Florian Hahn 9259f41e62
[VPlan] Clear reduction flags directly as VPlanTransform.
After D150027, all relevant recipes should model their IR flags
directly. Instead of removing the flags after codegen as part of
fixReductions, drop poison generating flags directly from the recipes.

Depends on D150027.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D150028
2023-07-09 21:11:51 +01:00

10723 lines
445 KiB
C++

//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
// There is a development effort going on to migrate loop vectorizer to the
// VPlan infrastructure and to introduce outer loop vectorization support (see
// docs/Proposal/VectorizationPlan.rst and
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
// purpose, we temporarily introduced the VPlan-native vectorization path: an
// alternative vectorization path that is natively implemented on top of the
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
// Data for SIMD
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h"
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanHCFGBuilder.h"
#include "VPlanTransforms.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
#ifndef NDEBUG
const char VerboseDebug[] = DEBUG_TYPE "-verbose";
#endif
/// @{
/// Metadata attribute names
const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
const char LLVMLoopVectorizeFollowupVectorized[] =
"llvm.loop.vectorize.followup_vectorized";
const char LLVMLoopVectorizeFollowupEpilogue[] =
"llvm.loop.vectorize.followup_epilogue";
/// @}
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
static cl::opt<bool> EnableEpilogueVectorization(
"enable-epilogue-vectorization", cl::init(true), cl::Hidden,
cl::desc("Enable vectorization of epilogue loops."));
static cl::opt<unsigned> EpilogueVectorizationForceVF(
"epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
cl::desc("When epilogue vectorization is enabled, and a value greater than "
"1 is specified, forces the given VF for all applicable epilogue "
"loops."));
static cl::opt<unsigned> EpilogueVectorizationMinVF(
"epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
cl::desc("Only loops with vectorization factor equal to or larger than "
"the specified value are considered for epilogue vectorization."));
/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
cl::desc("Loops with a constant trip count that is smaller than this "
"value are vectorized only if no scalar iteration overheads "
"are incurred."));
static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
"vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum allowed number of runtime memory checks"));
// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
// that predication is preferred, and this lists all options. I.e., the
// vectorizer will try to fold the tail-loop (epilogue) into the vector body
// and predicate the instructions accordingly. If tail-folding fails, there are
// different fallback strategies depending on these values:
namespace PreferPredicateTy {
enum Option {
ScalarEpilogue = 0,
PredicateElseScalarEpilogue,
PredicateOrDontVectorize
};
} // namespace PreferPredicateTy
static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
"prefer-predicate-over-epilogue",
cl::init(PreferPredicateTy::ScalarEpilogue),
cl::Hidden,
cl::desc("Tail-folding and predication preferences over creating a scalar "
"epilogue loop."),
cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
"scalar-epilogue",
"Don't tail-predicate loops, create scalar epilogue"),
clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
"predicate-else-scalar-epilogue",
"prefer tail-folding, create scalar epilogue if tail "
"folding fails."),
clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
"predicate-dont-vectorize",
"prefers tail-folding, don't attempt vectorization if "
"tail-folding fails.")));
static cl::opt<TailFoldingStyle> ForceTailFoldingStyle(
"force-tail-folding-style", cl::desc("Force the tail folding style"),
cl::init(TailFoldingStyle::None),
cl::values(
clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
clEnumValN(
TailFoldingStyle::Data, "data",
"Create lane mask for data only, using active.lane.mask intrinsic"),
clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
"data-without-lane-mask",
"Create lane mask with compare/stepvector"),
clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control",
"Create lane mask using active.lane.mask intrinsic, and use "
"it for both data and control flow"),
clEnumValN(
TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
"data-and-control-without-rt-check",
"Similar to data-and-control, but remove the runtime check")));
static cl::opt<bool> MaximizeBandwidth(
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
cl::desc("Maximize bandwidth when selecting vectorization factor which "
"will be determined by the smallest type in loop."));
static cl::opt<bool> EnableInterleavedMemAccesses(
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
/// An interleave-group may need masking if it resides in a block that needs
/// predication, or in order to mask away gaps.
static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
"enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
"tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
cl::desc("We don't interleave loops with a estimated constant trip count "
"below this number"));
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"scalar loops."));
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<bool> ForceTargetSupportsScalableVectors(
"force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
cl::desc(
"Pretend that scalable vectors are supported, even if the target does "
"not support them. This flag should only be used for testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc(
"The cost of a loop that is considered 'small' by the interleaver."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
cl::desc(
"Enable runtime interleaving until load/store ports are saturated"));
/// Interleave small loops with scalar reductions.
static cl::opt<bool> InterleaveSmallLoopScalarReduction(
"interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
cl::desc("Enable interleaving for loops with small iteration counts that "
"contain scalar reductions to expose ILP."));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when interleaving"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(true), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
static cl::opt<unsigned> MaxNestedScalarReductionIC(
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
cl::desc("The maximum interleave count to use when interleaving a scalar "
"reduction in a nested loop."));
static cl::opt<bool>
PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
cl::Hidden,
cl::desc("Prefer in-loop vector reductions, "
"overriding the targets preference."));
static cl::opt<bool> ForceOrderedReductions(
"force-ordered-reductions", cl::init(false), cl::Hidden,
cl::desc("Enable the vectorisation of loops with in-order (strict) "
"FP reductions"));
static cl::opt<bool> PreferPredicatedReductionSelect(
"prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
cl::desc(
"Prefer predicating a reduction operation over an after loop select."));
namespace llvm {
cl::opt<bool> EnableVPlanNativePath(
"enable-vplan-native-path", cl::Hidden,
cl::desc("Enable VPlan-native vectorization path with "
"support for outer loop vectorization."));
}
// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
"vplan-build-stress-test", cl::init(false), cl::Hidden,
cl::desc(
"Build VPlan for every supported loop nest in the function and bail "
"out right after the build (stress test the VPlan H-CFG construction "
"in the VPlan-native vectorization path)."));
cl::opt<bool> llvm::EnableLoopInterleaving(
"interleave-loops", cl::init(true), cl::Hidden,
cl::desc("Enable loop interleaving in Loop vectorization passes"));
cl::opt<bool> llvm::EnableLoopVectorization(
"vectorize-loops", cl::init(true), cl::Hidden,
cl::desc("Run the Loop vectorization passes"));
static cl::opt<bool> PrintVPlansInDotFormat(
"vplan-print-in-dot-format", cl::Hidden,
cl::desc("Use dot format instead of plain text when dumping VPlans"));
static cl::opt<cl::boolOrDefault> ForceSafeDivisor(
"force-widen-divrem-via-safe-divisor", cl::Hidden,
cl::desc(
"Override cost based safe divisor widening for div/rem instructions"));
/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type.
static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
// Determine if an array of N elements of type Ty is "bitcast compatible"
// with a <N x Ty> vector.
// This is only true if there is no padding between the array elements.
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }
/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
: ConstantFP::get(Ty, C);
}
/// Returns "best known" trip count for the specified loop \p L as defined by
/// the following procedure:
/// 1) Returns exact trip count if it is known.
/// 2) Returns expected trip count according to profile data if any.
/// 3) Returns upper bound estimate if it is known.
/// 4) Returns std::nullopt if all of the above failed.
static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE,
Loop *L) {
// Check if exact trip count is known.
if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
return ExpectedTC;
// Check if there is an expected trip count available from profile data.
if (LoopVectorizeWithBlockFrequency)
if (auto EstimatedTC = getLoopEstimatedTripCount(L))
return *EstimatedTC;
// Check if upper bound estimate is known.
if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
return ExpectedTC;
return std::nullopt;
}
/// Return a vector containing interleaved elements from multiple
/// smaller input vectors.
static Value *interleaveVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vals,
const Twine &Name) {
unsigned Factor = Vals.size();
assert(Factor > 1 && "Tried to interleave invalid number of vectors");
VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
#ifndef NDEBUG
for (Value *Val : Vals)
assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
#endif
// Scalable vectors cannot use arbitrary shufflevectors (only splats), so
// must use intrinsics to interleave.
if (VecTy->isScalableTy()) {
VectorType *WideVecTy = VectorType::getDoubleElementsVectorType(VecTy);
return Builder.CreateIntrinsic(
WideVecTy, Intrinsic::experimental_vector_interleave2, Vals,
/*FMFSource=*/nullptr, Name);
}
// Fixed length. Start by concatenating all vectors into a wide vector.
Value *WideVec = concatenateVectors(Builder, Vals);
// Interleave the elements into the wide vector.
const unsigned NumElts = VecTy->getElementCount().getFixedValue();
return Builder.CreateShuffleVector(
WideVec, createInterleaveMask(NumElts, Factor), Name);
}
namespace {
// Forward declare GeneratedRTChecks.
class GeneratedRTChecks;
using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
} // namespace
namespace llvm {
AnalysisKey ShouldRunExtraVectorPasses::Key;
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
ElementCount MinProfitableTripCount,
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
PSI(PSI), RTChecks(RTChecks) {
// Query this against the original loop and save it here because the profile
// of the original loop header may change as the transformation happens.
OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
if (MinProfitableTripCount.isZero())
this->MinProfitableTripCount = VecWidth;
else
this->MinProfitableTripCount = MinProfitableTripCount;
}
virtual ~InnerLoopVectorizer() = default;
/// Create a new empty loop that will contain vectorized instructions later
/// on, while the old loop will be used as the scalar remainder. Control flow
/// is generated around the vectorized (and scalar epilogue) loops consisting
/// of various checks and bypasses. Return the pre-header block of the new
/// loop and the start value for the canonical induction, if it is != 0. The
/// latter is the case when vectorizing the epilogue loop. In the case of
/// epilogue vectorization, this function is overriden to handle the more
/// complex control flow around the loops. \p ExpandedSCEVs is used to
/// look up SCEV expansions for expressions needed during skeleton creation.
virtual std::pair<BasicBlock *, Value *>
createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs);
/// Fix the vectorized code, taking care of header phi's, live-outs, and more.
void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
// Return true if any runtime check is added.
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in the
/// new unrolled loop, where UF is the unroll factor.
using VectorParts = SmallVector<Value *, 2>;
/// A helper function to scalarize a single Instruction in the innermost loop.
/// Generates a sequence of scalar instances for each lane between \p MinLane
/// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
/// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
/// Instr's operands.
void scalarizeInstruction(const Instruction *Instr,
VPReplicateRecipe *RepRecipe,
const VPIteration &Instance,
VPTransformState &State);
/// Construct the vector value of a scalarized value \p V one lane at a time.
void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
VPTransformState &State);
/// Try to vectorize interleaved access group \p Group with the base address
/// given in \p Addr, optionally masking the vector operations if \p
/// BlockInMask is non-null. Use \p State to translate given VPValues to IR
/// values in the vectorized loop.
void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr,
ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask, bool NeedsMaskForGaps);
/// Fix the non-induction PHIs in \p Plan.
void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
/// Returns true if the reordering of FP operations is not allowed, but we are
/// able to vectorize with strict in-order reductions for the given RdxDesc.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
// Returns the resume value (bc.merge.rdx) for a reduction as
// generated by fixReduction.
PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
/// Create a new phi node for the induction variable \p OrigPhi to resume
/// iteration count in the scalar epilogue, from where the vectorized loop
/// left off. \p Step is the SCEV-expanded induction step to use. In cases
/// where the loop skeleton is more complicated (i.e., epilogue vectorization)
/// and the resume values can come from an additional bypass block, the \p
/// AdditionalBypass pair provides information about the bypass block and the
/// end value on the edge from bypass to this loop.
PHINode *createInductionResumeValue(
PHINode *OrigPhi, const InductionDescriptor &ID, Value *Step,
ArrayRef<BasicBlock *> BypassBlocks,
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
/// Returns the original loop trip count.
Value *getTripCount() const { return TripCount; }
/// Used to set the trip count after ILV's construction and after the
/// preheader block has been executed. Note that this always holds the trip
/// count of the original loop for both main loop and epilogue vectorization.
void setTripCount(Value *TC) { TripCount = TC; }
protected:
friend class LoopVectorizationPlanner;
/// A small list of PHINodes.
using PhiVector = SmallVector<PHINode *, 4>;
/// A type for scalarized values in the new loop. Each value from the
/// original loop, when scalarized, is represented by UF x VF scalar values
/// in the new unrolled loop, where UF is the unroll factor and VF is the
/// vectorization factor.
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *VectorTripCount, Value *EndValue,
BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
VPlan &Plan, VPTransformState &State);
/// Handle all cross-iteration phis in the header.
void fixCrossIterationPHIs(VPTransformState &State);
/// Create the exit value of first order recurrences in the middle block and
/// update their users.
void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
VPTransformState &State);
/// Create code for the loop exit value of the reduction.
void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
/// Iteratively sink the scalarized operands of a predicated instruction into
/// the block that was created for it.
void sinkScalarOperands(Instruction *PredInst);
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
/// represented as.
void truncateToMinimalBitwidths(VPTransformState &State);
/// Returns (and creates if needed) the trip count of the widened loop.
Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
/// Returns a bitcasted value to the requested vector type.
/// Also handles bitcasts of vector<float> <-> vector<pointer> types.
Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL);
/// Emit a bypass check to see if the vector trip count is zero, including if
/// it overflows.
void emitIterationCountCheck(BasicBlock *Bypass);
/// Emit a bypass check to see if all of the SCEV assumptions we've
/// had to make are correct. Returns the block containing the checks or
/// nullptr if no checks have been added.
BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
/// Emit bypass checks to check any memory assumptions we may have made.
/// Returns the block containing the checks or nullptr if no checks have been
/// added.
BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
/// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
/// vector loop preheader, middle block and scalar preheader.
void createVectorLoopSkeleton(StringRef Prefix);
/// Create new phi nodes for the induction variables to resume iteration count
/// in the scalar epilogue, from where the vectorized loop left off.
/// In cases where the loop skeleton is more complicated (eg. epilogue
/// vectorization) and the resume values can come from an additional bypass
/// block, the \p AdditionalBypass pair provides information about the bypass
/// block and the end value on the edge from bypass to this loop.
void createInductionResumeValues(
const SCEV2ValueTy &ExpandedSCEVs,
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
/// Complete the loop skeleton by adding debug MDs, creating appropriate
/// conditional branches in the middle block, preparing the builder and
/// running the verifier. Return the preheader of the completed vector loop.
BasicBlock *completeLoopSkeleton();
/// Collect poison-generating recipes that may generate a poison value that is
/// used after vectorization, even when their operands are not poison. Those
/// recipes meet the following conditions:
/// * Contribute to the address computation of a recipe generating a widen
/// memory load/store (VPWidenMemoryInstructionRecipe or
/// VPInterleaveRecipe).
/// * Such a widen memory load/store has at least one underlying Instruction
/// that is in a basic block that needs predication and after vectorization
/// the generated instruction won't be predicated.
void collectPoisonGeneratingRecipes(VPTransformState &State);
/// Allow subclasses to override and print debug traces before/after vplan
/// execution, when trace information is requested.
virtual void printDebugTracesAtStart(){};
virtual void printDebugTracesAtEnd(){};
/// The original loop.
Loop *OrigLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
/// dynamic knowledge to simplify SCEV expressions and converts them to a
/// more usable form.
PredicatedScalarEvolution &PSE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// Assumption Cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
ElementCount VF;
ElementCount MinProfitableTripCount;
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
/// The unique ExitBlock of the scalar loop if one exists. Note that
/// there can be multiple exiting edges reaching this block.
BasicBlock *LoopExitBlock;
/// The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// Store instructions that were predicated.
SmallVector<Instruction *, 4> PredicatedInstructions;
/// Trip count of the original loop.
Value *TripCount = nullptr;
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
Value *VectorTripCount = nullptr;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel *Cost;
// Record whether runtime checks are added.
bool AddedSafetyChecks = false;
// Holds the end values for each induction variable. We save the end values
// so we can later fix-up the external users of the induction variables.
DenseMap<PHINode *, Value *> IVEndValues;
/// BFI and PSI are used to check for profile guided size optimizations.
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;
// Whether this loop should be optimized for size based on profile guided size
// optimizatios.
bool OptForSizeBasedOnProfile;
/// Structure to hold information about generated runtime checks, responsible
/// for cleaning the checks, if vectorization turns out unprofitable.
GeneratedRTChecks &RTChecks;
// Holds the resume values for reductions in the loops, used to set the
// correct start value of reduction PHIs when vectorizing the epilogue.
SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
ReductionResumeValues;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
ElementCount::getFixed(1),
ElementCount::getFixed(1), UnrollFactor, LVL, CM,
BFI, PSI, Check) {}
};
/// Encapsulate information regarding vectorization of a loop and its epilogue.
/// This information is meant to be updated and used across two stages of
/// epilogue vectorization.
struct EpilogueLoopVectorizationInfo {
ElementCount MainLoopVF = ElementCount::getFixed(0);
unsigned MainLoopUF = 0;
ElementCount EpilogueVF = ElementCount::getFixed(0);
unsigned EpilogueUF = 0;
BasicBlock *MainLoopIterationCountCheck = nullptr;
BasicBlock *EpilogueIterationCountCheck = nullptr;
BasicBlock *SCEVSafetyCheck = nullptr;
BasicBlock *MemSafetyCheck = nullptr;
Value *TripCount = nullptr;
Value *VectorTripCount = nullptr;
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
ElementCount EVF, unsigned EUF)
: MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
assert(EUF == 1 &&
"A high UF for the epilogue loop is likely not beneficial.");
}
};
/// An extension of the inner loop vectorizer that creates a skeleton for a
/// vectorized loop that has its epilogue (residual) also vectorized.
/// The idea is to run the vplan on a given loop twice, firstly to setup the
/// skeleton and vectorize the main loop, and secondly to complete the skeleton
/// from the first step and vectorize the epilogue. This is achieved by
/// deriving two concrete strategy classes from this base class and invoking
/// them in succession from the loop vectorizer planner.
class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
public:
InnerLoopAndEpilogueVectorizer(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
CM, BFI, PSI, Checks),
EPI(EPI) {}
// Override this function to handle the more complex control flow around the
// three loops.
std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(
const SCEV2ValueTy &ExpandedSCEVs) final {
return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs);
}
/// The interface for creating a vectorized skeleton using one of two
/// different strategies, each corresponding to one execution of the vplan
/// as described above.
virtual std::pair<BasicBlock *, Value *>
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0;
/// Holds and updates state information required to vectorize the main loop
/// and its epilogue in two separate passes. This setup helps us avoid
/// regenerating and recomputing runtime safety checks. It also helps us to
/// shorten the iteration-count-check path length for the cases where the
/// iteration count of the loop is so small that the main vector loop is
/// completely skipped.
EpilogueLoopVectorizationInfo &EPI;
};
/// A specialized derived class of inner loop vectorizer that performs
/// vectorization of *main* loops in the process of vectorizing loops and their
/// epilogues.
class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerMainLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Check)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Check) {}
/// Implements the interface for creating a vectorized skeleton using the
/// *main loop* strategy (ie the first pass of vplan execution).
std::pair<BasicBlock *, Value *>
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
protected:
/// Emits an iteration count bypass check once for the main loop (when \p
/// ForEpilogue is false) and once for the epilogue loop (when \p
/// ForEpilogue is true).
BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
// A specialized derived class of inner loop vectorizer that performs
// vectorization of *epilogue* loops in the process of vectorizing loops and
// their epilogues.
class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerEpilogueLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Checks) {
TripCount = EPI.TripCount;
}
/// Implements the interface for creating a vectorized skeleton using the
/// *epilogue loop* strategy (ie the second pass of vplan execution).
std::pair<BasicBlock *, Value *>
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
protected:
/// Emits an iteration count bypass check after the main vector loop has
/// finished to see if there are any iterations left to execute by either
/// the vector epilogue or the scalar epilogue.
BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
BasicBlock *Bypass,
BasicBlock *Insert);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
} // end namespace llvm
/// Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (Use &Op : I->operands()) {
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
/// is passed, the message relates to that particular instruction.
#ifndef NDEBUG
static void debugVectorizationMessage(const StringRef Prefix,
const StringRef DebugMsg,
Instruction *I) {
dbgs() << "LV: " << Prefix << DebugMsg;
if (I != nullptr)
dbgs() << " " << *I;
else
dbgs() << '.';
dbgs() << '\n';
}
#endif
/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
/// RemarkName is the identifier for the remark. If \p I is passed it is an
/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
/// the location of the remark. \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
StringRef RemarkName, Loop *TheLoop, Instruction *I) {
Value *CodeRegion = TheLoop->getHeader();
DebugLoc DL = TheLoop->getStartLoc();
if (I) {
CodeRegion = I->getParent();
// If there is no debug location attached to the instruction, revert back to
// using the loop's.
if (I->getDebugLoc())
DL = I->getDebugLoc();
}
return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
}
namespace llvm {
/// Return a value for Step multiplied by VF.
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
int64_t Step) {
assert(Ty->isIntegerTy() && "Expected an integer step");
return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step));
}
/// Return the runtime value for VF.
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
return B.CreateElementCount(Ty, VF);
}
const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE,
Loop *OrigLoop) {
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count");
ScalarEvolution &SE = *PSE.getSE();
return SE.getTripCountFromExitCount(BackedgeTakenCount, IdxTy, OrigLoop);
}
static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
ElementCount VF) {
assert(FTy->isFloatingPointTy() && "Expected floating point type!");
Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
return B.CreateUIToFP(RuntimeVF, FTy);
}
void reportVectorizationFailure(const StringRef DebugMsg,
const StringRef OREMsg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< "loop not vectorized: " << OREMsg);
}
void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< Msg);
}
} // end namespace llvm
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
LoopDbgLoc.print(OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
VPTransformState &State) {
// Collect recipes in the backward slice of `Root` that may generate a poison
// value that is used after vectorization.
SmallPtrSet<VPRecipeBase *, 16> Visited;
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
SmallVector<VPRecipeBase *, 16> Worklist;
Worklist.push_back(Root);
// Traverse the backward slice of Root through its use-def chain.
while (!Worklist.empty()) {
VPRecipeBase *CurRec = Worklist.back();
Worklist.pop_back();
if (!Visited.insert(CurRec).second)
continue;
// Prune search if we find another recipe generating a widen memory
// instruction. Widen memory instructions involved in address computation
// will lead to gather/scatter instructions, which don't need to be
// handled.
if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
isa<VPInterleaveRecipe>(CurRec) ||
isa<VPScalarIVStepsRecipe>(CurRec) ||
isa<VPCanonicalIVPHIRecipe>(CurRec) ||
isa<VPActiveLaneMaskPHIRecipe>(CurRec))
continue;
// This recipe contributes to the address computation of a widen
// load/store. If the underlying instruction has poison-generating flags,
// drop them directly.
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
RecWithFlags->dropPoisonGeneratingFlags();
} else {
Instruction *Instr = CurRec->getUnderlyingInstr();
(void)Instr;
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
"found instruction with poison generating flags not covered by "
"VPRecipeWithIRFlags");
}
// Add new definitions to the worklist.
for (VPValue *operand : CurRec->operands())
if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
Worklist.push_back(OpDef);
}
});
// Traverse all the recipes in the VPlan and collect the poison-generating
// recipes in the backward slice starting at the address of a VPWidenRecipe or
// VPInterleaveRecipe.
auto Iter = vp_depth_first_deep(State.Plan->getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &Recipe : *VPBB) {
if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
Instruction &UnderlyingInstr = WidenRec->getIngredient();
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
if (AddrDef && WidenRec->isConsecutive() &&
Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
if (AddrDef) {
// Check if any member of the interleave group needs predication.
const InterleaveGroup<Instruction> *InterGroup =
InterleaveRec->getInterleaveGroup();
bool NeedPredication = false;
for (int I = 0, NumMembers = InterGroup->getNumMembers();
I < NumMembers; ++I) {
Instruction *Member = InterGroup->getMember(I);
if (Member)
NeedPredication |=
Legal->blockNeedsPredication(Member->getParent());
}
if (NeedPredication)
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
}
}
}
}
}
PHINode *InnerLoopVectorizer::getReductionResumeValue(
const RecurrenceDescriptor &RdxDesc) {
auto It = ReductionResumeValues.find(&RdxDesc);
assert(It != ReductionResumeValues.end() &&
"Expected to find a resume value for the reduction.");
return It->second;
}
namespace llvm {
// Loop vectorization cost-model hints how the scalar epilogue loop should be
// lowered.
enum ScalarEpilogueLowering {
// The default: allowing scalar epilogues.
CM_ScalarEpilogueAllowed,
// Vectorization with OptForSize: don't allow epilogues.
CM_ScalarEpilogueNotAllowedOptSize,
// A special case of vectorisation with OptForSize: loops with a very small
// trip count are considered for vectorization under OptForSize, thereby
// making sure the cost of their loop body is dominant, free of runtime
// guards and scalar iteration overheads.
CM_ScalarEpilogueNotAllowedLowTripLoop,
// Loop hint predicate indicating an epilogue is undesired.
CM_ScalarEpilogueNotNeededUsePredicate,
// Directive indicating we must either tail fold or not vectorize
CM_ScalarEpilogueNotAllowedUsePredicate
};
using InstructionVFPair = std::pair<Instruction *, ElementCount>;
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
PredicatedScalarEvolution &PSE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, const Function *F,
const LoopVectorizeHints *Hints,
InterleavedAccessInfo &IAI)
: ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
Hints(Hints), InterleaveInfo(IAI) {}
/// \return An upper bound for the vectorization factors (both fixed and
/// scalable). If the factors are 0, vectorization and interleaving should be
/// avoided up front.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
/// \return True if runtime checks are required for vectorization, and false
/// otherwise.
bool runtimeChecksRequired();
/// Setup cost-based decisions for user vectorization factor.
/// \return true if the UserVF is a feasible VF to be chosen.
bool selectUserVectorizationFactor(ElementCount UserVF) {
collectUniformsAndScalars(UserVF);
collectInstsToScalarize(UserVF);
return expectedCost(UserVF).first.isValid();
}
/// \return The size (in bits) of the smallest and widest types in the code
/// that needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
/// \return The desired interleave count.
/// If interleave count has been specified by metadata it will be returned.
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
/// are the selected vectorization factor and the cost of the selected VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost);
/// Memory access instruction may be vectorized in more than one way.
/// Form of instruction after vectorization depends on cost.
/// This function takes cost-based decisions for Load/Store instructions
/// and collects them in a map. This decisions map is used for building
/// the lists of loop-uniform and loop-scalar instructions.
