerContext &C, const SVal &V,
SourceRange ArgRange, const Expr *ArgEx,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl, const char *BD,
int ArgumentNumber) const;
};
} // end anonymous namespace
void CallAndMessageChecker::emitBadCall(BugType *BT, CheckerContext &C,
const Expr *BadE) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto R = llvm::make_unique<BugReport>(*BT, BT->getName(), N);
if (BadE) {
R->addRange(BadE->getSourceRange());
if (BadE->isGLValue())
BadE = bugreporter::getDerefExpr(BadE);
bugreporter::trackExpressionValue(N, BadE, *R);
}
C.emitReport(std::move(R));
}
static void describeUninitializedArgumentInCall(const CallEvent &Call,
int ArgumentNumber,
llvm::raw_svector_ostream &Os) {
switch (Call.getKind()) {
case CE_ObjCMessage: {
const ObjCMethodCall &Msg = cast<ObjCMethodCall>(Call);
switch (Msg.getMessageKind()) {
case OCM_Message:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " argument in message expression is an uninitialized value";
return;
case OCM_PropertyAccess:
assert(Msg.isSetter() && "Getters have no args");
Os << "Argument for property setter is an uninitialized value";
return;
case OCM_Subscript:
if (Msg.isSetter() && (ArgumentNumber == 0))
Os << "Argument for subscript setter is an uninitialized value";
else
Os << "Subscript index is an uninitialized value";
return;
}
llvm_unreachable("Unknown message kind.");
}
case CE_Block:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " block call argument is an uninitialized value";
return;
default:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is an uninitialized value";
return;
}
}
bool CallAndMessageChecker::uninitRefOrPointer(
CheckerContext &C, const SVal &V, SourceRange ArgRange, const Expr *ArgEx,
std::unique_ptr<BugType> &BT, const ParmVarDecl *ParamDecl, const char *BD,
int ArgumentNumber) const {
if (!Check_CallAndMessageUnInitRefArg)
return false;
// No parameter declaration available, i.e. variadic function argument.
if(!ParamDecl)
return false;
// If parameter is declared as pointer to const in function declaration,
// then check if corresponding argument in function call is
// pointing to undefined symbol value (uninitialized memory).
SmallString<200> Buf;
llvm::raw_svector_ostream Os(Buf);
if (ParamDecl->getType()->isPointerType()) {
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is a pointer to uninitialized value";
} else if (ParamDecl->getType()->isReferenceType()) {
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is an uninitialized value";
} else
return false;
if(!ParamDecl->getType()->getPointeeType().isConstQualified())
return false;
if (const MemRegion *SValMemRegion = V.getAsRegion()) {
const ProgramStateRef State = C.getState();
const SVal PSV = State->getSVal(SValMemRegion, C.getASTContext().CharTy);
if (PSV.isUndef()) {
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
auto R = llvm::make_unique<BugReport>(*BT, Os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
C.emitReport(std::move(R));
}
return true;
}
}
return false;
}
namespace {
class FindUninitializedField {
public:
SmallVector<const FieldDecl *, 10> FieldChain;
private:
StoreManager &StoreMgr;
MemRegionManager &MrMgr;
Store store;
public:
FindUninitializedField(StoreManager &storeMgr, MemRegionManager &mrMgr,
Store s)
: StoreMgr(storeMgr), MrMgr(mrMgr), store(s) {}
bool Find(const TypedValueRegion *R) {
QualType T = R->getValueType();
if (const RecordType *RT = T->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl()->getDefinition();
assert(RD && "Referred record has no definition");
for (const auto *I : RD->fields()) {
const FieldRegion *FR = MrMgr.getFieldRegion(I, R);
FieldChain.push_back(I);
T = I->getType();
if (T->getAsStructureType()) {
if (Find(FR))
return true;
} else {
const SVal &V = StoreMgr.getBinding(store, loc::MemRegionVal(FR));
if (V.isUndef())
return true;
}
FieldChain.pop_back();
}
}
return false;
}
};
} // namespace
bool CallAndMessageChecker::PreVisitProcessArg(CheckerContext &C,
SVal V,
SourceRange ArgRange,
const Expr *ArgEx,
int ArgumentNumber,
bool CheckUninitFields,
const CallEvent &Call,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl
) const {
const char *BD = "Uninitialized argument value";
if (uninitRefOrPointer(C, V, ArgRange, ArgEx, BT, ParamDecl, BD,
ArgumentNumber))
return true;
if (V.isUndef()) {
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
// Generate a report for this bug.