/// The calculated cost is saved with widening decision in order to
/// avoid redundant calculations.
void setCostBasedWideningDecision(ElementCount VF);
/// A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
};
/// \return Returns information about the register usages of the loop for the
/// given vectorization factors.
SmallVector<RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<ElementCount> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
/// Collect all element types in the loop for which widening is needed.
void collectElementTypesForWidening();
/// Split reductions into those that happen in the loop, and those that happen
/// outside. In loop reductions are collected into InLoopReductionChains.
void collectInLoopReductions();
/// Returns true if we should use strict in-order reductions for the given
/// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
/// the IsOrdered flag of RdxDesc is set and we do not allow reordering
/// of FP operations.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
return !Hints->allowReordering() && RdxDesc.isOrdered();
}
/// \returns The smallest bitwidth each instruction can be represented with.
/// The vector equivalents of these instructions should be truncated to this
/// type.
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
return MinBWs;
}
/// \returns True if it is more profitable to scalarize instruction \p I for
/// vectorization factor \p VF.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
assert(VF.isVector() &&
"Profitable to scalarize relevant only for VF > 1.");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto Scalars = InstsToScalarize.find(VF);
assert(Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return Scalars->second.contains(I);
}
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
// Pseudo probe needs to be duplicated for each unrolled iteration and
// vector lane so that profiled loop trip count can be accurately
// accumulated instead of being under counted.
if (isa<PseudoProbeInst>(I))
return false;
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto UniformsPerVF = Uniforms.find(VF);
assert(UniformsPerVF != Uniforms.end() &&
"VF not yet analyzed for uniformity");
return UniformsPerVF->second.count(I);
}
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto ScalarsPerVF = Scalars.find(VF);
assert(ScalarsPerVF != Scalars.end() &&
"Scalar values are not calculated for VF");
return ScalarsPerVF->second.count(I);
}
/// \returns True if instruction \p I can be truncated to a smaller bitwidth
/// for vectorization factor \p VF.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
return VF.isVector() && MinBWs.contains(I) &&
!isProfitableToScalarize(I, VF) &&
!isScalarAfterVectorization(I, VF);
}
/// Decision that was taken during cost calculation for memory instruction.
enum InstWidening {
CM_Unknown,
CM_Widen, // For consecutive accesses with stride +1.
CM_Widen_Reverse, // For consecutive accesses with stride -1.
CM_Interleave,
CM_GatherScatter,
CM_Scalarize
};
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// instruction \p I and vector width \p VF.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
}
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// interleaving group \p Grp and vector width \p VF.
void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
/// Broadcast this decicion to all instructions inside the group.
/// But the cost will be assigned to one instruction only.
for (unsigned i = 0; i < Grp->getFactor(); ++i) {
if (auto *I = Grp->getMember(i)) {
if (Grp->getInsertPos() == I)
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
else
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
}
}
}
/// Return the cost model decision for the given instruction \p I and vector
/// width \p VF. Return CM_Unknown if this instruction did not pass
/// through the cost modeling.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
assert(VF.isVector() && "Expected VF to be a vector VF");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return CM_GatherScatter;
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
auto Itr = WideningDecisions.find(InstOnVF);
if (Itr == WideningDecisions.end())
return CM_Unknown;
return Itr->second.first;
}
/// Return the vectorization cost for the given instruction \p I and vector
/// width \p VF.
InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
assert(VF.isVector() && "Expected VF >=2");
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
assert(WideningDecisions.contains(InstOnVF) &&
"The cost is not calculated");
return WideningDecisions[InstOnVF].second;
}
/// Return True if instruction \p I is an optimizable truncate whose operand
/// is an induction variable. Such a truncate will be removed by adding a new
/// induction variable with the destination type.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
// If the instruction is not a truncate, return false.
auto *Trunc = dyn_cast<TruncInst>(I);
if (!Trunc)
return false;
// Get the source and destination types of the truncate.
Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
// If the truncate is free for the given types, return false. Replacing a
// free truncate with an induction variable would add an induction variable
// update instruction to each iteration of the loop. We exclude from this
// check the primary induction variable since it will need an update
// instruction regardless.
Value *Op = Trunc->getOperand(0);
if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
return false;
// If the truncated value is not an induction variable, return false.
return Legal->isInductionPhi(Op);
}
/// Collects the instructions to scalarize for each predicated instruction in
/// the loop.
void collectInstsToScalarize(ElementCount VF);
/// Collect Uniform and Scalar values for the given \p VF.
/// The sets depend on CM decision for Load/Store instructions
/// that may be vectorized as interleave, gather-scatter or scalarized.
void collectUniformsAndScalars(ElementCount VF) {
// Do the analysis once.
if (VF.isScalar() || Uniforms.contains(VF))
return;
setCostBasedWideningDecision(VF);
collectLoopUniforms(VF);
collectLoopScalars(VF);
}
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(DataType, Ptr) &&
TTI.isLegalMaskedStore(DataType, Alignment);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(DataType, Ptr) &&
TTI.isLegalMaskedLoad(DataType, Alignment);
}
/// Returns true if the target machine can represent \p V as a masked gather
/// or scatter operation.
bool isLegalGatherOrScatter(Value *V, ElementCount VF) {
bool LI = isa<LoadInst>(V);
bool SI = isa<StoreInst>(V);
if (!LI && !SI)
return false;
auto *Ty = getLoadStoreType(V);
Align Align = getLoadStoreAlignment(V);
if (VF.isVector())
Ty = VectorType::get(Ty, VF);
return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
(SI && TTI.isLegalMaskedScatter(Ty, Align));
}
/// Returns true if the target machine supports all of the reduction
/// variables found for the given VF.
bool canVectorizeReductions(ElementCount VF) const {
return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
}));
}
/// Given costs for both strategies, return true if the scalar predication
/// lowering should be used for div/rem. This incorporates an override
/// option so it is not simply a cost comparison.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost,
InstructionCost SafeDivisorCost) const {
switch (ForceSafeDivisor) {
case cl::BOU_UNSET:
return ScalarCost < SafeDivisorCost;
case cl::BOU_TRUE:
return false;
case cl::BOU_FALSE:
return true;
};
llvm_unreachable("impossible case value");
}
/// Returns true if \p I is an instruction which requires predication and
/// for which our chosen predication strategy is scalarization (i.e. we
/// don't have an alternate strategy such as masking available).
/// \p VF is the vectorization factor that will be used to vectorize \p I.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
/// Returns true if \p I is an instruction that needs to be predicated
/// at runtime. The result is independent of the predication mechanism.
/// Superset of instructions that return true for isScalarWithPredication.
bool isPredicatedInst(Instruction *I) const;
/// Return the costs for our two available strategies for lowering a
/// div/rem operation which requires speculating at least one lane.
/// First result is for scalarization (will be invalid for scalable
/// vectors); second is for the safe-divisor strategy.
std::pair<InstructionCost, InstructionCost>
getDivRemSpeculationCost(Instruction *I,
ElementCount VF) const;
/// Returns true if \p I is a memory instruction with consecutive memory
/// access that can be widened.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
/// Returns true if \p I is a memory instruction in an interleaved-group
/// of memory accesses that can be vectorized with wide vector loads/stores
/// and shuffles.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF);
/// Check if \p Instr belongs to any interleaved access group.
bool isAccessInterleaved(Instruction *Instr) {
return InterleaveInfo.isInterleaved(Instr);
}
/// Get the interleaved access group that \p Instr belongs to.
const InterleaveGroup<Instruction> *
getInterleavedAccessGroup(Instruction *Instr) {
return InterleaveInfo.getInterleaveGroup(Instr);
}
/// Returns true if we're required to use a scalar epilogue for at least
/// the final iteration of the original loop.
bool requiresScalarEpilogue(bool IsVectorizing) const {
if (!isScalarEpilogueAllowed())
return false;
// If we might exit from anywhere but the latch, must run the exiting
// iteration in scalar form.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
return true;
return IsVectorizing && InterleaveInfo.requiresScalarEpilogue();
}
/// Returns true if we're required to use a scalar epilogue for at least
/// the final iteration of the original loop for all VFs in \p Range.
/// A scalar epilogue must either be required for all VFs in \p Range or for
/// none.
bool requiresScalarEpilogue(VFRange Range) const {
auto RequiresScalarEpilogue = [this](ElementCount VF) {
return requiresScalarEpilogue(VF.isVector());
};
bool IsRequired = all_of(Range, RequiresScalarEpilogue);
assert(
(IsRequired || none_of(Range, RequiresScalarEpilogue)) &&
"all VFs in range must agree on whether a scalar epilogue is required");
return IsRequired;
}
/// Returns true if a scalar epilogue is not allowed due to optsize or a
/// loop hint annotation.
bool isScalarEpilogueAllowed() const {
return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
}
/// Returns the TailFoldingStyle that is best for the current loop.
TailFoldingStyle
getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
if (!CanFoldTailByMasking)
return TailFoldingStyle::None;
if (ForceTailFoldingStyle.getNumOccurrences())
return ForceTailFoldingStyle;
return TTI.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
}
/// Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailByMasking() const {
return getTailFoldingStyle() != TailFoldingStyle::None;
}
/// Returns true if the instructions in this block requires predication
/// for any reason, e.g. because tail folding now requires a predicate
/// or because the block in the original loop was predicated.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
return foldTailByMasking() || Legal->blockNeedsPredication(BB);
}
/// A SmallMapVector to store the InLoop reduction op chains, mapping phi
/// nodes to the chain of instructions representing the reductions. Uses a
/// MapVector to ensure deterministic iteration order.
using ReductionChainMap =
SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
/// Return the chain of instructions representing an inloop reduction.
const ReductionChainMap &getInLoopReductionChains() const {
return InLoopReductionChains;
}
/// Returns true if the Phi is part of an inloop reduction.
bool isInLoopReduction(PHINode *Phi) const {
return InLoopReductionChains.count(Phi);
}
/// Estimate cost of an intrinsic call instruction CI if it were vectorized
/// with factor VF. Return the cost of the instruction, including
/// scalarization overhead if it's needed.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
/// Estimate cost of a call instruction CI if it were vectorized with factor
/// VF. Return the cost of the instruction, including scalarization overhead
/// if it's needed. The flag NeedToScalarize shows if the call needs to be
/// scalarized -
/// i.e. either vector version isn't available, or is too expensive.
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
Function **Variant,
bool *NeedsMask = nullptr) const;
/// Invalidates decisions already taken by the cost model.
void invalidateCostModelingDecisions() {
WideningDecisions.clear();
Uniforms.clear();
Scalars.clear();
}
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
/// operate on vector values after type legalization in the backend. If this
/// latter value is false, then all operations will be scalarized (i.e. no
/// vectorization has actually taken place).
using VectorizationCostTy = std::pair<InstructionCost, bool>;
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width. If \p Invalid is not nullptr, this function
/// will add a pair(Instruction*, ElementCount) to \p Invalid for
/// each instruction that has an Invalid cost for the given VF.
VectorizationCostTy
expectedCost(ElementCount VF,
SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
bool hasPredStores() const { return NumPredStores > 0; }
/// Returns true if epilogue vectorization is considered profitable, and
/// false otherwise.
/// \p VF is the vectorization factor chosen for the original loop.
bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
private:
unsigned NumPredStores = 0;
/// \return An upper bound for the vectorization factors for both
/// fixed and scalable vectorization, where the minimum-known number of
/// elements is a power-of-2 larger than zero. If scalable vectorization is
/// disabled or unsupported, then the scalable part will be equal to
/// ElementCount::getScalable(0).
FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
ElementCount UserVF,
bool FoldTailByMasking);
/// \return the maximized element count based on the targets vector
/// registers and the loop trip-count, but limited to a maximum safe VF.
/// This is a helper function of computeFeasibleMaxVF.
ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
unsigned SmallestType,
unsigned WidestType,
ElementCount MaxSafeVF,
bool FoldTailByMasking);
/// \return the maximum legal scalable VF, based on the safe max number
/// of elements.
ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy);
/// Return the cost of instructions in an inloop reduction pattern, if I is
/// part of that pattern.
std::optional<InstructionCost>
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
TTI::TargetCostKind CostKind);
/// Calculate vectorization cost of memory instruction \p I.
InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
/// The cost computation for scalarized memory instruction.
InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
/// The cost computation for interleaving group of memory instructions.
InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
/// The cost computation for Gather/Scatter instruction.
InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
/// The cost computation for widening instruction \p I with consecutive
/// memory access.
InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
/// The cost calculation for Load/Store instruction \p I with uniform pointer -
/// Load: scalar load + broadcast.
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
/// element)
InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
/// Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF,
TTI::TargetCostKind CostKind) const;
/// Returns true if an artificially high cost for emulated masked memrefs
/// should be used.
bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
MapVector<Instruction *, uint64_t> MinBWs;
/// A type representing the costs for instructions if they were to be
/// scalarized rather than vectorized. The entries are Instruction-Cost
/// pairs.
using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
/// A set containing all BasicBlocks that are known to present after
/// vectorization as a predicated block.
DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
PredicatedBBsAfterVectorization;
/// Records whether it is allowed to have the original scalar loop execute at
/// least once. This may be needed as a fallback loop in case runtime
/// aliasing/dependence checks fail, or to handle the tail/remainder
/// iterations when the trip count is unknown or doesn't divide by the VF,
/// or as a peel-loop to handle gaps in interleave-groups.
/// Under optsize and when the trip count is very small we don't allow any
/// iterations to execute in the scalar loop.
ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
/// All blocks of loop are to be masked to fold tail of scalar iterations.
bool CanFoldTailByMasking = false;
/// A map holding scalar costs for different vectorization factors. The
/// presence of a cost for an instruction in the mapping indicates that the
/// instruction will be scalarized when vectorizing with the associated
/// vectorization factor. The entries are VF-ScalarCostTy pairs.
DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
/// Holds the instructions known to be uniform after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
/// Holds the instructions (address computations) that are forced to be
/// scalarized.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
/// PHINodes of the reductions that should be expanded in-loop along with
/// their associated chains of reduction operations, in program order from top
/// (PHI) to bottom
ReductionChainMap InLoopReductionChains;
/// A Map of inloop reduction operations and their immediate chain operand.
/// FIXME: This can be removed once reductions can be costed correctly in
/// vplan. This was added to allow quick lookup to the inloop operations,
/// without having to loop through InLoopReductionChains.
DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
/// Returns the expected difference in cost from scalarizing the expression
/// feeding a predicated instruction \p PredInst. The instructions to
/// scalarize and their scalar costs are collected in \p ScalarCosts. A
/// non-negative return value implies the expression will be scalarized.
/// Currently, only single-use chains are considered for scalarization.
InstructionCost computePredInstDiscount(Instruction *PredInst,
ScalarCostsTy &ScalarCosts,
ElementCount VF);
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms(ElementCount VF);
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. collectLoopScalars should only add non-uniform nodes
/// to the list if they are used by a load/store instruction that is marked as
/// CM_Scalarize. Non-uniform scalarized instructions will be represented by
/// VF values in the vectorized loop, each corresponding to an iteration of
/// the original scalar loop.
void collectLoopScalars(ElementCount VF);
/// Keeps cost model vectorization decision and cost for instructions.
/// Right now it is used for memory instructions only.
using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
std::pair<InstWidening, InstructionCost>>;
DecisionList WideningDecisions;
/// Returns true if \p V is expected to be vectorized and it needs to be
/// extracted.
bool needsExtract(Value *V, ElementCount VF) const {
Instruction *I = dyn_cast<Instruction>(V);
if (VF.isScalar() || !I || !TheLoop->contains(I) ||
TheLoop->isLoopInvariant(I))
return false;
// Assume we can vectorize V (and hence we need extraction) if the
// scalars are not computed yet. This can happen, because it is called
// via getScalarizationOverhead from setCostBasedWideningDecision, before
// the scalars are collected. That should be a safe assumption in most
// cases, because we check if the operands have vectorizable types
// beforehand in LoopVectorizationLegality.
return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
};
/// Returns a range containing only operands needing to be extracted.
SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
ElementCount VF) const {
return SmallVector<Value *, 4>(make_filter_range(
Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
}
public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
const Function *TheFunction;
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
/// The interleave access information contains groups of interleaved accesses
/// with the same stride and close to each other.
InterleavedAccessInfo &InterleaveInfo;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
/// All element types found in the loop.
SmallPtrSet<Type *, 16> ElementTypesInLoop;
};
} // end namespace llvm
namespace {
/// Helper struct to manage generating runtime checks for vectorization.
///
/// The runtime checks are created up-front in temporary blocks to allow better
/// estimating the cost and un-linked from the existing IR. After deciding to
/// vectorize, the checks are moved back. If deciding not to vectorize, the
/// temporary blocks are completely removed.
class GeneratedRTChecks {
/// Basic block which contains the generated SCEV checks, if any.
BasicBlock *SCEVCheckBlock = nullptr;
/// The value representing the result of the generated SCEV checks. If it is
/// nullptr, either no SCEV checks have been generated or they have been used.
Value *SCEVCheckCond = nullptr;
/// Basic block which contains the generated memory runtime checks, if any.
BasicBlock *MemCheckBlock = nullptr;
/// The value representing the result of the generated memory runtime checks.
/// If it is nullptr, either no memory runtime checks have been generated or
/// they have been used.
Value *MemRuntimeCheckCond = nullptr;
DominatorTree *DT;
LoopInfo *LI;
TargetTransformInfo *TTI;
SCEVExpander SCEVExp;
SCEVExpander MemCheckExp;
bool CostTooHigh = false;
public:
GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
TargetTransformInfo *TTI, const DataLayout &DL)
: DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
MemCheckExp(SE, DL, "scev.check") {}
/// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
/// accurately estimate the cost of the runtime checks. The blocks are
/// un-linked from the IR and is added back during vector code generation. If
/// there is no vector code generation, the check blocks are removed
/// completely.
void Create(Loop *L, const LoopAccessInfo &LAI,
const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
// Hard cutoff to limit compile-time increase in case a very large number of
// runtime checks needs to be generated.
// TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
// profile info.
CostTooHigh =
LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
if (CostTooHigh)
return;
BasicBlock *LoopHeader = L->getHeader();
BasicBlock *Preheader = L->getLoopPreheader();
// Use SplitBlock to create blocks for SCEV & memory runtime checks to
// ensure the blocks are properly added to LoopInfo & DominatorTree. Those
// may be used by SCEVExpander. The blocks will be un-linked from their
// predecessors and removed from LI & DT at the end of the function.
if (!UnionPred.isAlwaysTrue()) {
SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
nullptr, "vector.scevcheck");
SCEVCheckCond = SCEVExp.expandCodeForPredicate(
&UnionPred, SCEVCheckBlock->getTerminator());
}
const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
if (RtPtrChecking.Need) {
auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
"vector.memcheck");
auto DiffChecks = RtPtrChecking.getDiffChecks();
if (DiffChecks) {
Value *RuntimeVF = nullptr;
MemRuntimeCheckCond = addDiffRuntimeChecks(
MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
[VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
if (!RuntimeVF)
RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
return RuntimeVF;
},
IC);
} else {
MemRuntimeCheckCond =
addRuntimeChecks(MemCheckBlock->getTerminator(), L,
RtPtrChecking.getChecks(), MemCheckExp);
}
assert(MemRuntimeCheckCond &&
"no RT checks generated although RtPtrChecking "
"claimed checks are required");
}
if (!MemCheckBlock && !SCEVCheckBlock)
return;
// Unhook the temporary block with the checks, update various places
// accordingly.
if (SCEVCheckBlock)
SCEVCheckBlock->replaceAllUsesWith(Preheader);
if (MemCheckBlock)
MemCheckBlock->replaceAllUsesWith(Preheader);
if (SCEVCheckBlock) {
SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
if (MemCheckBlock) {
MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), MemCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
DT->changeImmediateDominator(LoopHeader, Preheader);
if (MemCheckBlock) {
DT->eraseNode(MemCheckBlock);
LI->removeBlock(MemCheckBlock);
}
if (SCEVCheckBlock) {
DT->eraseNode(SCEVCheckBlock);
LI->removeBlock(SCEVCheckBlock);
}
}
InstructionCost getCost() {
if (SCEVCheckBlock || MemCheckBlock)
LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
if (CostTooHigh) {
InstructionCost Cost;
Cost.setInvalid();
LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
return Cost;
}
InstructionCost RTCheckCost = 0;
if (SCEVCheckBlock)
for (Instruction &I : *SCEVCheckBlock) {
if (SCEVCheckBlock->getTerminator() == &I)
continue;
InstructionCost C =
TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
RTCheckCost += C;
}
if (MemCheckBlock)
for (Instruction &I : *MemCheckBlock) {
if (MemCheckBlock->getTerminator() == &I)
continue;
InstructionCost C =
TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
RTCheckCost += C;
}
if (SCEVCheckBlock || MemCheckBlock)
LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
<< "\n");
return RTCheckCost;
}
/// Remove the created SCEV & memory runtime check blocks & instructions, if
/// unused.
~GeneratedRTChecks() {
SCEVExpanderCleaner SCEVCleaner(SCEVExp);
SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
if (!SCEVCheckCond)
SCEVCleaner.markResultUsed();
if (!MemRuntimeCheckCond)
MemCheckCleaner.markResultUsed();
if (MemRuntimeCheckCond) {
auto &SE = *MemCheckExp.getSE();
// Memory runtime check generation creates compares that use expanded
// values. Remove them before running the SCEVExpanderCleaners.
for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
if (MemCheckExp.isInsertedInstruction(&I))
continue;
SE.forgetValue(&I);
I.eraseFromParent();
}
}
MemCheckCleaner.cleanup();
SCEVCleaner.cleanup();
if (SCEVCheckCond)
SCEVCheckBlock->eraseFromParent();
if (MemRuntimeCheckCond)
MemCheckBlock->eraseFromParent();
}
/// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
/// adjusts the branches to branch to the vector preheader or \p Bypass,
/// depending on the generated condition.
BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader,
BasicBlock *LoopExitBlock) {
if (!SCEVCheckCond)
return nullptr;
Value *Cond = SCEVCheckCond;
// Mark the check as used, to prevent it from being removed during cleanup.
SCEVCheckCond = nullptr;
if (auto *C = dyn_cast<ConstantInt>(Cond))
if (C->isZero())
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
// Create new preheader for vector loop.
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
SCEVCheckBlock->getTerminator()->eraseFromParent();
SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
SCEVCheckBlock);
DT->addNewBlock(SCEVCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
return SCEVCheckBlock;
}
/// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
/// the branches to branch to the vector preheader or \p Bypass, depending on
/// the generated condition.
BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader) {
// Check if we generated code that checks in runtime if arrays overlap.
if (!MemRuntimeCheckCond)
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
MemCheckBlock);
DT->addNewBlock(MemCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
MemCheckBlock->moveBefore(LoopVectorPreHeader);
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(MemCheckBlock, *LI);
ReplaceInstWithInst(
MemCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
MemCheckBlock->getTerminator()->setDebugLoc(
Pred->getTerminator()->getDebugLoc());
// Mark the check as used, to prevent it from being removed during cleanup.
MemRuntimeCheckCond = nullptr;
return MemCheckBlock;
}
};
} // namespace
static bool useActiveLaneMask(TailFoldingStyle Style) {
return Style == TailFoldingStyle::Data ||
Style == TailFoldingStyle::DataAndControlFlow ||
Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
}
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style) {
return Style == TailFoldingStyle::DataAndControlFlow ||
Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
}
// Return true if \p OuterLp is an outer loop annotated with hints for explicit
// vectorization. The loop needs to be annotated with #pragma omp simd
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
// vector length information is not provided, vectorization is not considered
// explicit. Interleave hints are not allowed either. These limitations will be
// relaxed in the future.
// Please, note that we are currently forced to abuse the pragma 'clang
// vectorize' semantics. This pragma provides *auto-vectorization hints*
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
// provides *explicit vectorization hints* (LV can bypass legal checks and
// assume that vectorization is legal). However, both hints are implemented
// using the same metadata (llvm.loop.vectorize, processed by
// LoopVectorizeHints). This will be fixed in the future when the native IR
// representation for pragma 'omp simd' is introduced.
static bool isExplicitVecOuterLoop(Loop *OuterLp,
OptimizationRemarkEmitter *ORE) {
assert(!OuterLp->isInnermost() && "This is not an outer loop");
LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
// Only outer loops with an explicit vectorization hint are supported.
// Unannotated outer loops are ignored.
if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
return false;
Function *Fn = OuterLp->getHeader()->getParent();
if (!Hints.allowVectorization(Fn, OuterLp,
true /*VectorizeOnlyWhenForced*/)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
return false;
}
if (Hints.getInterleave() > 1) {
// TODO: Interleave support is future work.
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
"outer loops.\n");
Hints.emitRemarkWithHints();
return false;
}
return true;
}
static void collectSupportedLoops(Loop &L, LoopInfo *LI,
OptimizationRemarkEmitter *ORE,
SmallVectorImpl<Loop *> &V) {
// Collect inner loops and outer loops without irreducible control flow. For
// now, only collect outer loops that have explicit vectorization hints. If we
// are stress testing the VPlan H-CFG construction, we collect the outermost
// loop of every loop nest.
if (L.isInnermost() || VPlanBuildStressTest ||
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
LoopBlocksRPO RPOT(&L);
RPOT.perform(LI);
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
V.push_back(&L);
// TODO: Collect inner loops inside marked outer loops in case
// vectorization fails for the outer loop. Do not invoke
// 'containsIrreducibleCFG' again for inner loops when the outer loop is
// already known to be reducible. We can use an inherited attribute for
// that.
return;
}
}
for (Loop *InnerL : L)
collectSupportedLoops(*InnerL, LI, ORE, V);
}
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//
/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
Instruction::BinaryOps BinOp, ElementCount VF,
IRBuilderBase &Builder) {
assert(VF.isVector() && "only vector VFs are supported");
// Create and check the types.
auto *ValVTy = cast<VectorType>(Val->getType());
ElementCount VLen = ValVTy->getElementCount();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
VectorType *InitVecValVTy = ValVTy;
if (STy->isFloatingPointTy()) {
Type *InitVecValSTy =
IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
}
Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
// Splat the StartIdx
Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
if (STy->isIntegerTy()) {
InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw
// flags, which can be found from the original scalar operations.