SmallString<200> Buf;
llvm::raw_svector_ostream Os(Buf);
describeUninitializedArgumentInCall(Call, ArgumentNumber, Os);
auto R = llvm::make_unique<BugReport>(*BT, Os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
C.emitReport(std::move(R));
}
return true;
}
if (!CheckUninitFields)
return false;
if (auto LV = V.getAs<nonloc::LazyCompoundVal>()) {
const LazyCompoundValData *D = LV->getCVData();
FindUninitializedField F(C.getState()->getStateManager().getStoreManager(),
C.getSValBuilder().getRegionManager(),
D->getStore());
if (F.Find(D->getRegion())) {
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
SmallString<512> Str;
llvm::raw_svector_ostream os(Str);
os << "Passed-by-value struct argument contains uninitialized data";
if (F.FieldChain.size() == 1)
os << " (e.g., field: '" << *F.FieldChain[0] << "')";
else {
os << " (e.g., via the field chain: '";
bool first = true;
for (SmallVectorImpl<const FieldDecl *>::iterator
DI = F.FieldChain.begin(), DE = F.FieldChain.end(); DI!=DE;++DI){
if (first)
first = false;
else
os << '.';
os << **DI;
}
os << "')";
}
// Generate a report for this bug.
auto R = llvm::make_unique<BugReport>(*BT, os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
// FIXME: enhance track back for uninitialized value for arbitrary
// memregions
C.emitReport(std::move(R));
}
return true;
}
}
return false;
}
void CallAndMessageChecker::checkPreStmt(const CallExpr *CE,
CheckerContext &C) const{
const Expr *Callee = CE->getCallee()->IgnoreParens();
ProgramStateRef State = C.getState();
const LocationContext *LCtx = C.getLocationContext();
SVal L = State->getSVal(Callee, LCtx);
if (L.isUndef()) {
if (!BT_call_undef)
BT_call_undef.reset(new BuiltinBug(
this, "Called function pointer is an uninitialized pointer value"));
emitBadCall(BT_call_undef.get(), C, Callee);
return;
}
ProgramStateRef StNonNull, StNull;
std::tie(StNonNull, StNull) = State->assume(L.castAs<DefinedOrUnknownSVal>());
if (StNull && !StNonNull) {
if (!BT_call_null)
BT_call_null.reset(new BuiltinBug(
this, "Called function pointer is null (null dereference)"));
emitBadCall(BT_call_null.get(), C, Callee);
return;
}
C.addTransition(StNonNull);
}
void CallAndMessageChecker::checkPreStmt(const CXXDeleteExpr *DE,
CheckerContext &C) const {
SVal Arg = C.getSVal(DE->getArgument());
if (Arg.isUndef()) {
StringRef Desc;
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
if (!BT_cxx_delete_undef)
BT_cxx_delete_undef.reset(
new BuiltinBug(this, "Uninitialized argument value"));
if (DE->isArrayFormAsWritten())
Desc = "Argument to 'delete[]' is uninitialized";
else
Desc = "Argument to 'delete' is uninitialized";
BugType *BT = BT_cxx_delete_undef.get();
auto R = llvm::make_unique<BugReport>(*BT, Desc, N);
bugreporter::trackExpressionValue(N, DE, *R);
C.emitReport(std::move(R));
return;
}
}
void CallAndMessageChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
// If this is a call to a C++ method, check if the callee is null or
// undefined.