Step = Builder.CreateMul(InitVec, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
Value *MulOp = Builder.CreateFMul(InitVec, Step);
return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step.
static void buildScalarSteps(Value *ScalarIV, Value *Step,
const InductionDescriptor &ID, VPValue *Def,
VPTransformState &State) {
IRBuilderBase &Builder = State.Builder;
// Ensure step has the same type as that of scalar IV.
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
if (ScalarIVTy != Step->getType()) {
// TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to
// avoid separate truncate here.
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
Step = State.Builder.CreateTrunc(Step, ScalarIVTy);
}
// We build scalar steps for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (ScalarIVTy->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Determine the number of scalars we need to generate for each unroll
// iteration.
bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
// Compute the scalar steps and save the results in State.
Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
ScalarIVTy->getScalarSizeInBits());
Type *VecIVTy = nullptr;
Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
if (!FirstLaneOnly && State.VF.isScalable()) {
VecIVTy = VectorType::get(ScalarIVTy, State.VF);
UnitStepVec =
Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
SplatStep = Builder.CreateVectorSplat(State.VF, Step);
SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
}
unsigned StartPart = 0;
unsigned EndPart = State.UF;
unsigned StartLane = 0;
unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
if (State.Instance) {
StartPart = State.Instance->Part;
EndPart = StartPart + 1;
StartLane = State.Instance->Lane.getKnownLane();
EndLane = StartLane + 1;
}
for (unsigned Part = StartPart; Part < EndPart; ++Part) {
Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
if (!FirstLaneOnly && State.VF.isScalable()) {
auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
if (ScalarIVTy->isFloatingPointTy())
InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
State.set(Def, Add, Part);
// It's useful to record the lane values too for the known minimum number
// of elements so we do those below. This improves the code quality when
// trying to extract the first element, for example.
}
if (ScalarIVTy->isFloatingPointTy())
StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
Value *StartIdx = Builder.CreateBinOp(
AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
// The step returned by `createStepForVF` is a runtime-evaluated value
// when VF is scalable. Otherwise, it should be folded into a Constant.
assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
"Expected StartIdx to be folded to a constant when VF is not "
"scalable");
auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
State.set(Def, Add, VPIteration(Part, Lane));
}
}
}
/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
Value *StartValue, Value *Step,
const InductionDescriptor &ID) {
Type *StepTy = Step->getType();
Value *CastedIndex = StepTy->isIntegerTy()
? B.CreateSExtOrTrunc(Index, StepTy)
: B.CreateCast(Instruction::SIToFP, Index, StepTy);
if (CastedIndex != Index) {
CastedIndex->setName(CastedIndex->getName() + ".cast");
Index = CastedIndex;
}
// Note: the IR at this point is broken. We cannot use SE to create any new
// SCEV and then expand it, hoping that SCEV's simplification will give us
// a more optimal code. Unfortunately, attempt of doing so on invalid IR may
// lead to various SCEV crashes. So all we can do is to use builder and rely
// on InstCombine for future simplifications. Here we handle some trivial
// cases only.
auto CreateAdd = [&B](Value *X, Value *Y) {
assert(X->getType() == Y->getType() && "Types don't match!");
if (auto *CX = dyn_cast<ConstantInt>(X))
if (CX->isZero())
return Y;
if (auto *CY = dyn_cast<ConstantInt>(Y))
if (CY->isZero())
return X;
return B.CreateAdd(X, Y);
};
// We allow X to be a vector type, in which case Y will potentially be
// splatted into a vector with the same element count.
auto CreateMul = [&B](Value *X, Value *Y) {
assert(X->getType()->getScalarType() == Y->getType() &&
"Types don't match!");
if (auto *CX = dyn_cast<ConstantInt>(X))
if (CX->isOne())
return Y;
if (auto *CY = dyn_cast<ConstantInt>(Y))
if (CY->isOne())
return X;
VectorType *XVTy = dyn_cast<VectorType>(X->getType());
if (XVTy && !isa<VectorType>(Y->getType()))
Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
return B.CreateMul(X, Y);
};
switch (ID.getKind()) {
case InductionDescriptor::IK_IntInduction: {
assert(!isa<VectorType>(Index->getType()) &&
"Vector indices not supported for integer inductions yet");
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
return B.CreateSub(StartValue, Index);
auto *Offset = CreateMul(Index, Step);
return CreateAdd(StartValue, Offset);
}
case InductionDescriptor::IK_PtrInduction: {
return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
}
case InductionDescriptor::IK_FpInduction: {
assert(!isa<VectorType>(Index->getType()) &&
"Vector indices not supported for FP inductions yet");
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
auto InductionBinOp = ID.getInductionBinOp();
assert(InductionBinOp &&
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub) &&
"Original bin op should be defined for FP induction");
Value *MulExp = B.CreateFMul(Step, Index);
return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
"induction");
}
case InductionDescriptor::IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
std::optional<unsigned> getMaxVScale(const Function &F,
const TargetTransformInfo &TTI) {
if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
return MaxVScale;
if (F.hasFnAttribute(Attribute::VScaleRange))
return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
return std::nullopt;
}
/// For the given VF and UF and maximum trip count computed for the loop, return
/// whether the induction variable might overflow in the vectorized loop. If not,
/// then we know a runtime overflow check always evaluates to false and can be
/// removed.
static bool isIndvarOverflowCheckKnownFalse(
const LoopVectorizationCostModel *Cost,
ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
// Always be conservative if we don't know the exact unroll factor.
unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
Type *IdxTy = Cost->Legal->getWidestInductionType();
APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
// We know the runtime overflow check is known false iff the (max) trip-count
// is known and (max) trip-count + (VF * UF) does not overflow in the type of
// the vector loop induction variable.
if (unsigned TC =
Cost->PSE.getSE()->getSmallConstantMaxTripCount(Cost->TheLoop)) {
uint64_t MaxVF = VF.getKnownMinValue();
if (VF.isScalable()) {
std::optional<unsigned> MaxVScale =
getMaxVScale(*Cost->TheFunction, Cost->TTI);
if (!MaxVScale)
return false;
MaxVF *= *MaxVScale;
}
return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
}
return false;
}
void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
const VPIteration &Instance,
VPTransformState &State) {
Value *ScalarInst = State.get(Def, Instance);
Value *VectorValue = State.get(Def, Instance.Part);
VectorValue = Builder.CreateInsertElement(
VectorValue, ScalarInst,
Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
State.set(Def, VectorValue, Instance.Part);
}
// Return whether we allow using masked interleave-groups (for dealing with
// strided loads/stores that reside in predicated blocks, or for dealing
// with gaps).
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
// If an override option has been passed in for interleaved accesses, use it.
if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
return EnableMaskedInterleavedMemAccesses;
return TTI.enableMaskedInterleavedAccessVectorization();
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(
const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask, bool NeedsMaskForGaps) {
Instruction *Instr = Group->getInsertPos();
const DataLayout &DL = Instr->getModule()->getDataLayout();
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = getLoadStoreType(Instr);
unsigned InterleaveFactor = Group->getFactor();
auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
// Prepare for the new pointers.
SmallVector<Value *, 2> AddrParts;
unsigned Index = Group->getIndex(Instr);
// TODO: extend the masked interleaved-group support to reversed access.
assert((!BlockInMask || !Group->isReverse()) &&
"Reversed masked interleave-group not supported.");
Value *Idx;
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse()) {
Value *RuntimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
Idx = Builder.CreateSub(RuntimeVF, Builder.getInt32(1));
Idx = Builder.CreateMul(Idx, Builder.getInt32(Group->getFactor()));
Idx = Builder.CreateAdd(Idx, Builder.getInt32(Index));
Idx = Builder.CreateNeg(Idx);
} else
Idx = Builder.getInt32(-Index);
for (unsigned Part = 0; Part < UF; Part++) {
Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
State.setDebugLocFromInst(AddrPart);
// Notice current instruction could be any index. Need to adjust the address
// to the member of index 0.
//
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
// b = A[i]; // Member of index 0
// Current pointer is pointed to A[i+1], adjust it to A[i].
//
// E.g. A[i+1] = a; // Member of index 1
// A[i] = b; // Member of index 0
// A[i+2] = c; // Member of index 2 (Current instruction)
// Current pointer is pointed to A[i+2], adjust it to A[i].
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
InBounds = gep->isInBounds();
AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Idx, "", InBounds);
// Cast to the vector pointer type.
unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
Type *PtrTy = VecTy->getPointerTo(AddressSpace);
AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
}
State.setDebugLocFromInst(Instr);
Value *PoisonVec = PoisonValue::get(VecTy);
auto CreateGroupMask = [this, &BlockInMask, &State, &InterleaveFactor](
unsigned Part, Value *MaskForGaps) -> Value * {
if (VF.isScalable()) {
assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
assert(InterleaveFactor == 2 &&
"Unsupported deinterleave factor for scalable vectors");
auto *BlockInMaskPart = State.get(BlockInMask, Part);
SmallVector<Value *, 2> Ops = {BlockInMaskPart, BlockInMaskPart};
auto *MaskTy =
VectorType::get(Builder.getInt1Ty(), VF.getKnownMinValue() * 2, true);
return Builder.CreateIntrinsic(
MaskTy, Intrinsic::experimental_vector_interleave2, Ops,
/*FMFSource=*/nullptr, "interleaved.mask");
}
if (!BlockInMask)
return MaskForGaps;
Value *BlockInMaskPart = State.get(BlockInMask, Part);
Value *ShuffledMask = Builder.CreateShuffleVector(
BlockInMaskPart,
createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
"interleaved.mask");
return MaskForGaps ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
MaskForGaps)
: ShuffledMask;
};
// Vectorize the interleaved load group.
if (isa<LoadInst>(Instr)) {
Value *MaskForGaps = nullptr;
if (NeedsMaskForGaps) {
MaskForGaps =
createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
assert(MaskForGaps && "Mask for Gaps is required but it is null");
}
// For each unroll part, create a wide load for the group.
SmallVector<Value *, 2> NewLoads;
for (unsigned Part = 0; Part < UF; Part++) {
Instruction *NewLoad;
if (BlockInMask || MaskForGaps) {
assert(useMaskedInterleavedAccesses(*TTI) &&
"masked interleaved groups are not allowed.");
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
NewLoad =
Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
GroupMask, PoisonVec, "wide.masked.vec");
}
else
NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
Group->getAlign(), "wide.vec");
Group->addMetadata(NewLoad);
NewLoads.push_back(NewLoad);
}
if (VecTy->isScalableTy()) {
assert(InterleaveFactor == 2 &&
"Unsupported deinterleave factor for scalable vectors");
for (unsigned Part = 0; Part < UF; ++Part) {
// Scalable vectors cannot use arbitrary shufflevectors (only splats),
// so must use intrinsics to deinterleave.
Value *DI = Builder.CreateIntrinsic(
Intrinsic::experimental_vector_deinterleave2, VecTy, NewLoads[Part],
/*FMFSource=*/nullptr, "strided.vec");
unsigned J = 0;
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
if (!Member)
continue;
Value *StridedVec = Builder.CreateExtractValue(DI, I);
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
State.set(VPDefs[J], StridedVec, Part);
++J;
}
}
return;
}
// For each member in the group, shuffle out the appropriate data from the
// wide loads.
unsigned J = 0;
for (unsigned I = 0; I < InterleaveFactor; ++I) {
Instruction *Member = Group->getMember(I);
// Skip the gaps in the group.
if (!Member)
continue;
auto StrideMask =
createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
for (unsigned Part = 0; Part < UF; Part++) {
Value *StridedVec = Builder.CreateShuffleVector(
NewLoads[Part], StrideMask, "strided.vec");
// If this member has different type, cast the result type.
if (Member->getType() != ScalarTy) {
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
}
if (Group->isReverse())
StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
State.set(VPDefs[J], StridedVec, Part);
}
++J;
}
return;
}
// The sub vector type for current instruction.
auto *SubVT = VectorType::get(ScalarTy, VF);
// Vectorize the interleaved store group.
Value *MaskForGaps =
createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
"masked interleaved groups are not allowed.");
assert((!MaskForGaps || !VF.isScalable()) &&
"masking gaps for scalable vectors is not yet supported.");
for (unsigned Part = 0; Part < UF; Part++) {
// Collect the stored vector from each member.
SmallVector<Value *, 4> StoredVecs;
unsigned StoredIdx = 0;
for (unsigned i = 0; i < InterleaveFactor; i++) {
assert((Group->getMember(i) || MaskForGaps) &&
"Fail to get a member from an interleaved store group");
Instruction *Member = Group->getMember(i);
// Skip the gaps in the group.
if (!Member) {
Value *Undef = PoisonValue::get(SubVT);
StoredVecs.push_back(Undef);
continue;
}
Value *StoredVec = State.get(StoredValues[StoredIdx], Part);
++StoredIdx;
if (Group->isReverse())
StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
// If this member has different type, cast it to a unified type.
if (StoredVec->getType() != SubVT)
StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
StoredVecs.push_back(StoredVec);
}
// Interleave all the smaller vectors into one wider vector.
Value *IVec = interleaveVectors(Builder, StoredVecs, "interleaved.vec");
Instruction *NewStoreInstr;
if (BlockInMask || MaskForGaps) {
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
Group->getAlign(), GroupMask);
} else
NewStoreInstr =
Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
Group->addMetadata(NewStoreInstr);
}
}
void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr,
VPReplicateRecipe *RepRecipe,
const VPIteration &Instance,
VPTransformState &State) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
// the first lane and part.
if (isa<NoAliasScopeDeclInst>(Instr))
if (!Instance.isFirstIteration())
return;
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
Instruction *Cloned = Instr->clone();
if (!IsVoidRetTy)
Cloned->setName(Instr->getName() + ".cloned");
RepRecipe->setFlags(Cloned);
if (Instr->getDebugLoc())
State.setDebugLocFromInst(Instr);
// Replace the operands of the cloned instructions with their scalar
// equivalents in the new loop.
for (const auto &I : enumerate(RepRecipe->operands())) {
auto InputInstance = Instance;
VPValue *Operand = I.value();
if (vputils::isUniformAfterVectorization(Operand))
InputInstance.Lane = VPLane::getFirstLane();
Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
}
State.addNewMetadata(Cloned, Instr);
// Place the cloned scalar in the new loop.
State.Builder.Insert(Cloned);
State.set(RepRecipe, Cloned, Instance);
// If we just cloned a new assumption, add it the assumption cache.
if (auto *II = dyn_cast<AssumeInst>(Cloned))
AC->registerAssumption(II);
// End if-block.
bool IfPredicateInstr = RepRecipe->getParent()->getParent()->isReplicator();
if (IfPredicateInstr)
PredicatedInstructions.push_back(Cloned);
}
Value *
InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
if (VectorTripCount)
return VectorTripCount;
Value *TC = getTripCount();
IRBuilder<> Builder(InsertBlock->getTerminator());
Type *Ty = TC->getType();
// This is where we can make the step a runtime constant.
Value *Step = createStepForVF(Builder, Ty, VF, UF);
// If the tail is to be folded by masking, round the number of iterations N
// up to a multiple of Step instead of rounding down. This is done by first
// adding Step-1 and then rounding down. Note that it's ok if this addition
// overflows: the vector induction variable will eventually wrap to zero given
// that it starts at zero and its Step is a power of two; the loop will then
// exit, with the last early-exit vector comparison also producing all-true.
// For scalable vectors the VF is not guaranteed to be a power of 2, but this
// is accounted for in emitIterationCountCheck that adds an overflow check.
if (Cost->foldTailByMasking()) {
assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
"VF*UF must be a power of 2 when folding tail by masking");
Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
TC = Builder.CreateAdd(
TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
}
// Now we need to generate the expression for the part of the loop that the
// vectorized body will execute. This is equal to N - (N % Step) if scalar
// iterations are not required for correctness, or N - Step, otherwise. Step
// is equal to the vectorization factor (number of SIMD elements) times the
// unroll factor (number of SIMD instructions).
Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
// There are cases where we *must* run at least one iteration in the remainder
// loop. See the cost model for when this can happen. If the step evenly
// divides the trip count, we set the remainder to be equal to the step. If
// the step does not evenly divide the trip count, no adjustment is necessary
// since there will already be scalar iterations. Note that the minimum
// iterations check ensures that N >= Step.
if (Cost->requiresScalarEpilogue(VF.isVector())) {
auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
R = Builder.CreateSelect(IsZero, Step, R);
}
VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
return VectorTripCount;
}
Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL) {
// Verify that V is a vector type with same number of elements as DstVTy.
auto *DstFVTy = cast<VectorType>(DstVTy);
auto VF = DstFVTy->getElementCount();
auto *SrcVecTy = cast<VectorType>(V->getType());
assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
Type *SrcElemTy = SrcVecTy->getElementType();
Type *DstElemTy = DstFVTy->getElementType();
assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
"Vector elements must have same size");
// Do a direct cast if element types are castable.
if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
return Builder.CreateBitOrPointerCast(V, DstFVTy);
}
// V cannot be directly casted to desired vector type.
// May happen when V is a floating point vector but DstVTy is a vector of
// pointers or vice-versa. Handle this using a two-step bitcast using an
// intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
"Only one type should be a pointer type");
assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
"Only one type should be a floating point type");
Type *IntTy =
IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
auto *VecIntTy = VectorType::get(IntTy, VF);
Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
}
void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
Value *Count = getTripCount();
// Reuse existing vector loop preheader for TC checks.
// Note that new preheader block is generated for vector loop.
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
IRBuilder<> Builder(TCCheckBlock->getTerminator());
// Generate code to check if the loop's trip count is less than VF * UF, or
// equal to it in case a scalar epilogue is required; this implies that the
// vector trip count is zero. This check also covers the case where adding one
// to the backedge-taken count overflowed leading to an incorrect trip count
// of zero. In this case we will also jump to the scalar loop.
auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT;
// If tail is to be folded, vector loop takes care of all iterations.
Type *CountTy = Count->getType();
Value *CheckMinIters = Builder.getFalse();
auto CreateStep = [&]() -> Value * {
// Create step with max(MinProTripCount, UF * VF).
if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
return createStepForVF(Builder, CountTy, VF, UF);
Value *MinProfTC =
createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
if (!VF.isScalable())
return MinProfTC;
return Builder.CreateBinaryIntrinsic(
Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
};
TailFoldingStyle Style = Cost->getTailFoldingStyle();
if (Style == TailFoldingStyle::None)
CheckMinIters =
Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
else if (VF.isScalable() &&
!isIndvarOverflowCheckKnownFalse(Cost, VF, UF) &&
Style != TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
// vscale is not necessarily a power-of-2, which means we cannot guarantee
// an overflow to zero when updating induction variables and so an
// additional overflow check is required before entering the vector loop.
// Get the maximum unsigned value for the type.
Value *MaxUIntTripCount =
ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
// Don't execute the vector loop if (UMax - n) < (VF * UF).
CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
}
// Create new preheader for vector loop.
LoopVectorPreHeader =
SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
"vector.ph");
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
DT->getNode(Bypass)->getIDom()) &&
"TC check is expected to dominate Bypass");
// Update dominator for Bypass & LoopExit (if needed).
DT->changeImmediateDominator(Bypass, TCCheckBlock);
if (!Cost->requiresScalarEpilogue(VF.isVector()))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
ReplaceInstWithInst(
TCCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
LoopBypassBlocks.push_back(TCCheckBlock);
}
BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
BasicBlock *const SCEVCheckBlock =
RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
if (!SCEVCheckBlock)
return nullptr;
assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
(OptForSizeBasedOnProfile &&
Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
"Cannot SCEV check stride or overflow when optimizing for size");
// Update dominator only if this is first RT check.
if (LoopBypassBlocks.empty()) {
DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
if (!Cost->requiresScalarEpilogue(VF.isVector()))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
}
LoopBypassBlocks.push_back(SCEVCheckBlock);
AddedSafetyChecks = true;
return SCEVCheckBlock;
}
BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
// VPlan-native path does not do any analysis for runtime checks currently.
if (EnableVPlanNativePath)
return nullptr;
BasicBlock *const MemCheckBlock =
RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
// Check if we generated code that checks in runtime if arrays overlap. We put
// the checks into a separate block to make the more common case of few
// elements faster.
if (!MemCheckBlock)
return nullptr;
if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
"Cannot emit memory checks when optimizing for size, unless forced "
"to vectorize.");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
OrigLoop->getStartLoc(),
OrigLoop->getHeader())
<< "Code-size may be reduced by not forcing "
"vectorization, or by source-code modifications "
"eliminating the need for runtime checks "
"(e.g., adding 'restrict').";
});
}
LoopBypassBlocks.push_back(MemCheckBlock);
AddedSafetyChecks = true;
return MemCheckBlock;
}
void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
LoopScalarBody = OrigLoop->getHeader();
LoopVectorPreHeader = OrigLoop->getLoopPreheader();
assert(LoopVectorPreHeader && "Invalid loop structure");
LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF.isVector())) &&
"multiple exit loop without required epilogue?");
LoopMiddleBlock =
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
LI, nullptr, Twine(Prefix) + "middle.block");
LoopScalarPreHeader =
SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
nullptr, Twine(Prefix) + "scalar.ph");
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
// Set up the middle block terminator. Two cases:
// 1) If we know that we must execute the scalar epilogue, emit an
// unconditional branch.
// 2) Otherwise, we must have a single unique exit block (due to how we
// implement the multiple exit case). In this case, set up a conditional
// branch from the middle block to the loop scalar preheader, and the
// exit block. completeLoopSkeleton will update the condition to use an
// iteration check, if required to decide whether to execute the remainder.
BranchInst *BrInst =
Cost->requiresScalarEpilogue(VF.isVector())
? BranchInst::Create(LoopScalarPreHeader)
: BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
Builder.getTrue());
BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
// Update dominator for loop exit. During skeleton creation, only the vector
// pre-header and the middle block are created. The vector loop is entirely
// created during VPlan exection.
if (!Cost->requiresScalarEpilogue(VF.isVector()))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
}
PHINode *InnerLoopVectorizer::createInductionResumeValue(
PHINode *OrigPhi, const InductionDescriptor &II, Value *Step,
ArrayRef<BasicBlock *> BypassBlocks,
std::pair<BasicBlock *, Value *> AdditionalBypass) {
Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
assert(VectorTripCount && "Expected valid arguments");
Instruction *OldInduction = Legal->getPrimaryInduction();
Value *&EndValue = IVEndValues[OrigPhi];
Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
if (OrigPhi == OldInduction) {
// We know what the end value is.
EndValue = VectorTripCount;
} else {
IRBuilder<> B(LoopVectorPreHeader->getTerminator());
// Fast-math-flags propagate from the original induction instruction.
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
EndValue =
emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II);
EndValue->setName("ind.end");
// Compute the end value for the additional bypass (if applicable).
if (AdditionalBypass.first) {
B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
EndValueFromAdditionalBypass = emitTransformedIndex(
B, AdditionalBypass.second, II.getStartValue(), Step, II);
EndValueFromAdditionalBypass->setName("ind.end");
}
}
// Create phi nodes to merge from the backedge-taken check block.
PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
LoopScalarPreHeader->getTerminator());
// Copy original phi DL over to the new one.
BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
// Fix the scalar body counter (PHI node).
// The old induction's phi node in the scalar body needs the truncated
// value.
for (BasicBlock *BB : BypassBlocks)
BCResumeVal->addIncoming(II.getStartValue(), BB);
if (AdditionalBypass.first)
BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
EndValueFromAdditionalBypass);
return BCResumeVal;
}
/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
/// expansion results.
static Value *getExpandedStep(const InductionDescriptor &ID,
const SCEV2ValueTy &ExpandedSCEVs) {
const SCEV *Step = ID.getStep();
if (auto *C = dyn_cast<SCEVConstant>(Step))
return C->getValue();
if (auto *U = dyn_cast<SCEVUnknown>(Step))
return U->getValue();
auto I = ExpandedSCEVs.find(Step);
assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point");
return I->second;
}
void InnerLoopVectorizer::createInductionResumeValues(
const SCEV2ValueTy &ExpandedSCEVs,
std::pair<BasicBlock *, Value *> AdditionalBypass) {
assert(((AdditionalBypass.first && AdditionalBypass.second) ||
(!AdditionalBypass.first && !AdditionalBypass.second)) &&
"Inconsistent information about additional bypass.");
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
// PHIs that are left in the scalar version of the loop.
// The starting values of PHI nodes depend on the counter of the last
// iteration in the vectorized loop.
// If we come from a bypass edge then we need to start from the original
// start value.
for (const auto &InductionEntry : Legal->getInductionVars()) {
PHINode *OrigPhi = InductionEntry.first;
const InductionDescriptor &II = InductionEntry.second;
PHINode *BCResumeVal = createInductionResumeValue(
OrigPhi, II, getExpandedStep(II, ExpandedSCEVs), LoopBypassBlocks,
AdditionalBypass);
OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
}
}
BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() {
// The trip counts should be cached by now.
Value *Count = getTripCount();
Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
// Add a check in the middle block to see if we have completed
// all of the iterations in the first vector loop. Three cases:
// 1) If we require a scalar epilogue, there is no conditional branch as
// we unconditionally branch to the scalar preheader. Do nothing.
// 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
// Thus if tail is to be folded, we know we don't need to run the
// remainder and we can use the previous value for the condition (true).
// 3) Otherwise, construct a runtime check.
if (!Cost->requiresScalarEpilogue(VF.isVector()) &&
!Cost->foldTailByMasking()) {
Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
Count, VectorTripCount, "cmp.n",
LoopMiddleBlock->getTerminator());
// Here we use the same DebugLoc as the scalar loop latch terminator instead
// of the corresponding compare because they may have ended up with
// different line numbers and we want to avoid awkward line stepping while
// debugging. Eg. if the compare has got a line number inside the loop.
CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
}
#ifdef EXPENSIVE_CHECKS
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
#endif
return LoopVectorPreHeader;
}
std::pair<BasicBlock *, Value *>
InnerLoopVectorizer::createVectorizedLoopSkeleton(
const SCEV2ValueTy &ExpandedSCEVs) {
/*
In this function we generate a new loop. The new loop will contain
the vectorized instructions while the old loop will continue to run the
scalar remainder.
[ ] <-- old preheader - loop iteration number check and SCEVs in Plan's
/ | preheader are expanded here. Eventually all required SCEV
/ | expansion should happen here.
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
| / |
| / v
|| [ ] <-- vector pre header.
|/ |
| v
| [ ] \
| [ ]_| <-- vector loop (created during VPlan execution).
| |
| v
\ -[ ] <--- middle-block.
\/ |
/\ v
| ->[ ] <--- new preheader.
| |
(opt) v <-- edge from middle to exit iff epilogue is not required.
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder (scalar epilogue).
\ |
\ v
>[ ] <-- exit block(s).
...
*/
// Create an empty vector loop, and prepare basic blocks for the runtime
// checks.
createVectorLoopSkeleton("");
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop. This check also covers the case where the
// backedge-taken count is uint##_max: adding one to it will overflow leading
// to an incorrect trip count of zero. In this (rare) case we will also jump
// to the scalar loop.
emitIterationCountCheck(LoopScalarPreHeader);
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
emitSCEVChecks(LoopScalarPreHeader);
// Generate the code that checks in runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
emitMemRuntimeChecks(LoopScalarPreHeader);
// Emit phis for the new starting index of the scalar loop.
createInductionResumeValues(ExpandedSCEVs);
return {completeLoopSkeleton(), nullptr};
}
// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
const InductionDescriptor &II,
Value *VectorTripCount, Value *EndValue,
BasicBlock *MiddleBlock,
BasicBlock *VectorHeader, VPlan &Plan,
VPTransformState &State) {
// There are two kinds of external IV usages - those that use the value
// computed in the last iteration (the PHI) and those that use the penultimate
// value (the value that feeds into the phi from the loop latch).
// We allow both, but they, obviously, have different values.
assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
DenseMap<Value *, Value *> MissingVals;
// An external user of the last iteration's value should see the value that
// the remainder loop uses to initialize its own IV.
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users()) {
Instruction *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
MissingVals[UI] = EndValue;
}
}
// An external user of the penultimate value need to see EndValue - Step.
// The simplest way to get this is to recompute it from the constituent SCEVs,
// that is Start + (Step * (CRD - 1)).
for (User *U : OrigPhi->users()) {
auto *UI = cast<Instruction>(U);
if (!OrigLoop->contains(UI)) {
assert(isa<PHINode>(UI) && "Expected LCSSA form");
IRBuilder<> B(MiddleBlock->getTerminator());
// Fast-math-flags propagate from the original induction instruction.
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
Value *CountMinusOne = B.CreateSub(
VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
CountMinusOne->setName("cmo");
VPValue *StepVPV = Plan.getSCEVExpansion(II.getStep());
assert(StepVPV && "step must have been expanded during VPlan execution");
Value *Step = StepVPV->isLiveIn() ? StepVPV->getLiveInIRValue()
: State.get(StepVPV, {0, 0});
Value *Escape =
emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II);
Escape->setName("ind.escape");
MissingVals[UI] = Escape;
}
}
for (auto &I : MissingVals) {
PHINode *PHI = cast<PHINode>(I.first);
// One corner case we have to handle is two IVs "chasing" each-other,
// that is %IV2 = phi [...], [ %IV1, %latch ]
// In this case, if IV1 has an external use, we need to avoid adding both
// "last value of IV1" and "penultimate value of IV2". So, verify that we
// don't already have an incoming value for the middle block.
if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
PHI->addIncoming(I.second, MiddleBlock);
Plan.removeLiveOut(PHI);
}
}
}
namespace {
struct CSEDenseMapInfo {
static bool canHandle(const Instruction *I) {
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
}
static inline Instruction *getEmptyKey() {
return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline Instruction *getTombstoneKey() {
return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(const Instruction *I) {
assert(canHandle(I) && "Unknown instruction!");
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
I->value_op_end()));
}
static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
LHS == getTombstoneKey() || RHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS);
}
};
} // end anonymous namespace
///Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
// Perform simple cse.
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
for (Instruction &In : llvm::make_early_inc_range(*BB)) {
if (!CSEDenseMapInfo::canHandle(&In))
continue;
// Check if we can replace this instruction with any of the
// visited instructions.
if (Instruction *V = CSEMap.lookup(&In)) {
In.replaceAllUsesWith(V);
In.eraseFromParent();
continue;
}
CSEMap[&In] = &In;
}
}
InstructionCost LoopVectorizationCostModel::getVectorCallCost(
CallInst *CI, ElementCount VF, Function **Variant, bool *NeedsMask) const {
Function *F = CI->getCalledFunction();
Type *ScalarRetTy = CI->getType();
SmallVector<Type *, 4> Tys, ScalarTys;
bool MaskRequired = Legal->isMaskRequired(CI);
for (auto &ArgOp : CI->args())
ScalarTys.push_back(ArgOp->getType());
// Estimate cost of scalarized vector call. The source operands are assumed
// to be vectors, so we need to extract individual elements from there,
// execute VF scalar calls, and then gather the result into the vector return
// value.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
InstructionCost ScalarCallCost =
TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind);
if (VF.isScalar())
return ScalarCallCost;
// Compute corresponding vector type for return value and arguments.
Type *RetTy = ToVectorTy(ScalarRetTy, VF);
for (Type *ScalarTy : ScalarTys)
Tys.push_back(ToVectorTy(ScalarTy, VF));
// Compute costs of unpacking argument values for the scalar calls and
// packing the return values to a vector.
InstructionCost ScalarizationCost =
getScalarizationOverhead(CI, VF, CostKind);
InstructionCost Cost =
ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
// If we can't emit a vector call for this function, then the currently found
// cost is the cost we need to return.
InstructionCost MaskCost = 0;
VFShape Shape = VFShape::get(*CI, VF, MaskRequired);
if (NeedsMask)
*NeedsMask = MaskRequired;
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
// If we want an unmasked vector function but can't find one matching the VF,
// maybe we can find vector function that does use a mask and synthesize
// an all-true mask.
if (!VecFunc && !MaskRequired) {
Shape = VFShape::get(*CI, VF, /*HasGlobalPred=*/true);
VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
// If we found one, add in the cost of creating a mask
if (VecFunc) {
if (NeedsMask)
*NeedsMask = true;
MaskCost = TTI.getShuffleCost(
TargetTransformInfo::SK_Broadcast,
VectorType::get(
IntegerType::getInt1Ty(VecFunc->getFunctionType()->getContext()),
VF));
}
}
// We don't support masked function calls yet, but we can scalarize a
// masked call with branches (unless VF is scalable).
if (!TLI || CI->isNoBuiltin() || !VecFunc)
return VF.isScalable() ? InstructionCost::getInvalid() : Cost;
// If the corresponding vector cost is cheaper, return its cost.
InstructionCost VectorCallCost =
TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost;
if (VectorCallCost < Cost) {
*Variant = VecFunc;
Cost = VectorCallCost;
}
return Cost;
}
static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
return Elt;
return VectorType::get(Elt, VF);
}
InstructionCost
LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
ElementCount VF) const {
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
assert(ID && "Expected intrinsic call!");
Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
FMF = FPMO->getFastMathFlags();
SmallVector<const Value *> Arguments(CI->args());
FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
SmallVector<Type *> ParamTys;
std::transform(FTy->param_begin(), FTy->param_end(),
std::back_inserter(ParamTys),
[&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
dyn_cast<IntrinsicInst>(CI));
return TTI.getIntrinsicInstrCost(CostAttrs,
TargetTransformInfo::TCK_RecipThroughput);
}
static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}
void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
// For every instruction `I` in MinBWs, truncate the operands, create a
// truncated version of `I` and reextend its result. InstCombine runs
// later and will remove any ext/trunc pairs.
SmallPtrSet<Value *, 4> Erased;
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from State indicates that it
// wasn't vectorized.
// FIXME: Should not rely on getVPValue at this point.
VPValue *Def = State.Plan->getVPValue(KV.first, true);
if (!State.hasAnyVectorValue(Def))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = State.get(Def, Part);
if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
continue;
Type *OriginalTy = I->getType();
Type *ScalarTruncatedTy =
IntegerType::get(OriginalTy->getContext(), KV.second);
auto *TruncatedTy = VectorType::get(
ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
if (TruncatedTy == OriginalTy)
continue;
IRBuilder<> B(cast<Instruction>(I));
auto ShrinkOperand = [&](Value *V) -> Value * {
if (auto *ZI = dyn_cast<ZExtInst>(V))
if (ZI->getSrcTy() == TruncatedTy)
return ZI->getOperand(0);
return B.CreateZExtOrTrunc(V, TruncatedTy);
};
// The actual instruction modification depends on the instruction type,
// unfortunately.
Value *NewI = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
ShrinkOperand(BO->getOperand(1)));
// Any wrapping introduced by shrinking this operation shouldn't be
// considered undefined behavior. So, we can't unconditionally copy
// arithmetic wrapping flags to NewI.
cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
} else if (auto *CI = dyn_cast<ICmpInst>(I)) {
NewI =
B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
ShrinkOperand(CI->getOperand(1)));
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
NewI = B.CreateSelect(SI->getCondition(),
ShrinkOperand(SI->getTrueValue()),
ShrinkOperand(SI->getFalseValue()));
} else if (auto *CI = dyn_cast<CastInst>(I)) {
switch (CI->getOpcode()) {
default:
llvm_unreachable("Unhandled cast!");
case Instruction::Trunc:
NewI = ShrinkOperand(CI->getOperand(0));
break;
case Instruction::SExt:
NewI = B.CreateSExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
case Instruction::ZExt:
NewI = B.CreateZExtOrTrunc(
CI->getOperand(0),
smallestIntegerVectorType(OriginalTy, TruncatedTy));
break;
}
} else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
auto Elements0 =
cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
auto Elements1 =
cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
auto *O1 = B.CreateZExtOrTrunc(
SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
} else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
// Don't do anything with the operands, just extend the result.
continue;
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
auto Elements =
cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
auto Elements =
cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
auto *O0 = B.CreateZExtOrTrunc(
EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
NewI = B.CreateExtractElement(O0, EE->getOperand(2));
} else {
// If we don't know what to do, be conservative and don't do anything.
continue;
}
// Lastly, extend the result.
NewI->takeName(cast<Instruction>(I));
Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
I->replaceAllUsesWith(Res);
cast<Instruction>(I)->eraseFromParent();
Erased.insert(I);
State.reset(Def, Res, Part);
}
}
// We'll have created a bunch of ZExts that are now parentless. Clean up.
for (const auto &KV : Cost->getMinimalBitwidths()) {
// If the value wasn't vectorized, we must maintain the original scalar
// type. The absence of the value from State indicates that it
// wasn't vectorized.
// FIXME: Should not rely on getVPValue at this point.
VPValue *Def = State.Plan->getVPValue(KV.first, true);
if (!State.hasAnyVectorValue(Def))
continue;
for (unsigned Part = 0; Part < UF; ++Part) {
Value *I = State.get(Def, Part);
ZExtInst *Inst = dyn_cast<ZExtInst>(I);
if (Inst && Inst->use_empty()) {
Value *NewI = Inst->getOperand(0);
Inst->eraseFromParent();
State.reset(Def, NewI, Part);
}
}
}
}
void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
VPlan &Plan) {
// Insert truncates and extends for any truncated instructions as hints to
// InstCombine.
if (VF.isVector())
truncateToMinimalBitwidths(State);
// Fix widened non-induction PHIs by setting up the PHI operands.
if (EnableVPlanNativePath)
fixNonInductionPHIs(Plan, State);
// At this point every instruction in the original loop is widened to a
// vector form. Now we need to fix the recurrences in the loop. These PHI
// nodes are currently empty because we did not want to introduce cycles.
// This is the second stage of vectorizing recurrences.
fixCrossIterationPHIs(State);
// Forget the original basic block.
PSE.getSE()->forgetLoop(OrigLoop);
// After vectorization, the exit blocks of the original loop will have
// additional predecessors. Invalidate SCEVs for the exit phis in case SE
// looked through single-entry phis.
SmallVector<BasicBlock *> ExitBlocks;
OrigLoop->getExitBlocks(ExitBlocks);
for (BasicBlock *Exit : ExitBlocks)
for (PHINode &PN : Exit->phis())
PSE.getSE()->forgetValue(&PN);
VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
if (Cost->requiresScalarEpilogue(VF.isVector())) {
// No edge from the middle block to the unique exit block has been inserted
// and there is nothing to fix from vector loop; phis should have incoming
// from scalar loop only.
} else {
// TODO: Check VPLiveOuts to see if IV users need fixing instead of checking
// the cost model.
// If we inserted an edge from the middle block to the unique exit block,
// update uses outside the loop (phis) to account for the newly inserted
// edge.
// Fix-up external users of the induction variables.
for (const auto &Entry : Legal->getInductionVars())
fixupIVUsers(Entry.first, Entry.second,
getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
IVEndValues[Entry.first], LoopMiddleBlock,
VectorLoop->getHeader(), Plan, State);
}
// Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
// in the exit block, so update the builder.
State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
for (const auto &KV : Plan.getLiveOuts())
KV.second->fixPhi(Plan, State);
for (Instruction *PI : PredicatedInstructions)
sinkScalarOperands(&*PI);
// Remove redundant induction instructions.
cse(VectorLoop->getHeader());
// Set/update profile weights for the vector and remainder loops as original
// loop iterations are now distributed among them. Note that original loop
// represented by LoopScalarBody becomes remainder loop after vectorization.
//
// For cases like foldTailByMasking() and requiresScalarEpiloque() we may
// end up getting slightly roughened result but that should be OK since
// profile is not inherently precise anyway. Note also possible bypass of
// vector code caused by legality checks is ignored, assigning all the weight
// to the vector loop, optimistically.
//
// For scalable vectorization we can't know at compile time how many iterations
// of the loop are handled in one vector iteration, so instead assume a pessimistic
// vscale of '1'.
setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
LI->getLoopFor(LoopScalarBody),
VF.getKnownMinValue() * UF);
}
void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
// In order to support recurrences we need to be able to vectorize Phi nodes.
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
// stage #2: We now need to fix the recurrences by adding incoming edges to
// the currently empty PHI nodes. At this point every instruction in the
// original loop is widened to a vector form so we can use them to construct
// the incoming edges.
VPBasicBlock *Header =
State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &R : Header->phis()) {
if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
fixReduction(ReductionPhi, State);
else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
fixFixedOrderRecurrence(FOR, State);
}
}
void InnerLoopVectorizer::fixFixedOrderRecurrence(
VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
// This is the second phase of vectorizing first-order recurrences. An
// overview of the transformation is described below. Suppose we have the
// following loop.
//
// for (int i = 0; i < n; ++i)
// b[i] = a[i] - a[i - 1];
//
// There is a first-order recurrence on "a". For this loop, the shorthand
// scalar IR looks like:
//
// scalar.ph:
// s_init = a[-1]
// br scalar.body
//
// scalar.body:
// i = phi [0, scalar.ph], [i+1, scalar.body]
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
// s2 = a[i]
// b[i] = s2 - s1
// br cond, scalar.body, ...
//
// In this example, s1 is a recurrence because it's value depends on the
// previous iteration. In the first phase of vectorization, we created a
// vector phi v1 for s1. We now complete the vectorization and produce the
// shorthand vector IR shown below (for VF = 4, UF = 1).
//
// vector.ph:
// v_init = vector(..., ..., ..., a[-1])
// br vector.body
//
// vector.body
// i = phi [0, vector.ph], [i+4, vector.body]
// v1 = phi [v_init, vector.ph], [v2, vector.body]
// v2 = a[i, i+1, i+2, i+3];
// v3 = vector(v1(3), v2(0, 1, 2))
// b[i, i+1, i+2, i+3] = v2 - v3
// br cond, vector.body, middle.block
//
// middle.block:
// x = v2(3)
// br scalar.ph
//
// scalar.ph:
// s_init = phi [x, middle.block], [a[-1], otherwise]
// br scalar.body
//
// After execution completes the vector loop, we extract the next value of
// the recurrence (x) to use as the initial value in the scalar loop.
// Extract the last vector element in the middle block. This will be the
// initial value for the recurrence when jumping to the scalar loop.
VPValue *PreviousDef = PhiR->getBackedgeValue();
Value *Incoming = State.get(PreviousDef, UF - 1);
auto *ExtractForScalar = Incoming;
auto *IdxTy = Builder.getInt32Ty();
Value *RuntimeVF = nullptr;
if (VF.isVector()) {
auto *One = ConstantInt::get(IdxTy, 1);
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
ExtractForScalar =
Builder.CreateExtractElement(Incoming, LastIdx, "vector.recur.extract");
}
auto RecurSplice = cast<VPInstruction>(*PhiR->user_begin());
assert(PhiR->getNumUsers() == 1 &&
RecurSplice->getOpcode() ==
VPInstruction::FirstOrderRecurrenceSplice &&
"recurrence phi must have a single user: FirstOrderRecurrenceSplice");
SmallVector<VPLiveOut *> LiveOuts;
for (VPUser *U : RecurSplice->users())
if (auto *LiveOut = dyn_cast<VPLiveOut>(U))
LiveOuts.push_back(LiveOut);
if (!LiveOuts.empty()) {
// Extract the second last element in the middle block if the
// Phi is used outside the loop. We need to extract the phi itself
// and not the last element (the phi update in the current iteration). This
// will be the value when jumping to the exit block from the
// LoopMiddleBlock, when the scalar loop is not run at all.
Value *ExtractForPhiUsedOutsideLoop = nullptr;
if (VF.isVector()) {
auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
Incoming, Idx, "vector.recur.extract.for.phi");
} else {
assert(UF > 1 && "VF and UF cannot both be 1");
// When loop is unrolled without vectorizing, initialize
// ExtractForPhiUsedOutsideLoop with the value just prior to unrolled
// value of `Incoming`. This is analogous to the vectorized case above:
// extracting the second last element when VF > 1.
ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
}
for (VPLiveOut *LiveOut : LiveOuts) {
assert(!Cost->requiresScalarEpilogue(VF.isVector()));
PHINode *LCSSAPhi = LiveOut->getPhi();
LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
State.Plan->removeLiveOut(LCSSAPhi);
}
}
// Fix the initial value of the original recurrence in the scalar loop.
Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
for (auto *BB : predecessors(LoopScalarPreHeader)) {
auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
Start->addIncoming(Incoming, BB);
}
Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
Phi->setName("scalar.recur");
}
void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
VPTransformState &State) {
PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
// Get it's reduction variable descriptor.
assert(Legal->isReductionVariable(OrigPhi) &&
"Unable to find the reduction variable");
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
RecurKind RK = RdxDesc.getRecurrenceKind();
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
State.setDebugLocFromInst(ReductionStartValue);
VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
// This is the vector-clone of the value that leaves the loop.
Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
State.setDebugLocFromInst(LoopExitInst);
Type *PhiTy = OrigPhi->getType();
VPBasicBlock *LatchVPBB =
PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
// If tail is folded by masking, the vector value to leave the loop should be
// a Select choosing between the vectorized LoopExitInst and vectorized Phi,
// instead of the former. For an inloop reduction the reduction will already
// be predicated, and does not need to be handled here.
if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
for (unsigned Part = 0; Part < UF; ++Part) {
Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
SelectInst *Sel = nullptr;
for (User *U : VecLoopExitInst->users()) {
if (isa<SelectInst>(U)) {
assert(!Sel && "Reduction exit feeding two selects");
Sel = cast<SelectInst>(U);
} else
assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
}
assert(Sel && "Reduction exit feeds no select");
State.reset(LoopExitInstDef, Sel, Part);
if (isa<FPMathOperator>(Sel))
Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
// If the target can create a predicated operator for the reduction at no
// extra cost in the loop (for example a predicated vadd), it can be
// cheaper for the select to remain in the loop than be sunk out of it,
// and so use the select value for the phi instead of the old
// LoopExitValue.
if (PreferPredicatedReductionSelect ||
TTI->preferPredicatedReductionSelect(
RdxDesc.getOpcode(), PhiTy,
TargetTransformInfo::ReductionFlags())) {
auto *VecRdxPhi =
cast<PHINode>(State.get(PhiR, Part));
VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
}
}
}
// If the vector reduction can be performed in a smaller type, we truncate
// then extend the loop exit value to enable InstCombine to evaluate the
// entire expression in the smaller type.
if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
VectorParts RdxParts(UF);
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = State.get(LoopExitInstDef, Part);
Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
: Builder.CreateZExt(Trunc, VecTy);
for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
if (U != Trunc) {
U->replaceUsesOfWith(RdxParts[Part], Extnd);
RdxParts[Part] = Extnd;
}
}
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
for (unsigned Part = 0; Part < UF; ++Part) {
RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
State.reset(LoopExitInstDef, RdxParts[Part], Part);
}
}
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
unsigned Op = RecurrenceDescriptor::getOpcode(RK);
// The middle block terminator has already been assigned a DebugLoc here (the
// OrigLoop's single latch terminator). We want the whole middle block to
// appear to execute on this line because: (a) it is all compiler generated,
// (b) these instructions are always executed after evaluating the latch
// conditional branch, and (c) other passes may add new predecessors which
// terminate on this line. This is the easiest way to ensure we don't
// accidentally cause an extra step back into the loop while debugging.
State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
if (PhiR->isOrdered())
ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
else {
// Floating-point operations should have some FMF to enable the reduction.
IRBuilderBase::FastMathFlagGuard FMFG(Builder);
Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
for (unsigned Part = 1; Part < UF; ++Part) {
Value *RdxPart = State.get(LoopExitInstDef, Part);
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
ReducedPartRdx = Builder.CreateBinOp(
(Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
} else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
ReducedPartRdx, RdxPart);
else
ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
}
}
// Create the reduction after the loop. Note that inloop reductions create the
// target reduction in the loop using a Reduction recipe.
if (VF.isVector() && !PhiR->isInLoop()) {
ReducedPartRdx =
createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
// If the reduction can be performed in a smaller type, we need to extend
// the reduction to the wider type before we branch to the original loop.
if (PhiTy != RdxDesc.getRecurrenceType())
ReducedPartRdx = RdxDesc.isSigned()
? Builder.CreateSExt(ReducedPartRdx, PhiTy)
: Builder.CreateZExt(ReducedPartRdx, PhiTy);
}
PHINode *ResumePhi =
dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
// Create a phi node that merges control-flow from the backedge-taken check
// block and the middle block.
PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
LoopScalarPreHeader->getTerminator());
// If we are fixing reductions in the epilogue loop then we should already
// have created a bc.merge.rdx Phi after the main vector body. Ensure that
// we carry over the incoming values correctly.
for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
if (Incoming == LoopMiddleBlock)
BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
Incoming);
else
BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
}
// Set the resume value for this reduction
ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
// If there were stores of the reduction value to a uniform memory address
// inside the loop, create the final store here.
if (StoreInst *SI = RdxDesc.IntermediateStore) {
StoreInst *NewSI =
Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
propagateMetadata(NewSI, SI);
// If the reduction value is used in other places,
// then let the code below create PHI's for that.
}
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the PHI nodes
// in the exit blocks. See comment on analogous loop in
// fixFixedOrderRecurrence for a more complete explaination of the logic.
if (!Cost->requiresScalarEpilogue(VF.isVector()))
for (PHINode &LCSSAPhi : LoopExitBlock->phis())
if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
State.Plan->removeLiveOut(&LCSSAPhi);
}
// Fix the scalar loop reduction variable with the incoming reduction sum
// from the vector body and from the backedge value.
int IncomingEdgeBlockIdx =
OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
// Pick the other block.
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
}
void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
// The basic block and loop containing the predicated instruction.
auto *PredBB = PredInst->getParent();
auto *VectorLoop = LI->getLoopFor(PredBB);
// Initialize a worklist with the operands of the predicated instruction.
SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
// Holds instructions that we need to analyze again. An instruction may be
// reanalyzed if we don't yet know if we can sink it or not.
SmallVector<Instruction *, 8> InstsToReanalyze;
// Returns true if a given use occurs in the predicated block. Phi nodes use
// their operands in their corresponding predecessor blocks.
auto isBlockOfUsePredicated = [&](Use &U) -> bool {
auto *I = cast<Instruction>(U.getUser());
BasicBlock *BB = I->getParent();
if (auto *Phi = dyn_cast<PHINode>(I))
BB = Phi->getIncomingBlock(
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
return BB == PredBB;
};
// Iteratively sink the scalarized operands of the predicated instruction
// into the block we created for it. When an instruction is sunk, it's
// operands are then added to the worklist. The algorithm ends after one pass
// through the worklist doesn't sink a single instruction.
bool Changed;
do {
// Add the instructions that need to be reanalyzed to the worklist, and
// reset the changed indicator.
Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
InstsToReanalyze.clear();
Changed = false;
while (!Worklist.empty()) {
auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
// We can't sink an instruction if it is a phi node, is not in the loop,
// may have side effects or may read from memory.
// TODO Could dor more granular checking to allow sinking a load past non-store instructions.
if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
// If the instruction is already in PredBB, check if we can sink its
// operands. In that case, VPlan's sinkScalarOperands() succeeded in
// sinking the scalar instruction I, hence it appears in PredBB; but it
// may have failed to sink I's operands (recursively), which we try
// (again) here.
if (I->getParent() == PredBB) {
Worklist.insert(I->op_begin(), I->op_end());
continue;
}
// It's legal to sink the instruction if all its uses occur in the
// predicated block. Otherwise, there's nothing to do yet, and we may
// need to reanalyze the instruction.
if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
InstsToReanalyze.push_back(I);
continue;
}
// Move the instruction to the beginning of the predicated block, and add
// it's operands to the worklist.
I->moveBefore(&*PredBB->getFirstInsertionPt());
Worklist.insert(I->op_begin(), I->op_end());
// The sinking may have enabled other instructions to be sunk, so we will
// need to iterate.
Changed = true;
}
} while (Changed);
}
void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
VPTransformState &State) {
auto Iter = vp_depth_first_deep(Plan.getEntry());
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &P : VPBB->phis()) {
VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
if (!VPPhi)
continue;
PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
// Make sure the builder has a valid insert point.
Builder.SetInsertPoint(NewPhi);
for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
VPValue *Inc = VPPhi->getIncomingValue(i);
VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
}
}
}
}
bool InnerLoopVectorizer::useOrderedReductions(
const RecurrenceDescriptor &RdxDesc) {
return Cost->useOrderedReductions(RdxDesc);
}
void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
// We should not collect Scalars more than once per VF. Right now, this
// function is called from collectUniformsAndScalars(), which already does
// this check. Collecting Scalars for VF=1 does not make any sense.
assert(VF.isVector() && !Scalars.contains(VF) &&
"This function should not be visited twice for the same VF");
// This avoids any chances of creating a REPLICATE recipe during planning
// since that would result in generation of scalarized code during execution,
// which is not supported for scalable vectors.
if (VF.isScalable()) {
Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
return;
}
SmallSetVector<Instruction *, 8> Worklist;
// These sets are used to seed the analysis with pointers used by memory
// accesses that will remain scalar.