if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
SVal V = CC->getCXXThisVal();
if (V.isUndef()) {
if (!BT_cxx_call_undef)
BT_cxx_call_undef.reset(
new BuiltinBug(this, "Called C++ object pointer is uninitialized"));
emitBadCall(BT_cxx_call_undef.get(), C, CC->getCXXThisExpr());
return;
}
ProgramStateRef StNonNull, StNull;
std::tie(StNonNull, StNull) =
State->assume(V.castAs<DefinedOrUnknownSVal>());
if (StNull && !StNonNull) {
if (!BT_cxx_call_null)
BT_cxx_call_null.reset(
new BuiltinBug(this, "Called C++ object pointer is null"));
emitBadCall(BT_cxx_call_null.get(), C, CC->getCXXThisExpr());
return;
}
State = StNonNull;
}
const Decl *D = Call.getDecl();
if (D && (isa<FunctionDecl>(D) || isa<BlockDecl>(D))) {
// If we have a function or block declaration, we can make sure we pass
// enough parameters.
unsigned Params = Call.parameters().size();
if (Call.getNumArgs() < Params) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
LazyInit_BT("Function call with too few arguments", BT_call_few_args);
SmallString<512> Str;
llvm::raw_svector_ostream os(Str);
if (isa<FunctionDecl>(D)) {
os << "Function ";
} else {
assert(isa<BlockDecl>(D));
os << "Block ";
}
os << "taking " << Params << " argument"
<< (Params == 1 ? "" : "s") << " is called with fewer ("
<< Call.getNumArgs() << ")";
C.emitReport(
llvm::make_unique<BugReport>(*BT_call_few_args, os.str(), N));
}
}
// Don't check for uninitialized field values in arguments if the
// caller has a body that is available and we have the chance to inline it.
// This is a hack, but is a reasonable compromise betweens sometimes warning
// and sometimes not depending on if we decide to inline a function.
const bool checkUninitFields =
!(C.getAnalysisManager().shouldInlineCall() && (D && D->getBody()));
std::unique_ptr<BugType> *BT;
if (isa<ObjCMethodCall>(Call))
BT = &BT_msg_arg;
else
BT = &BT_call_arg;
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
for (unsigned i = 0, e = Call.getNumArgs(); i != e; ++i) {
const ParmVarDecl *ParamDecl = nullptr;
if(FD && i < FD->getNumParams())
ParamDecl = FD->getParamDecl(i);
if (PreVisitProcessArg(C, Call.getArgSVal(i), Call.getArgSourceRange(i),
Call.getArgExpr(i), i,
checkUninitFields, Call, *BT, ParamDecl))
return;
}
// If we make it here, record our assumptions about the callee.
C.addTransition(State);
}
void CallAndMessageChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
CheckerContext &C) const {
SVal recVal = msg.getReceiverSVal();
if (recVal.isUndef()) {
if (ExplodedNode *N = C.generateErrorNode()) {
BugType *BT = nullptr;
switch (msg.getMessageKind()) {
case OCM_Message:
if (!BT_msg_undef)
BT_msg_undef.reset(new BuiltinBug(this,
"Receiver in message expression "
"is an uninitialized value"));
BT = BT_msg_undef.get();
break;
case OCM_PropertyAccess:
if (!BT_objc_prop_undef)
BT_objc_prop_undef.reset(new BuiltinBug(
this, "Property access on an uninitialized object pointer"));
BT = BT_objc_prop_undef.get();
break;
case OCM_Subscript:
if (!BT_objc_subscript_undef)
BT_objc_subscript_undef.reset(new BuiltinBug(
this, "Subscript access on an uninitialized object pointer"));
BT = BT_objc_subscript_undef.get();
break;
}
assert(BT && "Unknown message kind.");
auto R = llvm::make_unique<BugReport>(*BT, BT->getName(), N);
const ObjCMessageExpr *ME = msg.getOriginExpr();
R->addRange(ME->getReceiverRange());
// FIXME: getTrackNullOrUndefValueVisitor can't handle "super" yet.