SmallSetVector<Instruction *, 8> ScalarPtrs;
SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
auto *Latch = TheLoop->getLoopLatch();
// A helper that returns true if the use of Ptr by MemAccess will be scalar.
// The pointer operands of loads and stores will be scalar as long as the
// memory access is not a gather or scatter operation. The value operand of a
// store will remain scalar if the store is scalarized.
auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
if (auto *Store = dyn_cast<StoreInst>(MemAccess))
if (Ptr == Store->getValueOperand())
return WideningDecision == CM_Scalarize;
assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
"Ptr is neither a value or pointer operand");
return WideningDecision != CM_GatherScatter;
};
// A helper that returns true if the given value is a bitcast or
// getelementptr instruction contained in the loop.
auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
isa<GetElementPtrInst>(V)) &&
!TheLoop->isLoopInvariant(V);
};
// A helper that evaluates a memory access's use of a pointer. If the use will
// be a scalar use and the pointer is only used by memory accesses, we place
// the pointer in ScalarPtrs. Otherwise, the pointer is placed in
// PossibleNonScalarPtrs.
auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
// We only care about bitcast and getelementptr instructions contained in
// the loop.
if (!isLoopVaryingBitCastOrGEP(Ptr))
return;
// If the pointer has already been identified as scalar (e.g., if it was
// also identified as uniform), there's nothing to do.
auto *I = cast<Instruction>(Ptr);
if (Worklist.count(I))
return;
// If the use of the pointer will be a scalar use, and all users of the
// pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
// place the pointer in PossibleNonScalarPtrs.
if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
return isa<LoadInst>(U) || isa<StoreInst>(U);
}))
ScalarPtrs.insert(I);
else
PossibleNonScalarPtrs.insert(I);
};
// We seed the scalars analysis with three classes of instructions: (1)
// instructions marked uniform-after-vectorization and (2) bitcast,
// getelementptr and (pointer) phi instructions used by memory accesses
// requiring a scalar use.
//
// (1) Add to the worklist all instructions that have been identified as
// uniform-after-vectorization.
Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
// (2) Add to the worklist all bitcast and getelementptr instructions used by
// memory accesses requiring a scalar use. The pointer operands of loads and
// stores will be scalar as long as the memory accesses is not a gather or
// scatter operation. The value operand of a store will remain scalar if the
// store is scalarized.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (auto *Load = dyn_cast<LoadInst>(&I)) {
evaluatePtrUse(Load, Load->getPointerOperand());
} else if (auto *Store = dyn_cast<StoreInst>(&I)) {
evaluatePtrUse(Store, Store->getPointerOperand());
evaluatePtrUse(Store, Store->getValueOperand());
}
}
for (auto *I : ScalarPtrs)
if (!PossibleNonScalarPtrs.count(I)) {
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
Worklist.insert(I);
}
// Insert the forced scalars.
// FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
// induction variable when the PHI user is scalarized.
auto ForcedScalar = ForcedScalars.find(VF);
if (ForcedScalar != ForcedScalars.end())
for (auto *I : ForcedScalar->second) {
LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
Worklist.insert(I);
}
// Expand the worklist by looking through any bitcasts and getelementptr
// instructions we've already identified as scalar. This is similar to the
// expansion step in collectLoopUniforms(); however, here we're only
// expanding to include additional bitcasts and getelementptr instructions.
unsigned Idx = 0;
while (Idx != Worklist.size()) {
Instruction *Dst = Worklist[Idx++];
if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
continue;
auto *Src = cast<Instruction>(Dst->getOperand(0));
if (llvm::all_of(Src->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return !TheLoop->contains(J) || Worklist.count(J) ||
((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
isScalarUse(J, Src));
})) {
Worklist.insert(Src);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
}
}
// An induction variable will remain scalar if all users of the induction
// variable and induction variable update remain scalar.
for (const auto &Induction : Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// If tail-folding is applied, the primary induction variable will be used
// to feed a vector compare.
if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
continue;
// Returns true if \p Indvar is a pointer induction that is used directly by
// load/store instruction \p I.
auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
Instruction *I) {
return Induction.second.getKind() ==
InductionDescriptor::IK_PtrInduction &&
(isa<LoadInst>(I) || isa<StoreInst>(I)) &&
Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
};
// Determine if all users of the induction variable are scalar after
// vectorization.
auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
IsDirectLoadStoreFromPtrIndvar(Ind, I);
});
if (!ScalarInd)
continue;
// Determine if all users of the induction variable update instruction are
// scalar after vectorization.
auto ScalarIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
});
if (!ScalarIndUpdate)
continue;
// The induction variable and its update instruction will remain scalar.
Worklist.insert(Ind);
Worklist.insert(IndUpdate);
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
<< "\n");
}
Scalars[VF].insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationCostModel::isScalarWithPredication(
Instruction *I, ElementCount VF) const {
if (!isPredicatedInst(I))
return false;
// Do we have a non-scalar lowering for this predicated
// instruction? No - it is scalar with predication.
switch(I->getOpcode()) {
default:
return true;
case Instruction::Call:
return !VFDatabase::hasMaskedVariant(*(cast<CallInst>(I)), VF);
case Instruction::Load:
case Instruction::Store: {
auto *Ptr = getLoadStorePointerOperand(I);
auto *Ty = getLoadStoreType(I);
Type *VTy = Ty;
if (VF.isVector())
VTy = VectorType::get(Ty, VF);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
TTI.isLegalMaskedGather(VTy, Alignment))
: !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
TTI.isLegalMaskedScatter(VTy, Alignment));
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem: {
// We have the option to use the safe-divisor idiom to avoid predication.
// The cost based decision here will always select safe-divisor for
// scalable vectors as scalarization isn't legal.
const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
}
}
}
bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const {
if (!blockNeedsPredicationForAnyReason(I->getParent()))
return false;
// Can we prove this instruction is safe to unconditionally execute?
// If not, we must use some form of predication.
switch(I->getOpcode()) {
default:
return false;
case Instruction::Load:
case Instruction::Store: {
if (!Legal->isMaskRequired(I))
return false;
// When we know the load's address is loop invariant and the instruction
// in the original scalar loop was unconditionally executed then we
// don't need to mark it as a predicated instruction. Tail folding may
// introduce additional predication, but we're guaranteed to always have
// at least one active lane. We call Legal->blockNeedsPredication here
// because it doesn't query tail-folding. For stores, we need to prove
// both speculation safety (which follows from the same argument as loads),
// but also must prove the value being stored is correct. The easiest
// form of the later is to require that all values stored are the same.
if (Legal->isInvariant(getLoadStorePointerOperand(I)) &&
(isa<LoadInst>(I) ||
(isa<StoreInst>(I) &&
TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) &&
!Legal->blockNeedsPredication(I->getParent()))
return false;
return true;
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
// TODO: We can use the loop-preheader as context point here and get
// context sensitive reasoning
return !isSafeToSpeculativelyExecute(I);
case Instruction::Call:
return Legal->isMaskRequired(I);
}
}
std::pair<InstructionCost, InstructionCost>
LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I,
ElementCount VF) const {
assert(I->getOpcode() == Instruction::UDiv ||
I->getOpcode() == Instruction::SDiv ||
I->getOpcode() == Instruction::SRem ||
I->getOpcode() == Instruction::URem);
assert(!isSafeToSpeculativelyExecute(I));
const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
// Scalarization isn't legal for scalable vector types
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
if (!VF.isScalable()) {
// Get the scalarization cost and scale this amount by the probability of
// executing the predicated block. If the instruction is not predicated,
// we fall through to the next case.
ScalarizationCost = 0;
// These instructions have a non-void type, so account for the phi nodes
// that we will create. This cost is likely to be zero. The phi node
// cost, if any, should be scaled by the block probability because it
// models a copy at the end of each predicated block.
ScalarizationCost += VF.getKnownMinValue() *
TTI.getCFInstrCost(Instruction::PHI, CostKind);
// The cost of the non-predicated instruction.
ScalarizationCost += VF.getKnownMinValue() *
TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
// The cost of insertelement and extractelement instructions needed for
// scalarization.
ScalarizationCost += getScalarizationOverhead(I, VF, CostKind);
// Scale the cost by the probability of executing the predicated blocks.
// This assumes the predicated block for each vector lane is equally
// likely.
ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb();
}
InstructionCost SafeDivisorCost = 0;
auto *VecTy = ToVectorTy(I->getType(), VF);
// The cost of the select guard to ensure all lanes are well defined
// after we speculate above any internal control flow.
SafeDivisorCost += TTI.getCmpSelInstrCost(
Instruction::Select, VecTy,
ToVectorTy(Type::getInt1Ty(I->getContext()), VF),
CmpInst::BAD_ICMP_PREDICATE, CostKind);
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
Value *Op2 = I->getOperand(1);
auto Op2Info = TTI.getOperandInfo(Op2);
if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
Legal->isInvariant(Op2))
Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
SmallVector<const Value *, 4> Operands(I->operand_values());
SafeDivisorCost += TTI.getArithmeticInstrCost(
I->getOpcode(), VecTy, CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
Op2Info, Operands, I);
return {ScalarizationCost, SafeDivisorCost};
}
bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
Instruction *I, ElementCount VF) {
assert(isAccessInterleaved(I) && "Expecting interleaved access.");
assert(getWideningDecision(I, VF) == CM_Unknown &&
"Decision should not be set yet.");
auto *Group = getInterleavedAccessGroup(I);
assert(Group && "Must have a group.");
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
auto *ScalarTy = getLoadStoreType(I);
if (hasIrregularType(ScalarTy, DL))
return false;
// If the group involves a non-integral pointer, we may not be able to
// losslessly cast all values to a common type.
unsigned InterleaveFactor = Group->getFactor();
bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
for (unsigned i = 0; i < InterleaveFactor; i++) {
Instruction *Member = Group->getMember(i);
if (!Member)
continue;
auto *MemberTy = getLoadStoreType(Member);
bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
// Don't coerce non-integral pointers to integers or vice versa.
if (MemberNI != ScalarNI) {
// TODO: Consider adding special nullptr value case here
return false;
} else if (MemberNI && ScalarNI &&
ScalarTy->getPointerAddressSpace() !=
MemberTy->getPointerAddressSpace()) {
return false;
}
}
// Check if masking is required.
// A Group may need masking for one of two reasons: it resides in a block that
// needs predication, or it was decided to use masking to deal with gaps
// (either a gap at the end of a load-access that may result in a speculative
// load, or any gaps in a store-access).
bool PredicatedAccessRequiresMasking =
blockNeedsPredicationForAnyReason(I->getParent()) &&
Legal->isMaskRequired(I);
bool LoadAccessWithGapsRequiresEpilogMasking =
isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
!isScalarEpilogueAllowed();
bool StoreAccessWithGapsRequiresMasking =
isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
if (!PredicatedAccessRequiresMasking &&
!LoadAccessWithGapsRequiresEpilogMasking &&
!StoreAccessWithGapsRequiresMasking)
return true;
// If masked interleaving is required, we expect that the user/target had
// enabled it, because otherwise it either wouldn't have been created or
// it should have been invalidated by the CostModel.
assert(useMaskedInterleavedAccesses(TTI) &&
"Masked interleave-groups for predicated accesses are not enabled.");
if (Group->isReverse())
return false;
auto *Ty = getLoadStoreType(I);
const Align Alignment = getLoadStoreAlignment(I);
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
: TTI.isLegalMaskedStore(Ty, Alignment);
}
bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
Instruction *I, ElementCount VF) {
// Get and ensure we have a valid memory instruction.
assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
auto *Ptr = getLoadStorePointerOperand(I);
auto *ScalarTy = getLoadStoreType(I);
// In order to be widened, the pointer should be consecutive, first of all.
if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
return false;
// If the instruction is a store located in a predicated block, it will be
// scalarized.
if (isScalarWithPredication(I, VF))
return false;
// If the instruction's allocated size doesn't equal it's type size, it
// requires padding and will be scalarized.
auto &DL = I->getModule()->getDataLayout();
if (hasIrregularType(ScalarTy, DL))
return false;
return true;
}
void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
// We should not collect Uniforms more than once per VF. Right now,
// this function is called from collectUniformsAndScalars(), which
// already does this check. Collecting Uniforms for VF=1 does not make any
// sense.
assert(VF.isVector() && !Uniforms.contains(VF) &&
"This function should not be visited twice for the same VF");
// Visit the list of Uniforms. If we'll not find any uniform value, we'll
// not analyze again. Uniforms.count(VF) will return 1.
Uniforms[VF].clear();
// We now know that the loop is vectorizable!
// Collect instructions inside the loop that will remain uniform after
// vectorization.
// Global values, params and instructions outside of current loop are out of
// scope.
auto isOutOfScope = [&](Value *V) -> bool {
Instruction *I = dyn_cast<Instruction>(V);
return (!I || !TheLoop->contains(I));
};
// Worklist containing uniform instructions demanding lane 0.
SetVector<Instruction *> Worklist;
BasicBlock *Latch = TheLoop->getLoopLatch();
// Add uniform instructions demanding lane 0 to the worklist. Instructions
// that are scalar with predication must not be considered uniform after
// vectorization, because that would create an erroneous replicating region
// where only a single instance out of VF should be formed.
// TODO: optimize such seldom cases if found important, see PR40816.
auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
if (isOutOfScope(I)) {
LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
<< *I << "\n");
return;
}
if (isScalarWithPredication(I, VF)) {
LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
<< *I << "\n");
return;
}
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
Worklist.insert(I);
};
// Start with the conditional branch. If the branch condition is an
// instruction contained in the loop that is only used by the branch, it is
// uniform.
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
addToWorklistIfAllowed(Cmp);
auto PrevVF = VF.divideCoefficientBy(2);
// Return true if all lanes perform the same memory operation, and we can
// thus chose to execute only one.
auto isUniformMemOpUse = [&](Instruction *I) {
// If the value was already known to not be uniform for the previous
// (smaller VF), it cannot be uniform for the larger VF.
if (PrevVF.isVector()) {
auto Iter = Uniforms.find(PrevVF);
if (Iter != Uniforms.end() && !Iter->second.contains(I))
return false;
}
if (!Legal->isUniformMemOp(*I, VF))
return false;
if (isa<LoadInst>(I))
// Loading the same address always produces the same result - at least
// assuming aliasing and ordering which have already been checked.
return true;
// Storing the same value on every iteration.
return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
};
auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
InstWidening WideningDecision = getWideningDecision(I, VF);
assert(WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment");
if (isUniformMemOpUse(I))
return true;
return (WideningDecision == CM_Widen ||
WideningDecision == CM_Widen_Reverse ||
WideningDecision == CM_Interleave);
};
// Returns true if Ptr is the pointer operand of a memory access instruction
// I, I is known to not require scalarization, and the pointer is not also
// stored.
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
return false;
return getLoadStorePointerOperand(I) == Ptr &&
(isUniformDecision(I, VF) || Legal->isInvariant(Ptr));
};
// Holds a list of values which are known to have at least one uniform use.
// Note that there may be other uses which aren't uniform. A "uniform use"
// here is something which only demands lane 0 of the unrolled iterations;
// it does not imply that all lanes produce the same value (e.g. this is not
// the usual meaning of uniform)
SetVector<Value *> HasUniformUse;
// Scan the loop for instructions which are either a) known to have only
// lane 0 demanded or b) are uses which demand only lane 0 of their operand.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::sideeffect:
case Intrinsic::experimental_noalias_scope_decl:
case Intrinsic::assume:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
if (TheLoop->hasLoopInvariantOperands(&I))
addToWorklistIfAllowed(&I);
break;
default:
break;
}
}
// ExtractValue instructions must be uniform, because the operands are
// known to be loop-invariant.
if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
assert(isOutOfScope(EVI->getAggregateOperand()) &&
"Expected aggregate value to be loop invariant");
addToWorklistIfAllowed(EVI);
continue;
}
// If there's no pointer operand, there's nothing to do.
auto *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
continue;
if (isUniformMemOpUse(&I))
addToWorklistIfAllowed(&I);
if (isVectorizedMemAccessUse(&I, Ptr))
HasUniformUse.insert(Ptr);
}
// Add to the worklist any operands which have *only* uniform (e.g. lane 0
// demanding) users. Since loops are assumed to be in LCSSA form, this
// disallows uses outside the loop as well.
for (auto *V : HasUniformUse) {
if (isOutOfScope(V))
continue;
auto *I = cast<Instruction>(V);
auto UsersAreMemAccesses =
llvm::all_of(I->users(), [&](User *U) -> bool {
return isVectorizedMemAccessUse(cast<Instruction>(U), V);
});
if (UsersAreMemAccesses)
addToWorklistIfAllowed(I);
}
// Expand Worklist in topological order: whenever a new instruction
// is added , its users should be already inside Worklist. It ensures
// a uniform instruction will only be used by uniform instructions.
unsigned idx = 0;
while (idx != Worklist.size()) {
Instruction *I = Worklist[idx++];
for (auto *OV : I->operand_values()) {
// isOutOfScope operands cannot be uniform instructions.
if (isOutOfScope(OV))
continue;
// First order recurrence Phi's should typically be considered
// non-uniform.
auto *OP = dyn_cast<PHINode>(OV);
if (OP && Legal->isFixedOrderRecurrence(OP))
continue;
// If all the users of the operand are uniform, then add the
// operand into the uniform worklist.
auto *OI = cast<Instruction>(OV);
if (llvm::all_of(OI->users(), [&](User *U) -> bool {
auto *J = cast<Instruction>(U);
return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
}))
addToWorklistIfAllowed(OI);
}
}
// For an instruction to be added into Worklist above, all its users inside
// the loop should also be in Worklist. However, this condition cannot be
// true for phi nodes that form a cyclic dependence. We must process phi
// nodes separately. An induction variable will remain uniform if all users
// of the induction variable and induction variable update remain uniform.
// The code below handles both pointer and non-pointer induction variables.
for (const auto &Induction : Legal->getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are uniform after
// vectorization.
auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, Ind);
});
if (!UniformInd)
continue;
// Determine if all users of the induction variable update instruction are
// uniform after vectorization.
auto UniformIndUpdate =
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
isVectorizedMemAccessUse(I, IndUpdate);
});
if (!UniformIndUpdate)
continue;
// The induction variable and its update instruction will remain uniform.
addToWorklistIfAllowed(Ind);
addToWorklistIfAllowed(IndUpdate);
}
Uniforms[VF].insert(Worklist.begin(), Worklist.end());
}
bool LoopVectorizationCostModel::runtimeChecksRequired() {
LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
if (Legal->getRuntimePointerChecking()->Need) {
reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
"runtime pointer checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
if (!PSE.getPredicate().isAlwaysTrue()) {
reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
"runtime SCEV checks needed. Enable vectorization of this "
"loop with '#pragma clang loop vectorize(enable)' when "
"compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
// FIXME: Avoid specializing for stride==1 instead of bailing out.
if (!Legal->getLAI()->getSymbolicStrides().empty()) {
reportVectorizationFailure("Runtime stride check for small trip count",
"runtime stride == 1 checks needed. Enable vectorization of "
"this loop without such check by compiling with -Os/-Oz",
"CantVersionLoopWithOptForSize", ORE, TheLoop);
return true;
}
return false;
}
ElementCount
LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
return ElementCount::getScalable(0);
if (Hints->isScalableVectorizationDisabled()) {
reportVectorizationInfo("Scalable vectorization is explicitly disabled",
"ScalableVectorizationDisabled", ORE, TheLoop);
return ElementCount::getScalable(0);
}
LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
auto MaxScalableVF = ElementCount::getScalable(
std::numeric_limits<ElementCount::ScalarTy>::max());
// Test that the loop-vectorizer can legalize all operations for this MaxVF.
// FIXME: While for scalable vectors this is currently sufficient, this should
// be replaced by a more detailed mechanism that filters out specific VFs,
// instead of invalidating vectorization for a whole set of VFs based on the
// MaxVF.
// Disable scalable vectorization if the loop contains unsupported reductions.
if (!canVectorizeReductions(MaxScalableVF)) {
reportVectorizationInfo(
"Scalable vectorization not supported for the reduction "
"operations found in this loop.",
"ScalableVFUnfeasible", ORE, TheLoop);
return ElementCount::getScalable(0);
}
// Disable scalable vectorization if the loop contains any instructions
// with element types not supported for scalable vectors.
if (any_of(ElementTypesInLoop, [&](Type *Ty) {
return !Ty->isVoidTy() &&
!this->TTI.isElementTypeLegalForScalableVector(Ty);
})) {
reportVectorizationInfo("Scalable vectorization is not supported "
"for all element types found in this loop.",
"ScalableVFUnfeasible", ORE, TheLoop);
return ElementCount::getScalable(0);
}
if (Legal->isSafeForAnyVectorWidth())
return MaxScalableVF;
// Limit MaxScalableVF by the maximum safe dependence distance.
if (std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI))
MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
else
MaxScalableVF = ElementCount::getScalable(0);
if (!MaxScalableVF)
reportVectorizationInfo(
"Max legal vector width too small, scalable vectorization "
"unfeasible.",
"ScalableVFUnfeasible", ORE, TheLoop);
return MaxScalableVF;
}
FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
unsigned SmallestType, WidestType;
std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
// Get the maximum safe dependence distance in bits computed by LAA.
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
// the memory accesses that is most restrictive (involved in the smallest
// dependence distance).
unsigned MaxSafeElements =
llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
<< ".\n");
LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
<< ".\n");
// First analyze the UserVF, fall back if the UserVF should be ignored.
if (UserVF) {
auto MaxSafeUserVF =
UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
// If `VF=vscale x N` is safe, then so is `VF=N`
if (UserVF.isScalable())
return FixedScalableVFPair(
ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
else
return UserVF;
}
assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
// Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
// is better to ignore the hint and let the compiler choose a suitable VF.
if (!UserVF.isScalable()) {
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
<< " is unsafe, clamping to max safe VF="
<< MaxSafeFixedVF << ".\n");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "User-specified vectorization factor "
<< ore::NV("UserVectorizationFactor", UserVF)
<< " is unsafe, clamping to maximum safe vectorization factor "
<< ore::NV("VectorizationFactor", MaxSafeFixedVF);
});
return MaxSafeFixedVF;
}
if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
<< " is ignored because scalable vectors are not "
"available.\n");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "User-specified vectorization factor "
<< ore::NV("UserVectorizationFactor", UserVF)
<< " is ignored because the target does not support scalable "
"vectors. The compiler will pick a more suitable value.";
});
} else {
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
<< " is unsafe. Ignoring scalable UserVF.\n");
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
TheLoop->getStartLoc(),
TheLoop->getHeader())
<< "User-specified vectorization factor "
<< ore::NV("UserVectorizationFactor", UserVF)
<< " is unsafe. Ignoring the hint to let the compiler pick a "
"more suitable value.";
});
}
}
LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
<< " / " << WidestType << " bits.\n");
FixedScalableVFPair Result(ElementCount::getFixed(1),
ElementCount::getScalable(0));
if (auto MaxVF =
getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
MaxSafeFixedVF, FoldTailByMasking))
Result.FixedVF = MaxVF;
if (auto MaxVF =
getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
MaxSafeScalableVF, FoldTailByMasking))
if (MaxVF.isScalable()) {
Result.ScalableVF = MaxVF;
LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
<< "\n");
}
return Result;
}
FixedScalableVFPair
LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
// TODO: It may by useful to do since it's still likely to be dynamically
// uniform if the target can skip.
reportVectorizationFailure(
"Not inserting runtime ptr check for divergent target",
"runtime pointer checks needed. Not enabled for divergent target",
"CantVersionLoopWithDivergentTarget", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
if (TC == 1) {
reportVectorizationFailure("Single iteration (non) loop",
"loop trip count is one, irrelevant for vectorization",
"SingleIterationLoop", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
switch (ScalarEpilogueStatus) {
case CM_ScalarEpilogueAllowed:
return computeFeasibleMaxVF(TC, UserVF, false);
case CM_ScalarEpilogueNotAllowedUsePredicate:
[[fallthrough]];
case CM_ScalarEpilogueNotNeededUsePredicate:
LLVM_DEBUG(
dbgs() << "LV: vector predicate hint/switch found.\n"
<< "LV: Not allowing scalar epilogue, creating predicated "
<< "vector loop.\n");
break;
case CM_ScalarEpilogueNotAllowedLowTripLoop:
// fallthrough as a special case of OptForSize
case CM_ScalarEpilogueNotAllowedOptSize:
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
LLVM_DEBUG(
dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
else
LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
<< "count.\n");
// Bail if runtime checks are required, which are not good when optimising
// for size.
if (runtimeChecksRequired())
return FixedScalableVFPair::getNone();
break;
}
// The only loops we can vectorize without a scalar epilogue, are loops with
// a bottom-test and a single exiting block. We'd have to handle the fact
// that not every instruction executes on the last iteration. This will
// require a lane mask which varies through the vector loop body. (TODO)
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
"scalar epilogue instead.\n");
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
return computeFeasibleMaxVF(TC, UserVF, false);
}
return FixedScalableVFPair::getNone();
}
// Now try the tail folding
// Invalidate interleave groups that require an epilogue if we can't mask
// the interleave-group.
if (!useMaskedInterleavedAccesses(TTI)) {
assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
"No decisions should have been taken at this point");
// Note: There is no need to invalidate any cost modeling decisions here, as
// non where taken so far.
InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
}
FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
// Avoid tail folding if the trip count is known to be a multiple of any VF
// we choose.
std::optional<unsigned> MaxPowerOf2RuntimeVF =
MaxFactors.FixedVF.getFixedValue();
if (MaxFactors.ScalableVF) {
std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
MaxPowerOf2RuntimeVF = std::max<unsigned>(
*MaxPowerOf2RuntimeVF,
*MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
} else
MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
}
if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
"MaxFixedVF must be a power of 2");
unsigned MaxVFtimesIC =
UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
ScalarEvolution *SE = PSE.getSE();
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
const SCEV *ExitCount = SE->getAddExpr(
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
const SCEV *Rem = SE->getURemExpr(
SE->applyLoopGuards(ExitCount, TheLoop),
SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
if (Rem->isZero()) {
// Accept MaxFixedVF if we do not have a tail.
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
return MaxFactors;
}
}
// If we don't know the precise trip count, or if the trip count that we
// found modulo the vectorization factor is not zero, try to fold the tail
// by masking.
// FIXME: look for a smaller MaxVF that does divide TC rather than masking.
if (Legal->prepareToFoldTailByMasking()) {
CanFoldTailByMasking = true;
return MaxFactors;
}
// If there was a tail-folding hint/switch, but we can't fold the tail by
// masking, fallback to a vectorization with a scalar epilogue.
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
"scalar epilogue instead.\n");
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
return MaxFactors;
}
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
return FixedScalableVFPair::getNone();
}
if (TC == 0) {
reportVectorizationFailure(
"Unable to calculate the loop count due to complex control flow",
"unable to calculate the loop count due to complex control flow",
"UnknownLoopCountComplexCFG", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
reportVectorizationFailure(
"Cannot optimize for size and vectorize at the same time.",
"cannot optimize for size and vectorize at the same time. "
"Enable vectorization of this loop with '#pragma clang loop "
"vectorize(enable)' when compiling with -Os/-Oz",
"NoTailLoopWithOptForSize", ORE, TheLoop);
return FixedScalableVFPair::getNone();
}
ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
ElementCount MaxSafeVF, bool FoldTailByMasking) {
bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
const TypeSize WidestRegister = TTI.getRegisterBitWidth(
ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
: TargetTransformInfo::RGK_FixedWidthVector);
// Convenience function to return the minimum of two ElementCounts.
auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
assert((LHS.isScalable() == RHS.isScalable()) &&
"Scalable flags must match");
return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
};
// Ensure MaxVF is a power of 2; the dependence distance bound may not be.
// Note that both WidestRegister and WidestType may not be a powers of 2.
auto MaxVectorElementCount = ElementCount::get(
llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
ComputeScalableMaxVF);
MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
<< (MaxVectorElementCount * WidestType) << " bits.\n");
if (!MaxVectorElementCount) {
LLVM_DEBUG(dbgs() << "LV: The target has no "
<< (ComputeScalableMaxVF ? "scalable" : "fixed")
<< " vector registers.\n");
return ElementCount::getFixed(1);
}
unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
if (MaxVectorElementCount.isScalable() &&
TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
auto Min = Attr.getVScaleRangeMin();
WidestRegisterMinEC *= Min;
}
// When a scalar epilogue is required, at least one iteration of the scalar
// loop has to execute. Adjust ConstTripCount accordingly to avoid picking a
// max VF that results in a dead vector loop.
if (ConstTripCount > 0 && requiresScalarEpilogue(true))
ConstTripCount -= 1;
if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC &&
(!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
// If loop trip count (TC) is known at compile time there is no point in
// choosing VF greater than TC (as done in the loop below). Select maximum
// power of two which doesn't exceed TC.
// If MaxVectorElementCount is scalable, we only fall back on a fixed VF
// when the TC is less than or equal to the known number of lanes.
auto ClampedConstTripCount = llvm::bit_floor(ConstTripCount);
LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
"exceeding the constant trip count: "
<< ClampedConstTripCount << "\n");
return ElementCount::getFixed(ClampedConstTripCount);
}
TargetTransformInfo::RegisterKind RegKind =
ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
: TargetTransformInfo::RGK_FixedWidthVector;
ElementCount MaxVF = MaxVectorElementCount;
if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
TTI.shouldMaximizeVectorBandwidth(RegKind))) {
auto MaxVectorElementCountMaxBW = ElementCount::get(
llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
ComputeScalableMaxVF);
MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
// Collect all viable vectorization factors larger than the default MaxVF
// (i.e. MaxVectorElementCount).
SmallVector<ElementCount, 8> VFs;
for (ElementCount VS = MaxVectorElementCount * 2;
ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
VFs.push_back(VS);
// For each VF calculate its register usage.
auto RUs = calculateRegisterUsage(VFs);
// Select the largest VF which doesn't require more registers than existing
// ones.
for (int i = RUs.size() - 1; i >= 0; --i) {
bool Selected = true;
for (auto &pair : RUs[i].MaxLocalUsers) {
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
if (pair.second > TargetNumRegisters)
Selected = false;
}
if (Selected) {
MaxVF = VFs[i];
break;
}
}
if (ElementCount MinVF =
TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
if (ElementCount::isKnownLT(MaxVF, MinVF)) {
LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
<< ") with target's minimum: " << MinVF << '\n');
MaxVF = MinVF;
}
}
// Invalidate any widening decisions we might have made, in case the loop
// requires prediction (decided later), but we have already made some
// load/store widening decisions.
invalidateCostModelingDecisions();
}
return MaxVF;
}
/// Convenience function that returns the value of vscale_range iff
/// vscale_range.min == vscale_range.max or otherwise returns the value
/// returned by the corresponding TTI method.
static std::optional<unsigned>
getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI) {
const Function *Fn = L->getHeader()->getParent();
if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
auto Min = Attr.getVScaleRangeMin();
auto Max = Attr.getVScaleRangeMax();
if (Max && Min == Max)
return Max;
}
return TTI.getVScaleForTuning();
}
bool LoopVectorizationPlanner::isMoreProfitable(
const VectorizationFactor &A, const VectorizationFactor &B) const {
InstructionCost CostA = A.Cost;
InstructionCost CostB = B.Cost;
unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(OrigLoop);
if (!A.Width.isScalable() && !B.Width.isScalable() && MaxTripCount) {
// If the trip count is a known (possibly small) constant, the trip count
// will be rounded up to an integer number of iterations under
// FoldTailByMasking. The total cost in that case will be
// VecCost*ceil(TripCount/VF). When not folding the tail, the total
// cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
// some extra overheads, but for the purpose of comparing the costs of
// different VFs we can use this to compare the total loop-body cost
// expected after vectorization.
auto GetCostForTC = [MaxTripCount, this](unsigned VF,
InstructionCost VectorCost,
InstructionCost ScalarCost) {
return CM.foldTailByMasking() ? VectorCost * divideCeil(MaxTripCount, VF)
: VectorCost * (MaxTripCount / VF) +
ScalarCost * (MaxTripCount % VF);
};
auto RTCostA = GetCostForTC(A.Width.getFixedValue(), CostA, A.ScalarCost);
auto RTCostB = GetCostForTC(B.Width.getFixedValue(), CostB, B.ScalarCost);
return RTCostA < RTCostB;
}
// Improve estimate for the vector width if it is scalable.
unsigned EstimatedWidthA = A.Width.getKnownMinValue();
unsigned EstimatedWidthB = B.Width.getKnownMinValue();
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) {
if (A.Width.isScalable())
EstimatedWidthA *= *VScale;
if (B.Width.isScalable())
EstimatedWidthB *= *VScale;
}
// Assume vscale may be larger than 1 (or the value being tuned for),
// so that scalable vectorization is slightly favorable over fixed-width
// vectorization.
if (A.Width.isScalable() && !B.Width.isScalable())
return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
// To avoid the need for FP division:
// (CostA / A.Width) < (CostB / B.Width)
// <=> (CostA * B.Width) < (CostB * A.Width)
return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
}
static void emitInvalidCostRemarks(SmallVector<InstructionVFPair> InvalidCosts,
OptimizationRemarkEmitter *ORE,
Loop *TheLoop) {
if (InvalidCosts.empty())
return;
// Emit a report of VFs with invalid costs in the loop.
// Group the remarks per instruction, keeping the instruction order from
// InvalidCosts.
std::map<Instruction *, unsigned> Numbering;
unsigned I = 0;
for (auto &Pair : InvalidCosts)
if (!Numbering.count(Pair.first))
Numbering[Pair.first] = I++;
// Sort the list, first on instruction(number) then on VF.
sort(InvalidCosts, [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
if (Numbering[A.first] != Numbering[B.first])
return Numbering[A.first] < Numbering[B.first];
ElementCountComparator ECC;
return ECC(A.second, B.second);
});
// For a list of ordered instruction-vf pairs:
// [(load, vf1), (load, vf2), (store, vf1)]
// Group the instructions together to emit separate remarks for:
// load (vf1, vf2)
// store (vf1)
auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
auto Subset = ArrayRef<InstructionVFPair>();
do {
if (Subset.empty())
Subset = Tail.take_front(1);
Instruction *I = Subset.front().first;
// If the next instruction is different, or if there are no other pairs,
// emit a remark for the collated subset. e.g.
// [(load, vf1), (load, vf2))]
// to emit:
// remark: invalid costs for 'load' at VF=(vf, vf2)
if (Subset == Tail || Tail[Subset.size()].first != I) {
std::string OutString;
raw_string_ostream OS(OutString);
assert(!Subset.empty() && "Unexpected empty range");
OS << "Instruction with invalid costs prevented vectorization at VF=(";
for (const auto &Pair : Subset)
OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
OS << "):";
if (auto *CI = dyn_cast<CallInst>(I))
OS << " call to " << CI->getCalledFunction()->getName();
else
OS << " " << I->getOpcodeName();
OS.flush();
reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
Tail = Tail.drop_front(Subset.size());
Subset = {};
} else
// Grow the subset by one element
Subset = Tail.take_front(Subset.size() + 1);
} while (!Tail.empty());
}
VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor(
const ElementCountSet &VFCandidates) {
InstructionCost ExpectedCost =
CM.expectedCost(ElementCount::getFixed(1)).first;
LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
assert(VFCandidates.count(ElementCount::getFixed(1)) &&
"Expected Scalar VF to be a candidate");
const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
ExpectedCost);
VectorizationFactor ChosenFactor = ScalarCost;
bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
if (ForceVectorization && VFCandidates.size() > 1) {
// Ignore scalar width, because the user explicitly wants vectorization.
// Initialize cost to max so that VF = 2 is, at least, chosen during cost
// evaluation.
ChosenFactor.Cost = InstructionCost::getMax();
}
SmallVector<InstructionVFPair> InvalidCosts;
for (const auto &i : VFCandidates) {
// The cost for scalar VF=1 is already calculated, so ignore it.
if (i.isScalar())
continue;
LoopVectorizationCostModel::VectorizationCostTy C =
CM.expectedCost(i, &InvalidCosts);
VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
#ifndef NDEBUG
unsigned AssumedMinimumVscale = 1;
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI))
AssumedMinimumVscale = *VScale;
unsigned Width =
Candidate.Width.isScalable()
? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
: Candidate.Width.getFixedValue();
LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
<< " costs: " << (Candidate.Cost / Width));
if (i.isScalable())
LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
<< AssumedMinimumVscale << ")");
LLVM_DEBUG(dbgs() << ".\n");
#endif
if (!C.second && !ForceVectorization) {
LLVM_DEBUG(
dbgs() << "LV: Not considering vector loop of width " << i
<< " because it will not generate any vector instructions.\n");
continue;
}
// If profitable add it to ProfitableVF list.
if (isMoreProfitable(Candidate, ScalarCost))
ProfitableVFs.push_back(Candidate);
if (isMoreProfitable(Candidate, ChosenFactor))
ChosenFactor = Candidate;
}
emitInvalidCostRemarks(InvalidCosts, ORE, OrigLoop);
if (!EnableCondStoresVectorization && CM.hasPredStores()) {
reportVectorizationFailure(
"There are conditional stores.",
"store that is conditionally executed prevents vectorization",
"ConditionalStore", ORE, OrigLoop);
ChosenFactor = ScalarCost;
}
LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
!isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
<< "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n");
LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
return ChosenFactor;
}
bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
ElementCount VF) const {
// Cross iteration phis such as reductions need special handling and are
// currently unsupported.
if (any_of(OrigLoop->getHeader()->phis(),
[&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
return false;
// Phis with uses outside of the loop require special handling and are
// currently unsupported.
for (const auto &Entry : Legal->getInductionVars()) {
// Look for uses of the value of the induction at the last iteration.
Value *PostInc =
Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
for (User *U : PostInc->users())
if (!OrigLoop->contains(cast<Instruction>(U)))
return false;
// Look for uses of penultimate value of the induction.
for (User *U : Entry.first->users())
if (!OrigLoop->contains(cast<Instruction>(U)))
return false;
}
// Epilogue vectorization code has not been auditted to ensure it handles
// non-latch exits properly. It may be fine, but it needs auditted and
// tested.
if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
return false;
return true;
}
bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
const ElementCount VF) const {
// FIXME: We need a much better cost-model to take different parameters such
// as register pressure, code size increase and cost of extra branches into
// account. For now we apply a very crude heuristic and only consider loops
// with vectorization factors larger than a certain value.
// Allow the target to opt out entirely.
if (!TTI.preferEpilogueVectorization())
return false;
// We also consider epilogue vectorization unprofitable for targets that don't
// consider interleaving beneficial (eg. MVE).
if (TTI.getMaxInterleaveFactor(VF) <= 1)
return false;
unsigned Multiplier = 1;
if (VF.isScalable())
Multiplier = getVScaleForTuning(TheLoop, TTI).value_or(1);
if ((Multiplier * VF.getKnownMinValue()) >= EpilogueVectorizationMinVF)
return true;
return false;
}
VectorizationFactor LoopVectorizationPlanner::selectEpilogueVectorizationFactor(
const ElementCount MainLoopVF, unsigned IC) {
VectorizationFactor Result = VectorizationFactor::Disabled();
if (!EnableEpilogueVectorization) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
return Result;
}
if (!CM.isScalarEpilogueAllowed()) {
LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
"epilogue is allowed.\n");
return Result;
}
// Not really a cost consideration, but check for unsupported cases here to
// simplify the logic.
if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
"is not a supported candidate.\n");
return Result;
}
if (EpilogueVectorizationForceVF > 1) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
if (hasPlanWithVF(ForcedEC))
return {ForcedEC, 0, 0};
else {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
"viable.\n");
return Result;
}
}
if (OrigLoop->getHeader()->getParent()->hasOptSize() ||
OrigLoop->getHeader()->getParent()->hasMinSize()) {
LLVM_DEBUG(
dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
return Result;
}
if (!CM.isEpilogueVectorizationProfitable(MainLoopVF)) {
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
"this loop\n");
return Result;
}
// If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
// the main loop handles 8 lanes per iteration. We could still benefit from
// vectorizing the epilogue loop with VF=4.
ElementCount EstimatedRuntimeVF = MainLoopVF;
if (MainLoopVF.isScalable()) {
EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI))
EstimatedRuntimeVF *= *VScale;
}
ScalarEvolution &SE = *PSE.getSE();
Type *TCType = Legal->getWidestInductionType();
const SCEV *RemainingIterations = nullptr;
for (auto &NextVF : ProfitableVFs) {
// Skip candidate VFs without a corresponding VPlan.
if (!hasPlanWithVF(NextVF.Width))
continue;
// Skip candidate VFs with widths >= the estimate runtime VF (scalable
// vectors) or the VF of the main loop (fixed vectors).
if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
ElementCount::isKnownGE(NextVF.Width, MainLoopVF))
continue;
// If NextVF is greater than the number of remaining iterations, the
// epilogue loop would be dead. Skip such factors.
if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) {
// TODO: extend to support scalable VFs.
if (!RemainingIterations) {
const SCEV *TC = createTripCountSCEV(TCType, PSE, OrigLoop);
RemainingIterations = SE.getURemExpr(
TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC));
}
if (SE.isKnownPredicate(
CmpInst::ICMP_UGT,
SE.getConstant(TCType, NextVF.Width.getKnownMinValue()),
RemainingIterations))
continue;
}
if (Result.Width.isScalar() || isMoreProfitable(NextVF, Result))
Result = NextVF;
}
if (Result != VectorizationFactor::Disabled())
LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
<< Result.Width << "\n");
return Result;
}
std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
unsigned MinWidth = -1U;
unsigned MaxWidth = 8;
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
// For in-loop reductions, no element types are added to ElementTypesInLoop
// if there are no loads/stores in the loop. In this case, check through the
// reduction variables to determine the maximum width.
if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
// Reset MaxWidth so that we can find the smallest type used by recurrences
// in the loop.
MaxWidth = -1U;
for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
// When finding the min width used by the recurrence we need to account
// for casts on the input operands of the recurrence.
MaxWidth = std::min<unsigned>(
MaxWidth, std::min<unsigned>(
RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
}
} else {
for (Type *T : ElementTypesInLoop) {
MinWidth = std::min<unsigned>(
MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
MaxWidth = std::max<unsigned>(
MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
}
}
return {MinWidth, MaxWidth};
}
void LoopVectorizationCostModel::collectElementTypesForWidening() {
ElementTypesInLoop.clear();
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the loop.
for (Instruction &I : BB->instructionsWithoutDebug()) {
Type *T = I.getType();
// Skip ignored values.
if (ValuesToIgnore.count(&I))
continue;
// Only examine Loads, Stores and PHINodes.
if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
continue;
// Examine PHI nodes that are reduction variables. Update the type to
// account for the recurrence type.
if (auto *PN = dyn_cast<PHINode>(&I)) {
if (!Legal->isReductionVariable(PN))
continue;
const RecurrenceDescriptor &RdxDesc =
Legal->getReductionVars().find(PN)->second;
if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
TTI.preferInLoopReduction(RdxDesc.getOpcode(),
RdxDesc.getRecurrenceType(),
TargetTransformInfo::ReductionFlags()))
continue;
T = RdxDesc.getRecurrenceType();
}
// Examine the stored values.
if (auto *ST = dyn_cast<StoreInst>(&I))
T = ST->getValueOperand()->getType();
assert(T->isSized() &&
"Expected the load/store/recurrence type to be sized");
ElementTypesInLoop.insert(T);
}
}
}
unsigned
LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
InstructionCost LoopCost) {
// -- The interleave heuristics --
// We interleave the loop in order to expose ILP and reduce the loop overhead.
// There are many micro-architectural considerations that we can't predict
// at this level. For example, frontend pressure (on decode or fetch) due to
// code size, or the number and capabilities of the execution ports.
//
// We use the following heuristics to select the interleave count:
// 1. If the code has reductions, then we interleave to break the cross
// iteration dependency.
// 2. If the loop is really small, then we interleave to reduce the loop
// overhead.
// 3. We don't interleave if we think that we will spill registers to memory
// due to the increased register pressure.
if (!isScalarEpilogueAllowed())
return 1;
// We used the distance for the interleave count.
if (Legal->getMaxSafeDepDistBytes() != -1U)
return 1;
auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
const bool HasReductions = !Legal->getReductionVars().empty();
// Do not interleave loops with a relatively small known or estimated trip
// count. But we will interleave when InterleaveSmallLoopScalarReduction is
// enabled, and the code has scalar reductions(HasReductions && VF = 1),
// because with the above conditions interleaving can expose ILP and break
// cross iteration dependences for reductions.
if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
!(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
return 1;
// If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here.
if (LoopCost == 0) {
LoopCost = expectedCost(VF).first;
assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
// Loop body is free and there is no need for interleaving.
if (LoopCost == 0)
return 1;
}
RegisterUsage R = calculateRegisterUsage({VF})[0];
// We divide by these constants so assume that we have at least one
// instruction that uses at least one register.
for (auto& pair : R.MaxLocalUsers) {
pair.second = std::max(pair.second, 1U);
}
// We calculate the interleave count using the following formula.
// Subtract the number of loop invariants from the number of available
// registers. These registers are used by all of the interleaved instances.
// Next, divide the remaining registers by the number of registers that is
// required by the loop, in order to estimate how many parallel instances
// fit without causing spills. All of this is rounded down if necessary to be
// a power of two. We want power of two interleave count to simplify any
// addressing operations or alignment considerations.
// We also want power of two interleave counts to ensure that the induction
// variable of the vector loop wraps to zero, when tail is folded by masking;
// this currently happens when OptForSize, in which case IC is set to 1 above.
unsigned IC = UINT_MAX;
for (auto& pair : R.MaxLocalUsers) {
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
<< " registers of "
<< TTI.getRegisterClassName(pair.first) << " register class\n");
if (VF.isScalar()) {
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumScalarRegs;
} else {
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
TargetNumRegisters = ForceTargetNumVectorRegs;
}
unsigned MaxLocalUsers = pair.second;
unsigned LoopInvariantRegs = 0;
if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
MaxLocalUsers);
// Don't count the induction variable as interleaved.
if (EnableIndVarRegisterHeur) {
TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
std::max(1U, (MaxLocalUsers - 1)));
}
IC = std::min(IC, TmpIC);
}
// Clamp the interleave ranges to reasonable counts.
unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
// Check if the user has overridden the max.
if (VF.isScalar()) {
if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
} else {
if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
}
// If trip count is known or estimated compile time constant, limit the
// interleave count to be less than the trip count divided by VF, provided it
// is at least 1.
//
// For scalable vectors we can't know if interleaving is beneficial. It may
// not be beneficial for small loops if none of the lanes in the second vector
// iterations is enabled. However, for larger loops, there is likely to be a
// similar benefit as for fixed-width vectors. For now, we choose to leave
// the InterleaveCount as if vscale is '1', although if some information about
// the vector is known (e.g. min vector size), we can make a better decision.
if (BestKnownTC) {
MaxInterleaveCount =
std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
// Make sure MaxInterleaveCount is greater than 0.
MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
}
assert(MaxInterleaveCount > 0 &&
"Maximum interleave count must be greater than 0");
// Clamp the calculated IC to be between the 1 and the max interleave count
// that the target and trip count allows.
if (IC > MaxInterleaveCount)
IC = MaxInterleaveCount;
else
// Make sure IC is greater than 0.
IC = std::max(1u, IC);
assert(IC > 0 && "Interleave count must be greater than 0.");
// Interleave if we vectorized this loop and there is a reduction that could
// benefit from interleaving.
if (VF.isVector() && HasReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
return IC;
}
// For any scalar loop that either requires runtime checks or predication we
// are better off leaving this to the unroller. Note that if we've already
// vectorized the loop we will have done the runtime check and so interleaving
// won't require further checks.
bool ScalarInterleavingRequiresPredication =
(VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
return Legal->blockNeedsPredication(BB);
}));
bool ScalarInterleavingRequiresRuntimePointerCheck =
(VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
// We want to interleave small loops in order to reduce the loop overhead and
// potentially expose ILP opportunities.
LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
<< "LV: IC is " << IC << '\n'
<< "LV: VF is " << VF << '\n');
const bool AggressivelyInterleaveReductions =
TTI.enableAggressiveInterleaving(HasReductions);
if (!ScalarInterleavingRequiresRuntimePointerCheck &&
!ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
// We assume that the cost overhead is 1 and we use the cost model
// to estimate the cost of the loop and interleave until the cost of the
// loop overhead is about 5% of the cost of the loop.
unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
SmallLoopCost / *LoopCost.getValue()));
// Interleave until store/load ports (estimated by max interleave count) are
// saturated.
unsigned NumStores = Legal->getNumStores();
unsigned NumLoads = Legal->getNumLoads();
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
// There is little point in interleaving for reductions containing selects
// and compares when VF=1 since it may just create more overhead than it's
// worth for loops with small trip counts. This is because we still have to
// do the final reduction after the loop.
bool HasSelectCmpReductions =
HasReductions &&
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
RdxDesc.getRecurrenceKind());
});
if (HasSelectCmpReductions) {
LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
return 1;
}
// If we have a scalar reduction (vector reductions are already dealt with
// by this point), we can increase the critical path length if the loop
// we're interleaving is inside another loop. For tree-wise reductions
// set the limit to 2, and for ordered reductions it's best to disable
// interleaving entirely.
if (HasReductions && TheLoop->getLoopDepth() > 1) {
bool HasOrderedReductions =
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return RdxDesc.isOrdered();
});
if (HasOrderedReductions) {
LLVM_DEBUG(
dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
return 1;
}
unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
SmallIC = std::min(SmallIC, F);
StoresIC = std::min(StoresIC, F);
LoadsIC = std::min(LoadsIC, F);
}
if (EnableLoadStoreRuntimeInterleave &&
std::max(StoresIC, LoadsIC) > SmallIC) {
LLVM_DEBUG(
dbgs() << "LV: Interleaving to saturate store or load ports.\n");
return std::max(StoresIC, LoadsIC);
}
// If there are scalar reductions and TTI has enabled aggressive
// interleaving for reductions, we will interleave to expose ILP.
if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
AggressivelyInterleaveReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
// Interleave no less than SmallIC but not as aggressive as the normal IC
// to satisfy the rare situation when resources are too limited.
return std::max(IC / 2, SmallIC);
} else {
LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
return SmallIC;
}
}
// Interleave if this is a large loop (small loops are already dealt with by
// this point) that could benefit from interleaving.
if (AggressivelyInterleaveReductions) {
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
return IC;
}
LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
return 1;
}
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
// This function calculates the register usage by measuring the highest number
// of values that are alive at a single location. Obviously, this is a very
// rough estimation. We scan the loop in a topological order in order and
// assign a number to each instruction. We use RPO to ensure that defs are
// met before their users. We assume that each instruction that has in-loop
// users starts an interval. We record every time that an in-loop value is
// used, so we have a list of the first and last occurrences of each
// instruction. Next, we transpose this data structure into a multi map that
// holds the list of intervals that *end* at a specific location. This multi
// map allows us to perform a linear search. We scan the instructions linearly
// and record each time that a new interval starts, by placing it in a set.
// If we find this value in the multi-map then we remove it from the set.
// The max register usage is the maximum size of the set.
// We also search for instructions that are defined outside the loop, but are
// used inside the loop. We need this number separately from the max-interval
// usage number because when we unroll, loop-invariant values do not take
// more register.
LoopBlocksDFS DFS(TheLoop);
DFS.perform(LI);
RegisterUsage RU;
// Each 'key' in the map opens a new interval. The values
// of the map are the index of the 'last seen' usage of the
// instruction that is the key.
using IntervalMap = DenseMap<Instruction *, unsigned>;
// Maps instruction to its index.
SmallVector<Instruction *, 64> IdxToInstr;
// Marks the end of each interval.
IntervalMap EndPoint;
// Saves the list of instruction indices that are used in the loop.
SmallPtrSet<Instruction *, 8> Ends;
// Saves the list of values that are used in the loop but are defined outside
// the loop (not including non-instruction values such as arguments and
// constants).
SmallSetVector<Instruction *, 8> LoopInvariants;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
for (Instruction &I : BB->instructionsWithoutDebug()) {
IdxToInstr.push_back(&I);
// Save the end location of each USE.
for (Value *U : I.operands()) {
auto *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
// FIXME: Might need some motivation why these values are ignored. If
// for example an argument is used inside the loop it will increase the
// register pressure (so shouldn't we add it to LoopInvariants).
if (!Instr)
continue;
// If this instruction is outside the loop then record it and continue.
if (!TheLoop->contains(Instr)) {
LoopInvariants.insert(Instr);
continue;
}
// Overwrite previous end points.