if (const Expr *ReceiverE = ME->getInstanceReceiver())
bugreporter::trackExpressionValue(N, ReceiverE, *R);
C.emitReport(std::move(R));
}
return;
}
}
void CallAndMessageChecker::checkObjCMessageNil(const ObjCMethodCall &msg,
CheckerContext &C) const {
HandleNilReceiver(C, C.getState(), msg);
}
void CallAndMessageChecker::emitNilReceiverBug(CheckerContext &C,
const ObjCMethodCall &msg,
ExplodedNode *N) const {
if (!BT_msg_ret)
BT_msg_ret.reset(
new BuiltinBug(this, "Receiver in message expression is 'nil'"));
const ObjCMessageExpr *ME = msg.getOriginExpr();
QualType ResTy = msg.getResultType();
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "The receiver of message '";
ME->getSelector().print(os);
os << "' is nil";
if (ResTy->isReferenceType()) {
os << ", which results in forming a null reference";
} else {
os << " and returns a value of type '";
msg.getResultType().print(os, C.getLangOpts());
os << "' that will be garbage";
}
auto report = llvm::make_unique<BugReport>(*BT_msg_ret, os.str(), N);
report->addRange(ME->getReceiverRange());
// FIXME: This won't track "self" in messages to super.
if (const Expr *receiver = ME->getInstanceReceiver()) {
bugreporter::trackExpressionValue(N, receiver, *report);
}
C.emitReport(std::move(report));
}
static bool supportsNilWithFloatRet(const llvm::Triple &triple) {
return (triple.getVendor() == llvm::Triple::Apple &&
(triple.isiOS() || triple.isWatchOS() ||
!triple.isMacOSXVersionLT(10,5)));
}
void CallAndMessageChecker::HandleNilReceiver(CheckerContext &C,
ProgramStateRef state,
const ObjCMethodCall &Msg) const {
ASTContext &Ctx = C.getASTContext();
static CheckerProgramPointTag Tag(this, "NilReceiver");
// Check the return type of the message expression. A message to nil will
// return different values depending on the return type and the architecture.
QualType RetTy = Msg.getResultType();
CanQualType CanRetTy = Ctx.getCanonicalType(RetTy);
const LocationContext *LCtx = C.getLocationContext();
if (CanRetTy->isStructureOrClassType()) {
// Structure returns are safe since the compiler zeroes them out.
SVal V = C.getSValBuilder().makeZeroVal(RetTy);
C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
return;
}
// Other cases: check if sizeof(return type) > sizeof(void*)
if (CanRetTy != Ctx.VoidTy && C.getLocationContext()->getParentMap()
.isConsumedExpr(Msg.getOriginExpr())) {
// Compute: sizeof(void *) and sizeof(return type)
const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy);
const uint64_t returnTypeSize = Ctx.getTypeSize(CanRetTy);
if (CanRetTy.getTypePtr()->isReferenceType()||
(voidPtrSize < returnTypeSize &&
!(supportsNilWithFloatRet(Ctx.getTargetInfo().getTriple()) &&
(Ctx.FloatTy == CanRetTy ||
Ctx.DoubleTy == CanRetTy ||
Ctx.LongDoubleTy == CanRetTy ||
Ctx.LongLongTy == CanRetTy ||
Ctx.UnsignedLongLongTy == CanRetTy)))) {
if (ExplodedNode *N = C.generateErrorNode(state, &Tag))
emitNilReceiverBug(C, Msg, N);
return;
}
// Handle the safe cases where the return value is 0 if the
// receiver is nil.
//
// FIXME: For now take the conservative approach that we only
// return null values if we *know* that the receiver is nil.
// This is because we can have surprises like:
//
// ... = [[NSScreens screens] objectAtIndex:0];
//
// What can happen is that [... screens] could return nil, but
// it most likely isn't nil. We should assume the semantics
// of this case unless we have *a lot* more knowledge.
//
SVal V = C.getSValBuilder().makeZeroVal(RetTy);
C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
return;
}
C.addTransition(state);
}
void ento::registerCallAndMessageChecker(CheckerManager &mgr) {
mgr.registerChecker<CallAndMessageChecker>();
}
bool ento::shouldRegisterCallAndMessageChecker(const LangOptions &LO) {
return true;
}
void ento::registerCallAndMessageUnInitRefArg(CheckerManager &mgr) {
CallAndMessageChecker *Checker =
mgr.registerChecker<CallAndMessageChecker>();
Checker->Check_CallAndMessageUnInitRefArg = true;
Checker->CheckName_CallAndMessageUnInitRefArg = mgr.getCurrentCheckName();
}
bool ento::shouldRegisterCallAndMessageUnInitRefArg(const LangOptions &LO) {
return true;
}