EndPoint[Instr] = IdxToInstr.size();
Ends.insert(Instr);
}
}
}
// Saves the list of intervals that end with the index in 'key'.
using InstrList = SmallVector<Instruction *, 2>;
DenseMap<unsigned, InstrList> TransposeEnds;
// Transpose the EndPoints to a list of values that end at each index.
for (auto &Interval : EndPoint)
TransposeEnds[Interval.second].push_back(Interval.first);
SmallPtrSet<Instruction *, 8> OpenIntervals;
SmallVector<RegisterUsage, 8> RUs(VFs.size());
SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
const auto &TTICapture = TTI;
auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
return 0;
return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
};
for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
Instruction *I = IdxToInstr[i];
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (Instruction *ToRemove : List)
OpenIntervals.erase(ToRemove);
// Ignore instructions that are never used within the loop.
if (!Ends.count(I))
continue;
// Skip ignored values.
if (ValuesToIgnore.count(I))
continue;
// For each VF find the maximum usage of registers.
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
// Count the number of registers used, per register class, given all open
// intervals.
// Note that elements in this SmallMapVector will be default constructed
// as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
// there is no previous entry for ClassID.
SmallMapVector<unsigned, unsigned, 4> RegUsage;
if (VFs[j].isScalar()) {
for (auto *Inst : OpenIntervals) {
unsigned ClassID =
TTI.getRegisterClassForType(false, Inst->getType());
// FIXME: The target might use more than one register for the type
// even in the scalar case.
RegUsage[ClassID] += 1;
}
} else {
collectUniformsAndScalars(VFs[j]);
for (auto *Inst : OpenIntervals) {
// Skip ignored values for VF > 1.
if (VecValuesToIgnore.count(Inst))
continue;
if (isScalarAfterVectorization(Inst, VFs[j])) {
unsigned ClassID =
TTI.getRegisterClassForType(false, Inst->getType());
// FIXME: The target might use more than one register for the type
// even in the scalar case.
RegUsage[ClassID] += 1;
} else {
unsigned ClassID =
TTI.getRegisterClassForType(true, Inst->getType());
RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
}
}
}
for (auto& pair : RegUsage) {
auto &Entry = MaxUsages[j][pair.first];
Entry = std::max(Entry, pair.second);
}
}
LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
<< OpenIntervals.size() << '\n');
// Add the current instruction to the list of open intervals.
OpenIntervals.insert(I);
}
for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
// Note that elements in this SmallMapVector will be default constructed
// as 0. So we can use "Invariant[ClassID] += n" in the code below even if
// there is no previous entry for ClassID.
SmallMapVector<unsigned, unsigned, 4> Invariant;
for (auto *Inst : LoopInvariants) {
// FIXME: The target might use more than one register for the type
// even in the scalar case.
bool IsScalar = all_of(Inst->users(), [&](User *U) {
auto *I = cast<Instruction>(U);
return TheLoop != LI->getLoopFor(I->getParent()) ||
isScalarAfterVectorization(I, VFs[i]);
});
ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i];
unsigned ClassID =
TTI.getRegisterClassForType(VF.isVector(), Inst->getType());
Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
}
LLVM_DEBUG({
dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
<< " item\n";
for (const auto &pair : MaxUsages[i]) {
dbgs() << "LV(REG): RegisterClass: "
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
<< " registers\n";
}
dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
<< " item\n";
for (const auto &pair : Invariant) {
dbgs() << "LV(REG): RegisterClass: "
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
<< " registers\n";
}
});
RU.LoopInvariantRegs = Invariant;
RU.MaxLocalUsers = MaxUsages[i];
RUs[i] = RU;
}
return RUs;
}
bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
ElementCount VF) {
// TODO: Cost model for emulated masked load/store is completely
// broken. This hack guides the cost model to use an artificially
// high enough value to practically disable vectorization with such
// operations, except where previously deployed legality hack allowed
// using very low cost values. This is to avoid regressions coming simply
// from moving "masked load/store" check from legality to cost model.
// Masked Load/Gather emulation was previously never allowed.
// Limited number of Masked Store/Scatter emulation was allowed.
assert((isPredicatedInst(I)) &&
"Expecting a scalar emulated instruction");
return isa<LoadInst>(I) ||
(isa<StoreInst>(I) &&
NumPredStores > NumberOfStoresToPredicate);
}
void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
// If we aren't vectorizing the loop, or if we've already collected the
// instructions to scalarize, there's nothing to do. Collection may already
// have occurred if we have a user-selected VF and are now computing the
// expected cost for interleaving.
if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF))
return;
// Initialize a mapping for VF in InstsToScalalarize. If we find that it's
// not profitable to scalarize any instructions, the presence of VF in the
// map will indicate that we've analyzed it already.
ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
PredicatedBBsAfterVectorization[VF].clear();
// Find all the instructions that are scalar with predication in the loop and
// determine if it would be better to not if-convert the blocks they are in.
// If so, we also record the instructions to scalarize.
for (BasicBlock *BB : TheLoop->blocks()) {
if (!blockNeedsPredicationForAnyReason(BB))
continue;
for (Instruction &I : *BB)
if (isScalarWithPredication(&I, VF)) {
ScalarCostsTy ScalarCosts;
// Do not apply discount if scalable, because that would lead to
// invalid scalarization costs.
// Do not apply discount logic if hacked cost is needed
// for emulated masked memrefs.
if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
// Remember that BB will remain after vectorization.
PredicatedBBsAfterVectorization[VF].insert(BB);
}
}
}
InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
assert(!isUniformAfterVectorization(PredInst, VF) &&
"Instruction marked uniform-after-vectorization will be predicated");
// Initialize the discount to zero, meaning that the scalar version and the
// vector version cost the same.
InstructionCost Discount = 0;
// Holds instructions to analyze. The instructions we visit are mapped in
// ScalarCosts. Those instructions are the ones that would be scalarized if
// we find that the scalar version costs less.
SmallVector<Instruction *, 8> Worklist;
// Returns true if the given instruction can be scalarized.
auto canBeScalarized = [&](Instruction *I) -> bool {
// We only attempt to scalarize instructions forming a single-use chain
// from the original predicated block that would otherwise be vectorized.
// Although not strictly necessary, we give up on instructions we know will
// already be scalar to avoid traversing chains that are unlikely to be
// beneficial.
if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
isScalarAfterVectorization(I, VF))
return false;
// If the instruction is scalar with predication, it will be analyzed
// separately. We ignore it within the context of PredInst.
if (isScalarWithPredication(I, VF))
return false;
// If any of the instruction's operands are uniform after vectorization,
// the instruction cannot be scalarized. This prevents, for example, a
// masked load from being scalarized.
//
// We assume we will only emit a value for lane zero of an instruction
// marked uniform after vectorization, rather than VF identical values.
// Thus, if we scalarize an instruction that uses a uniform, we would
// create uses of values corresponding to the lanes we aren't emitting code
// for. This behavior can be changed by allowing getScalarValue to clone
// the lane zero values for uniforms rather than asserting.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get()))
if (isUniformAfterVectorization(J, VF))
return false;
// Otherwise, we can scalarize the instruction.
return true;
};
// Compute the expected cost discount from scalarizing the entire expression
// feeding the predicated instruction. We currently only consider expressions
// that are single-use instruction chains.
Worklist.push_back(PredInst);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
// If we've already analyzed the instruction, there's nothing to do.
if (ScalarCosts.contains(I))
continue;
// Compute the cost of the vector instruction. Note that this cost already
// includes the scalarization overhead of the predicated instruction.
InstructionCost VectorCost = getInstructionCost(I, VF).first;
// Compute the cost of the scalarized instruction. This cost is the cost of
// the instruction as if it wasn't if-converted and instead remained in the
// predicated block. We will scale this cost by block probability after
// computing the scalarization overhead.
InstructionCost ScalarCost =
VF.getFixedValue() *
getInstructionCost(I, ElementCount::getFixed(1)).first;
// Compute the scalarization overhead of needed insertelement instructions
// and phi nodes.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
ScalarCost += TTI.getScalarizationOverhead(
cast<VectorType>(ToVectorTy(I->getType(), VF)),
APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true,
/*Extract*/ false, CostKind);
ScalarCost +=
VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
}
// Compute the scalarization overhead of needed extractelement
// instructions. For each of the instruction's operands, if the operand can
// be scalarized, add it to the worklist; otherwise, account for the
// overhead.
for (Use &U : I->operands())
if (auto *J = dyn_cast<Instruction>(U.get())) {
assert(VectorType::isValidElementType(J->getType()) &&
"Instruction has non-scalar type");
if (canBeScalarized(J))
Worklist.push_back(J);
else if (needsExtract(J, VF)) {
ScalarCost += TTI.getScalarizationOverhead(
cast<VectorType>(ToVectorTy(J->getType(), VF)),
APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
/*Extract*/ true, CostKind);
}
}
// Scale the total scalar cost by block probability.
ScalarCost /= getReciprocalPredBlockProb();
// Compute the discount. A non-negative discount means the vector version
// of the instruction costs more, and scalarizing would be beneficial.
Discount += VectorCost - ScalarCost;
ScalarCosts[I] = ScalarCost;
}
return Discount;
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(
ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
VectorizationCostTy Cost;
// For each block.
for (BasicBlock *BB : TheLoop->blocks()) {
VectorizationCostTy BlockCost;
// For each instruction in the old loop.
for (Instruction &I : BB->instructionsWithoutDebug()) {
// Skip ignored values.
if (ValuesToIgnore.count(&I) ||
(VF.isVector() && VecValuesToIgnore.count(&I)))
continue;
VectorizationCostTy C = getInstructionCost(&I, VF);
// Check if we should override the cost.
if (C.first.isValid() &&
ForceTargetInstructionCost.getNumOccurrences() > 0)
C.first = InstructionCost(ForceTargetInstructionCost);
// Keep a list of instructions with invalid costs.
if (Invalid && !C.first.isValid())
Invalid->emplace_back(&I, VF);
BlockCost.first += C.first;
BlockCost.second |= C.second;
LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
<< " for VF " << VF << " For instruction: " << I
<< '\n');
}
// If we are vectorizing a predicated block, it will have been
// if-converted. This means that the block's instructions (aside from
// stores and instructions that may divide by zero) will now be
// unconditionally executed. For the scalar case, we may not always execute
// the predicated block, if it is an if-else block. Thus, scale the block's
// cost by the probability of executing it. blockNeedsPredication from
// Legal is used so as to not include all blocks in tail folded loops.
if (VF.isScalar() && Legal->blockNeedsPredication(BB))
BlockCost.first /= getReciprocalPredBlockProb();
Cost.first += BlockCost.first;
Cost.second |= BlockCost.second;
}
return Cost;
}
/// Gets Address Access SCEV after verifying that the access pattern
/// is loop invariant except the induction variable dependence.
///
/// This SCEV can be sent to the Target in order to estimate the address
/// calculation cost.
static const SCEV *getAddressAccessSCEV(
Value *Ptr,
LoopVectorizationLegality *Legal,
PredicatedScalarEvolution &PSE,
const Loop *TheLoop) {
auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
if (!Gep)
return nullptr;
// We are looking for a gep with all loop invariant indices except for one
// which should be an induction variable.
auto SE = PSE.getSE();
unsigned NumOperands = Gep->getNumOperands();
for (unsigned i = 1; i < NumOperands; ++i) {
Value *Opd = Gep->getOperand(i);
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
!Legal->isInductionVariable(Opd))
return nullptr;
}
// Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
return PSE.getSCEV(Ptr);
}
InstructionCost
LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
ElementCount VF) {
assert(VF.isVector() &&
"Scalarization cost of instruction implies vectorization.");
if (VF.isScalable())
return InstructionCost::getInvalid();
Type *ValTy = getLoadStoreType(I);
auto SE = PSE.getSE();
unsigned AS = getLoadStoreAddressSpace(I);
Value *Ptr = getLoadStorePointerOperand(I);
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
// NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
// that it is being called from this specific place.
// Figure out whether the access is strided and get the stride value
// if it's known in compile time
const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
// Get the cost of the scalar memory instruction and address computation.
InstructionCost Cost =
VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
// Don't pass *I here, since it is scalar but will actually be part of a
// vectorized loop where the user of it is a vectorized instruction.
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
const Align Alignment = getLoadStoreAlignment(I);
Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(),
ValTy->getScalarType(),
Alignment, AS, CostKind);
// Get the overhead of the extractelement and insertelement instructions
// we might create due to scalarization.
Cost += getScalarizationOverhead(I, VF, CostKind);
// If we have a predicated load/store, it will need extra i1 extracts and
// conditional branches, but may not be executed for each vector lane. Scale
// the cost by the probability of executing the predicated block.
if (isPredicatedInst(I)) {
Cost /= getReciprocalPredBlockProb();
// Add the cost of an i1 extract and a branch
auto *Vec_i1Ty =
VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
Cost += TTI.getScalarizationOverhead(
Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
/*Insert=*/false, /*Extract=*/true, CostKind);
Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
if (useEmulatedMaskMemRefHack(I, VF))
// Artificially setting to a high enough value to practically disable
// vectorization with such operations.
Cost = 3000000;
}
return Cost;
}
InstructionCost
LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
ElementCount VF) {
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
Value *Ptr = getLoadStorePointerOperand(I);
unsigned AS = getLoadStoreAddressSpace(I);
int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Stride should be 1 or -1 for consecutive memory access");
const Align Alignment = getLoadStoreAlignment(I);
InstructionCost Cost = 0;
if (Legal->isMaskRequired(I)) {
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
CostKind);
} else {
TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
CostKind, OpInfo, I);
}
bool Reverse = ConsecutiveStride < 0;
if (Reverse)
Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
std::nullopt, CostKind, 0);
return Cost;
}
InstructionCost
LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
ElementCount VF) {
assert(Legal->isUniformMemOp(*I, VF));
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
if (isa<LoadInst>(I)) {
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
CostKind) +
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}
StoreInst *SI = cast<StoreInst>(I);
bool isLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind) +
(isLoopInvariantStoreValue
? 0
: TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
CostKind, VF.getKnownMinValue() - 1));
}
InstructionCost
LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
ElementCount VF) {
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
const Align Alignment = getLoadStoreAlignment(I);
const Value *Ptr = getLoadStorePointerOperand(I);
return TTI.getAddressComputationCost(VectorTy) +
TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
TargetTransformInfo::TCK_RecipThroughput, I);
}
InstructionCost
LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
ElementCount VF) {
Type *ValTy = getLoadStoreType(I);
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
unsigned AS = getLoadStoreAddressSpace(I);
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
auto Group = getInterleavedAccessGroup(I);
assert(Group && "Fail to get an interleaved access group.");
unsigned InterleaveFactor = Group->getFactor();
auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
// Holds the indices of existing members in the interleaved group.
SmallVector<unsigned, 4> Indices;
for (unsigned IF = 0; IF < InterleaveFactor; IF++)
if (Group->getMember(IF))
Indices.push_back(IF);
// Calculate the cost of the whole interleaved group.
bool UseMaskForGaps =
(Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
(isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps);
if (Group->isReverse()) {
// TODO: Add support for reversed masked interleaved access.
assert(!Legal->isMaskRequired(I) &&
"Reverse masked interleaved access not supported.");
Cost += Group->getNumMembers() *
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
std::nullopt, CostKind, 0);
}
return Cost;
}
std::optional<InstructionCost>
LoopVectorizationCostModel::getReductionPatternCost(
Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
using namespace llvm::PatternMatch;
// Early exit for no inloop reductions
if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
return std::nullopt;
auto *VectorTy = cast<VectorType>(Ty);
// We are looking for a pattern of, and finding the minimal acceptable cost:
// reduce(mul(ext(A), ext(B))) or
// reduce(mul(A, B)) or
// reduce(ext(A)) or
// reduce(A).
// The basic idea is that we walk down the tree to do that, finding the root
// reduction instruction in InLoopReductionImmediateChains. From there we find
// the pattern of mul/ext and test the cost of the entire pattern vs the cost
// of the components. If the reduction cost is lower then we return it for the
// reduction instruction and 0 for the other instructions in the pattern. If
// it is not we return an invalid cost specifying the orignal cost method
// should be used.
Instruction *RetI = I;
if (match(RetI, m_ZExtOrSExt(m_Value()))) {
if (!RetI->hasOneUser())
return std::nullopt;
RetI = RetI->user_back();
}
if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
RetI->user_back()->getOpcode() == Instruction::Add) {
RetI = RetI->user_back();
}
// Test if the found instruction is a reduction, and if not return an invalid
// cost specifying the parent to use the original cost modelling.
if (!InLoopReductionImmediateChains.count(RetI))
return std::nullopt;
// Find the reduction this chain is a part of and calculate the basic cost of
// the reduction on its own.
Instruction *LastChain = InLoopReductionImmediateChains[RetI];
Instruction *ReductionPhi = LastChain;
while (!isa<PHINode>(ReductionPhi))
ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
const RecurrenceDescriptor &RdxDesc =
Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
InstructionCost BaseCost = TTI.getArithmeticReductionCost(
RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
// For a call to the llvm.fmuladd intrinsic we need to add the cost of a
// normal fmul instruction to the cost of the fadd reduction.
if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
BaseCost +=
TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
// If we're using ordered reductions then we can just return the base cost
// here, since getArithmeticReductionCost calculates the full ordered
// reduction cost when FP reassociation is not allowed.
if (useOrderedReductions(RdxDesc))
return BaseCost;
// Get the operand that was not the reduction chain and match it to one of the
// patterns, returning the better cost if it is found.
Instruction *RedOp = RetI->getOperand(1) == LastChain
? dyn_cast<Instruction>(RetI->getOperand(0))
: dyn_cast<Instruction>(RetI->getOperand(1));
VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
Instruction *Op0, *Op1;
if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
match(RedOp,
m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
match(Op0, m_ZExtOrSExt(m_Value())) &&
Op0->getOpcode() == Op1->getOpcode() &&
Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
!TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
(Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
// Matched reduce.add(ext(mul(ext(A), ext(B)))
// Note that the extend opcodes need to all match, or if A==B they will have
// been converted to zext(mul(sext(A), sext(A))) as it is known positive,
// which is equally fine.
bool IsUnsigned = isa<ZExtInst>(Op0);
auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
auto *MulType = VectorType::get(Op0->getType(), VectorTy);
InstructionCost ExtCost =
TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
TTI::CastContextHint::None, CostKind, Op0);
InstructionCost MulCost =
TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
InstructionCost Ext2Cost =
TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
TTI::CastContextHint::None, CostKind, RedOp);
InstructionCost RedCost = TTI.getMulAccReductionCost(
IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
if (RedCost.isValid() &&
RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
return I == RetI ? RedCost : 0;
} else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
!TheLoop->isLoopInvariant(RedOp)) {
// Matched reduce(ext(A))
bool IsUnsigned = isa<ZExtInst>(RedOp);
auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
InstructionCost RedCost = TTI.getExtendedReductionCost(
RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
RdxDesc.getFastMathFlags(), CostKind);
InstructionCost ExtCost =
TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
TTI::CastContextHint::None, CostKind, RedOp);
if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
return I == RetI ? RedCost : 0;
} else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
if (match(Op0, m_ZExtOrSExt(m_Value())) &&
Op0->getOpcode() == Op1->getOpcode() &&
!TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
bool IsUnsigned = isa<ZExtInst>(Op0);
Type *Op0Ty = Op0->getOperand(0)->getType();
Type *Op1Ty = Op1->getOperand(0)->getType();
Type *LargestOpTy =
Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
: Op0Ty;
auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
// Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
// different sizes. We take the largest type as the ext to reduce, and add
// the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
InstructionCost ExtCost0 = TTI.getCastInstrCost(
Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
TTI::CastContextHint::None, CostKind, Op0);
InstructionCost ExtCost1 = TTI.getCastInstrCost(
Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
TTI::CastContextHint::None, CostKind, Op1);
InstructionCost MulCost =
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
InstructionCost RedCost = TTI.getMulAccReductionCost(
IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
InstructionCost ExtraExtCost = 0;
if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
ExtraExtCost = TTI.getCastInstrCost(
ExtraExtOp->getOpcode(), ExtType,
VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
TTI::CastContextHint::None, CostKind, ExtraExtOp);
}
if (RedCost.isValid() &&
(RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
return I == RetI ? RedCost : 0;
} else if (!match(I, m_ZExtOrSExt(m_Value()))) {
// Matched reduce.add(mul())
InstructionCost MulCost =
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
InstructionCost RedCost = TTI.getMulAccReductionCost(
true, RdxDesc.getRecurrenceType(), VectorTy, CostKind);
if (RedCost.isValid() && RedCost < MulCost + BaseCost)
return I == RetI ? RedCost : 0;
}
}
return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
}
InstructionCost
LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
ElementCount VF) {
// Calculate scalar cost only. Vectorization cost should be ready at this
// moment.
if (VF.isScalar()) {
Type *ValTy = getLoadStoreType(I);
const Align Alignment = getLoadStoreAlignment(I);
unsigned AS = getLoadStoreAddressSpace(I);
TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
return TTI.getAddressComputationCost(ValTy) +
TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
TTI::TCK_RecipThroughput, OpInfo, I);
}
return getWideningCost(I, VF);
}
LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I,
ElementCount VF) {
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (isUniformAfterVectorization(I, VF))
VF = ElementCount::getFixed(1);
if (VF.isVector() && isProfitableToScalarize(I, VF))
return VectorizationCostTy(InstsToScalarize[VF][I], false);
// Forced scalars do not have any scalarization overhead.
auto ForcedScalar = ForcedScalars.find(VF);
if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
auto InstSet = ForcedScalar->second;
if (InstSet.count(I))
return VectorizationCostTy(
(getInstructionCost(I, ElementCount::getFixed(1)).first *
VF.getKnownMinValue()),
false);
}
Type *VectorTy;
InstructionCost C = getInstructionCost(I, VF, VectorTy);
bool TypeNotScalarized = false;
if (VF.isVector() && VectorTy->isVectorTy()) {
if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
if (VF.isScalable())
// <vscale x 1 x iN> is assumed to be profitable over iN because
// scalable registers are a distinct register class from scalar ones.
// If we ever find a target which wants to lower scalable vectors
// back to scalars, we'll need to update this code to explicitly
// ask TTI about the register class uses for each part.
TypeNotScalarized = NumParts <= VF.getKnownMinValue();
else
TypeNotScalarized = NumParts < VF.getKnownMinValue();
} else
C = InstructionCost::getInvalid();
}
return VectorizationCostTy(C, TypeNotScalarized);
}
InstructionCost LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const {
// There is no mechanism yet to create a scalable scalarization loop,
// so this is currently Invalid.
if (VF.isScalable())
return InstructionCost::getInvalid();
if (VF.isScalar())
return 0;
InstructionCost Cost = 0;
Type *RetTy = ToVectorTy(I->getType(), VF);
if (!RetTy->isVoidTy() &&
(!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
Cost += TTI.getScalarizationOverhead(
cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()),
/*Insert*/ true,
/*Extract*/ false, CostKind);
// Some targets keep addresses scalar.
if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
return Cost;
// Some targets support efficient element stores.
if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
return Cost;
// Collect operands to consider.
CallInst *CI = dyn_cast<CallInst>(I);
Instruction::op_range Ops = CI ? CI->args() : I->operands();
// Skip operands that do not require extraction/scalarization and do not incur
// any overhead.
SmallVector<Type *> Tys;
for (auto *V : filterExtractingOperands(Ops, VF))
Tys.push_back(MaybeVectorizeType(V->getType(), VF));
return Cost + TTI.getOperandsScalarizationOverhead(
filterExtractingOperands(Ops, VF), Tys, CostKind);
}
void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
if (VF.isScalar())
return;
NumPredStores = 0;
for (BasicBlock *BB : TheLoop->blocks()) {
// For each instruction in the old loop.
for (Instruction &I : *BB) {
Value *Ptr = getLoadStorePointerOperand(&I);
if (!Ptr)
continue;
// TODO: We should generate better code and update the cost model for
// predicated uniform stores. Today they are treated as any other
// predicated store (see added test cases in
// invariant-store-vectorization.ll).
if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
NumPredStores++;
if (Legal->isUniformMemOp(I, VF)) {
auto isLegalToScalarize = [&]() {
if (!VF.isScalable())
// Scalarization of fixed length vectors "just works".
return true;
// We have dedicated lowering for unpredicated uniform loads and
// stores. Note that even with tail folding we know that at least
// one lane is active (i.e. generalized predication is not possible
// here), and the logic below depends on this fact.
if (!foldTailByMasking())
return true;
// For scalable vectors, a uniform memop load is always
// uniform-by-parts and we know how to scalarize that.
if (isa<LoadInst>(I))
return true;
// A uniform store isn't neccessarily uniform-by-part
// and we can't assume scalarization.
auto &SI = cast<StoreInst>(I);
return TheLoop->isLoopInvariant(SI.getValueOperand());
};
const InstructionCost GatherScatterCost =
isLegalGatherOrScatter(&I, VF) ?
getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
// FIXME: This cost is a significant under-estimate for tail folded
// memory ops.
const InstructionCost ScalarizationCost = isLegalToScalarize() ?
getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid();
// Choose better solution for the current VF, Note that Invalid
// costs compare as maximumal large. If both are invalid, we get
// scalable invalid which signals a failure and a vectorization abort.
if (GatherScatterCost < ScalarizationCost)
setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
else
setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
continue;
}
// We assume that widening is the best solution when possible.
if (memoryInstructionCanBeWidened(&I, VF)) {
InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
int ConsecutiveStride = Legal->isConsecutivePtr(
getLoadStoreType(&I), getLoadStorePointerOperand(&I));
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
"Expected consecutive stride.");
InstWidening Decision =
ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
setWideningDecision(&I, VF, Decision, Cost);
continue;
}
// Choose between Interleaving, Gather/Scatter or Scalarization.
InstructionCost InterleaveCost = InstructionCost::getInvalid();
unsigned NumAccesses = 1;
if (isAccessInterleaved(&I)) {
auto Group = getInterleavedAccessGroup(&I);
assert(Group && "Fail to get an interleaved access group.");
// Make one decision for the whole group.
if (getWideningDecision(&I, VF) != CM_Unknown)
continue;
NumAccesses = Group->getNumMembers();
if (interleavedAccessCanBeWidened(&I, VF))
InterleaveCost = getInterleaveGroupCost(&I, VF);
}
InstructionCost GatherScatterCost =
isLegalGatherOrScatter(&I, VF)
? getGatherScatterCost(&I, VF) * NumAccesses
: InstructionCost::getInvalid();
InstructionCost ScalarizationCost =
getMemInstScalarizationCost(&I, VF) * NumAccesses;
// Choose better solution for the current VF,
// write down this decision and use it during vectorization.
InstructionCost Cost;
InstWidening Decision;
if (InterleaveCost <= GatherScatterCost &&
InterleaveCost < ScalarizationCost) {
Decision = CM_Interleave;
Cost = InterleaveCost;
} else if (GatherScatterCost < ScalarizationCost) {
Decision = CM_GatherScatter;
Cost = GatherScatterCost;
} else {
Decision = CM_Scalarize;
Cost = ScalarizationCost;
}
// If the instructions belongs to an interleave group, the whole group
// receives the same decision. The whole group receives the cost, but
// the cost will actually be assigned to one instruction.
if (auto Group = getInterleavedAccessGroup(&I))
setWideningDecision(Group, VF, Decision, Cost);
else
setWideningDecision(&I, VF, Decision, Cost);
}
}
// Make sure that any load of address and any other address computation
// remains scalar unless there is gather/scatter support. This avoids
// inevitable extracts into address registers, and also has the benefit of
// activating LSR more, since that pass can't optimize vectorized
// addresses.
if (TTI.prefersVectorizedAddressing())
return;
// Start with all scalar pointer uses.
SmallPtrSet<Instruction *, 8> AddrDefs;
for (BasicBlock *BB : TheLoop->blocks())
for (Instruction &I : *BB) {
Instruction *PtrDef =
dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
if (PtrDef && TheLoop->contains(PtrDef) &&
getWideningDecision(&I, VF) != CM_GatherScatter)
AddrDefs.insert(PtrDef);
}
// Add all instructions used to generate the addresses.
SmallVector<Instruction *, 4> Worklist;
append_range(Worklist, AddrDefs);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
for (auto &Op : I->operands())
if (auto *InstOp = dyn_cast<Instruction>(Op))
if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
AddrDefs.insert(InstOp).second)
Worklist.push_back(InstOp);
}
for (auto *I : AddrDefs) {
if (isa<LoadInst>(I)) {
// Setting the desired widening decision should ideally be handled in
// by cost functions, but since this involves the task of finding out
// if the loaded register is involved in an address computation, it is
// instead changed here when we know this is the case.
InstWidening Decision = getWideningDecision(I, VF);
if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
// Scalarize a widened load of address.
setWideningDecision(
I, VF, CM_Scalarize,
(VF.getKnownMinValue() *
getMemoryInstructionCost(I, ElementCount::getFixed(1))));
else if (auto Group = getInterleavedAccessGroup(I)) {
// Scalarize an interleave group of address loads.
for (unsigned I = 0; I < Group->getFactor(); ++I) {
if (Instruction *Member = Group->getMember(I))
setWideningDecision(
Member, VF, CM_Scalarize,
(VF.getKnownMinValue() *
getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
}
}
} else
// Make sure I gets scalarized and a cost estimate without
// scalarization overhead.
ForcedScalars[VF].insert(I);
}
}
InstructionCost
LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy) {
Type *RetTy = I->getType();
if (canTruncateToMinimalBitwidth(I, VF))
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
auto SE = PSE.getSE();
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
auto hasSingleCopyAfterVectorization = [this](Instruction *I,
ElementCount VF) -> bool {
if (VF.isScalar())
return true;
auto Scalarized = InstsToScalarize.find(VF);
assert(Scalarized != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return !Scalarized->second.count(I) &&
llvm::all_of(I->users(), [&](User *U) {
auto *UI = cast<Instruction>(U);
return !Scalarized->second.count(UI);
});
};
(void) hasSingleCopyAfterVectorization;
if (isScalarAfterVectorization(I, VF)) {
// With the exception of GEPs and PHIs, after scalarization there should
// only be one copy of the instruction generated in the loop. This is
// because the VF is either 1, or any instructions that need scalarizing
// have already been dealt with by the the time we get here. As a result,
// it means we don't have to multiply the instruction cost by VF.
assert(I->getOpcode() == Instruction::GetElementPtr ||
I->getOpcode() == Instruction::PHI ||
(I->getOpcode() == Instruction::BitCast &&
I->getType()->isPointerTy()) ||
hasSingleCopyAfterVectorization(I, VF));
VectorTy = RetTy;
} else
VectorTy = ToVectorTy(RetTy, VF);
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
// We mark this instruction as zero-cost because the cost of GEPs in
// vectorized code depends on whether the corresponding memory instruction
// is scalarized or not. Therefore, we handle GEPs with the memory
// instruction cost.
return 0;
case Instruction::Br: {
// In cases of scalarized and predicated instructions, there will be VF
// predicated blocks in the vectorized loop. Each branch around these
// blocks requires also an extract of its vector compare i1 element.
bool ScalarPredicatedBB = false;
BranchInst *BI = cast<BranchInst>(I);
if (VF.isVector() && BI->isConditional() &&
(PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
ScalarPredicatedBB = true;
if (ScalarPredicatedBB) {
// Not possible to scalarize scalable vector with predicated instructions.
if (VF.isScalable())
return InstructionCost::getInvalid();
// Return cost for branches around scalarized and predicated blocks.
auto *Vec_i1Ty =
VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
return (
TTI.getScalarizationOverhead(
Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()),
/*Insert*/ false, /*Extract*/ true, CostKind) +
(TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
} else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
// The back-edge branch will remain, as will all scalar branches.
return TTI.getCFInstrCost(Instruction::Br, CostKind);
else
// This branch will be eliminated by if-conversion.
return 0;
// Note: We currently assume zero cost for an unconditional branch inside
// a predicated block since it will become a fall-through, although we
// may decide in the future to call TTI for all branches.
}
case Instruction::PHI: {
auto *Phi = cast<PHINode>(I);
// First-order recurrences are replaced by vector shuffles inside the loop.
if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
SmallVector<int> Mask(VF.getKnownMinValue());
std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
cast<VectorType>(VectorTy), Mask, CostKind,
VF.getKnownMinValue() - 1);
}
// Phi nodes in non-header blocks (not inductions, reductions, etc.) are
// converted into select instructions. We require N - 1 selects per phi
// node, where N is the number of incoming values.
if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
return (Phi->getNumIncomingValues() - 1) *
TTI.getCmpSelInstrCost(
Instruction::Select, ToVectorTy(Phi->getType(), VF),
ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
CmpInst::BAD_ICMP_PREDICATE, CostKind);
return TTI.getCFInstrCost(Instruction::PHI, CostKind);
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
if (VF.isVector() && isPredicatedInst(I)) {
const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
ScalarCost : SafeDivisorCost;
}
// We've proven all lanes safe to speculate, fall through.
[[fallthrough]];
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
// If we're speculating on the stride being 1, the multiplication may
// fold away. We can generalize this for all operations using the notion
// of neutral elements. (TODO)
if (I->getOpcode() == Instruction::Mul &&
(PSE.getSCEV(I->getOperand(0))->isOne() ||
PSE.getSCEV(I->getOperand(1))->isOne()))
return 0;
// Detect reduction patterns
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
return *RedCost;
// Certain instructions can be cheaper to vectorize if they have a constant
// second vector operand. One example of this are shifts on x86.
Value *Op2 = I->getOperand(1);
auto Op2Info = TTI.getOperandInfo(Op2);
if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
Legal->isInvariant(Op2))
Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
SmallVector<const Value *, 4> Operands(I->operand_values());
return TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy, CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
Op2Info, Operands, I);
}
case Instruction::FNeg: {
return TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy, CostKind,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
I->getOperand(0), I);
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
const Value *Op0, *Op1;
using namespace llvm::PatternMatch;
if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
// select x, y, false --> x & y
// select x, true, y --> x | y
const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
assert(Op0->getType()->getScalarSizeInBits() == 1 &&
Op1->getType()->getScalarSizeInBits() == 1);
SmallVector<const Value *, 2> Operands{Op0, Op1};
return TTI.getArithmeticInstrCost(
match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I);
}
Type *CondTy = SI->getCondition()->getType();
if (!ScalarCond)
CondTy = VectorType::get(CondTy, VF);
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
Pred = Cmp->getPredicate();
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
CostKind, I);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
VectorTy = ToVectorTy(ValTy, VF);
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
cast<CmpInst>(I)->getPredicate(), CostKind,
I);
}
case Instruction::Store:
case Instruction::Load: {
ElementCount Width = VF;
if (Width.isVector()) {
InstWidening Decision = getWideningDecision(I, Width);
assert(Decision != CM_Unknown &&
"CM decision should be taken at this point");
if (getWideningCost(I, VF) == InstructionCost::getInvalid())
return InstructionCost::getInvalid();
if (Decision == CM_Scalarize)
Width = ElementCount::getFixed(1);
}
VectorTy = ToVectorTy(getLoadStoreType(I), Width);
return getMemoryInstructionCost(I, VF);
}
case Instruction::BitCast:
if (I->getType()->isPointerTy())
return 0;
[[fallthrough]];
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc: {
// Computes the CastContextHint from a Load/Store instruction.
auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected a load or a store!");
if (VF.isScalar() || !TheLoop->contains(I))
return TTI::CastContextHint::Normal;
switch (getWideningDecision(I, VF)) {
case LoopVectorizationCostModel::CM_GatherScatter:
return TTI::CastContextHint::GatherScatter;
case LoopVectorizationCostModel::CM_Interleave:
return TTI::CastContextHint::Interleave;
case LoopVectorizationCostModel::CM_Scalarize:
case LoopVectorizationCostModel::CM_Widen:
return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
: TTI::CastContextHint::Normal;
case LoopVectorizationCostModel::CM_Widen_Reverse:
return TTI::CastContextHint::Reversed;
case LoopVectorizationCostModel::CM_Unknown:
llvm_unreachable("Instr did not go through cost modelling?");
}
llvm_unreachable("Unhandled case!");
};
unsigned Opcode = I->getOpcode();
TTI::CastContextHint CCH = TTI::CastContextHint::None;
// For Trunc, the context is the only user, which must be a StoreInst.
if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
if (I->hasOneUse())
if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
CCH = ComputeCCH(Store);
}
// For Z/Sext, the context is the operand, which must be a LoadInst.
else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
Opcode == Instruction::FPExt) {
if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
CCH = ComputeCCH(Load);
}
// We optimize the truncation of induction variables having constant
// integer steps. The cost of these truncations is the same as the scalar
// operation.
if (isOptimizableIVTruncate(I, VF)) {
auto *Trunc = cast<TruncInst>(I);
return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
Trunc->getSrcTy(), CCH, CostKind, Trunc);
}
// Detect reduction patterns
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
return *RedCost;
Type *SrcScalarTy = I->getOperand(0)->getType();
Type *SrcVecTy =
VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
if (canTruncateToMinimalBitwidth(I, VF)) {
// This cast is going to be shrunk. This may remove the cast or it might
// turn it into slightly different cast. For example, if MinBW == 16,
// "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
//
// Calculate the modified src and dest types.
Type *MinVecTy = VectorTy;
if (Opcode == Instruction::Trunc) {
SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
VectorTy =
largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
} else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
// Leave SrcVecTy unchanged - we only shrink the destination element
// type.
VectorTy =
smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
}
}
return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
}
case Instruction::Call: {
if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
return *RedCost;
Function *Variant;
CallInst *CI = cast<CallInst>(I);
InstructionCost CallCost = getVectorCallCost(CI, VF, &Variant);
if (getVectorIntrinsicIDForCall(CI, TLI)) {
InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
return std::min(CallCost, IntrinsicCost);
}
return CallCost;
}
case Instruction::ExtractValue:
return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
case Instruction::Alloca:
// We cannot easily widen alloca to a scalable alloca, as
// the result would need to be a vector of pointers.
if (VF.isScalable())
return InstructionCost::getInvalid();
[[fallthrough]];
default:
// This opcode is unknown. Assume that it is the same as 'mul'.
return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
} // end of switch.
}
void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
// Find all stores to invariant variables. Since they are going to sink
// outside the loop we do not need calculate cost for them.
for (BasicBlock *BB : TheLoop->blocks())
for (Instruction &I : *BB) {
StoreInst *SI;
if ((SI = dyn_cast<StoreInst>(&I)) &&
Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
ValuesToIgnore.insert(&I);
}
// Ignore type-promoting instructions we identified during reduction
// detection.
for (const auto &Reduction : Legal->getReductionVars()) {
const RecurrenceDescriptor &RedDes = Reduction.second;
const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Ignore type-casting instructions we identified during induction
// detection.
for (const auto &Induction : Legal->getInductionVars()) {
const InductionDescriptor &IndDes = Induction.second;
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
}
void LoopVectorizationCostModel::collectInLoopReductions() {
for (const auto &Reduction : Legal->getReductionVars()) {
PHINode *Phi = Reduction.first;
const RecurrenceDescriptor &RdxDesc = Reduction.second;
// We don't collect reductions that are type promoted (yet).
if (RdxDesc.getRecurrenceType() != Phi->getType())
continue;
// If the target would prefer this reduction to happen "in-loop", then we
// want to record it as such.
unsigned Opcode = RdxDesc.getOpcode();
if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
!TTI.preferInLoopReduction(Opcode, Phi->getType(),
TargetTransformInfo::ReductionFlags()))
continue;
// Check that we can correctly put the reductions into the loop, by
// finding the chain of operations that leads from the phi to the loop
// exit value.
SmallVector<Instruction *, 4> ReductionOperations =
RdxDesc.getReductionOpChain(Phi, TheLoop);
bool InLoop = !ReductionOperations.empty();
if (InLoop) {
InLoopReductionChains[Phi] = ReductionOperations;
// Add the elements to InLoopReductionImmediateChains for cost modelling.
Instruction *LastChain = Phi;
for (auto *I : ReductionOperations) {
InLoopReductionImmediateChains[I] = LastChain;
LastChain = I;
}
}
LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
<< " reduction for phi: " << *Phi << "\n");
}
}
// TODO: we could return a pair of values that specify the max VF and
// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
// doesn't have a cost model that can choose which plan to execute if
// more than one is generated.
static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
LoopVectorizationCostModel &CM) {
unsigned WidestType;
std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
return WidestVectorRegBits / WidestType;
}
VectorizationFactor
LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
assert(!UserVF.isScalable() && "scalable vectors not yet supported");
ElementCount VF = UserVF;
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
if (!OrigLoop->isInnermost()) {
// If the user doesn't provide a vectorization factor, determine a
// reasonable one.
if (UserVF.isZero()) {
VF = ElementCount::getFixed(determineVPlanVF(
TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
.getFixedValue(),
CM));
LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
// Make sure we have a VF > 1 for stress testing.
if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
<< "overriding computed VF.\n");
VF = ElementCount::getFixed(4);
}
}
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
assert(isPowerOf2_32(VF.getKnownMinValue()) &&
"VF needs to be a power of two");
LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
<< "VF " << VF << " to build VPlans.\n");
buildVPlans(VF, VF);
// For VPlan build stress testing, we bail out after VPlan construction.
if (VPlanBuildStressTest)
return VectorizationFactor::Disabled();
return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
}
LLVM_DEBUG(
dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
"VPlan-native path.\n");
return VectorizationFactor::Disabled();
}
std::optional<VectorizationFactor>
LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
assert(OrigLoop->isInnermost() && "Inner loop expected.");
CM.collectValuesToIgnore();
CM.collectElementTypesForWidening();
FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
return std::nullopt;
// Invalidate interleave groups if all blocks of loop will be predicated.
if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
!useMaskedInterleavedAccesses(TTI)) {
LLVM_DEBUG(
dbgs()
<< "LV: Invalidate all interleaved groups due to fold-tail by masking "
"which requires masked-interleaved support.\n");
if (CM.InterleaveInfo.invalidateGroups())
// Invalidating interleave groups also requires invalidating all decisions
// based on them, which includes widening decisions and uniform and scalar
// values.
CM.invalidateCostModelingDecisions();
}
ElementCount MaxUserVF =
UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
if (!UserVF.isZero() && UserVFIsLegal) {
assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
"VF needs to be a power of two");
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
if (CM.selectUserVectorizationFactor(UserVF)) {
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
CM.collectInLoopReductions();
buildVPlansWithVPRecipes(UserVF, UserVF);
if (!hasPlanWithVF(UserVF)) {
LLVM_DEBUG(dbgs() << "LV: No VPlan could be built for " << UserVF
<< ".\n");
return std::nullopt;
}
LLVM_DEBUG(printPlans(dbgs()));
return {{UserVF, 0, 0}};
} else
reportVectorizationInfo("UserVF ignored because of invalid costs.",
"InvalidCost", ORE, OrigLoop);
}
// Populate the set of Vectorization Factor Candidates.
ElementCountSet VFCandidates;
for (auto VF = ElementCount::getFixed(1);
ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
VFCandidates.insert(VF);
for (auto VF = ElementCount::getScalable(1);
ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
VFCandidates.insert(VF);
for (const auto &VF : VFCandidates) {
// Collect Uniform and Scalar instructions after vectorization with VF.
CM.collectUniformsAndScalars(VF);
// Collect the instructions (and their associated costs) that will be more
// profitable to scalarize.
if (VF.isVector())
CM.collectInstsToScalarize(VF);
}
CM.collectInLoopReductions();
buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
LLVM_DEBUG(printPlans(dbgs()));
if (!MaxFactors.hasVector())
return VectorizationFactor::Disabled();
// Select the optimal vectorization factor.
VectorizationFactor VF = selectVectorizationFactor(VFCandidates);
assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
if (!hasPlanWithVF(VF.Width)) {
LLVM_DEBUG(dbgs() << "LV: No VPlan could be built for " << VF.Width
<< ".\n");
return std::nullopt;
}
return VF;
}
VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
assert(count_if(VPlans,
[VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1 &&
"Best VF has not a single VPlan.");
for (const VPlanPtr &Plan : VPlans) {
if (Plan->hasVF(VF))
return *Plan.get();
}
llvm_unreachable("No plan found!");
}
static void AddRuntimeUnrollDisableMetaData(Loop *L) {
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
bool IsUnrollMetadata = false;
MDNode *LoopID = L->getLoopID();
if (LoopID) {
// First find existing loop unrolling disable metadata.
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const auto *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata =
S && S->getString().startswith("llvm.loop.unroll.disable");
}
MDs.push_back(LoopID->getOperand(i));
}
}
if (!IsUnrollMetadata) {
// Add runtime unroll disable metadata.
LLVMContext &Context = L->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(
MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
}
}
SCEV2ValueTy LoopVectorizationPlanner::executePlan(
ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
InnerLoopVectorizer &ILV, DominatorTree *DT, bool IsEpilogueVectorization,
DenseMap<const SCEV *, Value *> *ExpandedSCEVs) {
assert(BestVPlan.hasVF(BestVF) &&
"Trying to execute plan with unsupported VF");
assert(BestVPlan.hasUF(BestUF) &&
"Trying to execute plan with unsupported UF");
assert(
(IsEpilogueVectorization || !ExpandedSCEVs) &&
"expanded SCEVs to reuse can only be used during epilogue vectorization");
LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
<< '\n');
if (!IsEpilogueVectorization)
VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
// Perform the actual loop transformation.
VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
// 0. Generate SCEV-dependent code into the preheader, including TripCount,
// before making any changes to the CFG.
if (!BestVPlan.getPreheader()->empty()) {
State.CFG.PrevBB = OrigLoop->getLoopPreheader();
State.Builder.SetInsertPoint(OrigLoop->getLoopPreheader()->getTerminator());
BestVPlan.getPreheader()->execute(&State);
}
if (!ILV.getTripCount())
ILV.setTripCount(State.get(BestVPlan.getTripCount(), {0, 0}));
else
assert(IsEpilogueVectorization && "should only re-use the existing trip "
"count during epilogue vectorization");
// 1. Set up the skeleton for vectorization, including vector pre-header and
// middle block. The vector loop is created during VPlan execution.
Value *CanonicalIVStartValue;
std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
ILV.createVectorizedLoopSkeleton(ExpandedSCEVs ? *ExpandedSCEVs
: State.ExpandedSCEVs);
// Only use noalias metadata when using memory checks guaranteeing no overlap
// across all iterations.
const LoopAccessInfo *LAI = ILV.Legal->getLAI();
std::unique_ptr<LoopVersioning> LVer = nullptr;
if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
!LAI->getRuntimePointerChecking()->getDiffChecks()) {
// We currently don't use LoopVersioning for the actual loop cloning but we
// still use it to add the noalias metadata.
// TODO: Find a better way to re-use LoopVersioning functionality to add
// metadata.
LVer = std::make_unique<LoopVersioning>(
*LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
PSE.getSE());
State.LVer = &*LVer;
State.LVer->prepareNoAliasMetadata();
}
ILV.collectPoisonGeneratingRecipes(State);
ILV.printDebugTracesAtStart();
//===------------------------------------------------===//
//
// Notice: any optimization or new instruction that go
// into the code below should also be implemented in
// the cost-model.
//
//===------------------------------------------------===//
// 2. Copy and widen instructions from the old loop into the new loop.
BestVPlan.prepareToExecute(
ILV.getTripCount(), ILV.getOrCreateVectorTripCount(nullptr),
CanonicalIVStartValue, State, IsEpilogueVectorization);
BestVPlan.execute(&State);
// Keep all loop hints from the original loop on the vector loop (we'll
// replace the vectorizer-specific hints below).
MDNode *OrigLoopID = OrigLoop->getLoopID();
std::optional<MDNode *> VectorizedLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
LLVMLoopVectorizeFollowupVectorized});
VPBasicBlock *HeaderVPBB =
BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
if (VectorizedLoopID)
L->setLoopID(*VectorizedLoopID);
else {
// Keep all loop hints from the original loop on the vector loop (we'll
// replace the vectorizer-specific hints below).
if (MDNode *LID = OrigLoop->getLoopID())
L->setLoopID(LID);
LoopVectorizeHints Hints(L, true, *ORE);
Hints.setAlreadyVectorized();
}
TargetTransformInfo::UnrollingPreferences UP;
TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE);
if (!UP.UnrollVectorizedLoop || CanonicalIVStartValue)
AddRuntimeUnrollDisableMetaData(L);
// 3. Fix the vectorized code: take care of header phi's, live-outs,
// predication, updating analyses.
ILV.fixVectorizedLoop(State, BestVPlan);
ILV.printDebugTracesAtEnd();
return State.ExpandedSCEVs;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
for (const auto &Plan : VPlans)
if (PrintVPlansInDotFormat)
Plan->printDOT(O);
else
Plan->print(O);
}
#endif
//===--------------------------------------------------------------------===//
// EpilogueVectorizerMainLoop
//===--------------------------------------------------------------------===//
/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
std::pair<BasicBlock *, Value *>
EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton(
const SCEV2ValueTy &ExpandedSCEVs) {
createVectorLoopSkeleton("");
// Generate the code to check the minimum iteration count of the vector
// epilogue (see below).
EPI.EpilogueIterationCountCheck =
emitIterationCountCheck(LoopScalarPreHeader, true);
EPI.EpilogueIterationCountCheck->setName("iter.check");
// Generate the code to check any assumptions that we've made for SCEV
// expressions.
EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
// Generate the code that checks at runtime if arrays overlap. We put the
// checks into a separate block to make the more common case of few elements
// faster.
EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
// Generate the iteration count check for the main loop, *after* the check
// for the epilogue loop, so that the path-length is shorter for the case
// that goes directly through the vector epilogue. The longer-path length for
// the main loop is compensated for, by the gain from vectorizing the larger
// trip count. Note: the branch will get updated later on when we vectorize
// the epilogue.
EPI.MainLoopIterationCountCheck =
emitIterationCountCheck(LoopScalarPreHeader, false);
// Generate the induction variable.
EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
// Skip induction resume value creation here because they will be created in
// the second pass for the scalar loop. The induction resume values for the
// inductions in the epilogue loop are created before executing the plan for
// the epilogue loop.
return {completeLoopSkeleton(), nullptr};
}
void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
LLVM_DEBUG({
dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
<< "Main Loop VF:" << EPI.MainLoopVF
<< ", Main Loop UF:" << EPI.MainLoopUF
<< ", Epilogue Loop VF:" << EPI.EpilogueVF
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
});
}
void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "intermediate fn:\n"
<< *OrigLoop->getHeader()->getParent() << "\n";
});
}
BasicBlock *
EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
bool ForEpilogue) {
assert(Bypass && "Expected valid bypass basic block.");
ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
Value *Count = getTripCount();
// Reuse existing vector loop preheader for TC checks.
// Note that new preheader block is generated for vector loop.
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
IRBuilder<> Builder(TCCheckBlock->getTerminator());
// Generate code to check if the loop's trip count is less than VF * UF of the
// main vector loop.
auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector()
: VF.isVector())
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT;
Value *CheckMinIters = Builder.CreateICmp(
P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
"min.iters.check");
if (!ForEpilogue)
TCCheckBlock->setName("vector.main.loop.iter.check");
// Create new preheader for vector loop.
LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
DT, LI, nullptr, "vector.ph");
if (ForEpilogue) {
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
DT->getNode(Bypass)->getIDom()) &&
"TC check is expected to dominate Bypass");
// Update dominator for Bypass & LoopExit.
DT->changeImmediateDominator(Bypass, TCCheckBlock);
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()))
// For loops with multiple exits, there's no edge from the middle block
// to exit blocks (as the epilogue must run) and thus no need to update
// the immediate dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
LoopBypassBlocks.push_back(TCCheckBlock);
// Save the trip count so we don't have to regenerate it in the
// vec.epilog.iter.check. This is safe to do because the trip count
// generated here dominates the vector epilog iter check.
EPI.TripCount = Count;
}
ReplaceInstWithInst(
TCCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
return TCCheckBlock;
}
//===--------------------------------------------------------------------===//
// EpilogueVectorizerEpilogueLoop
//===--------------------------------------------------------------------===//
/// This function is partially responsible for generating the control flow
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
std::pair<BasicBlock *, Value *>
EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton(
const SCEV2ValueTy &ExpandedSCEVs) {
createVectorLoopSkeleton("vec.epilog.");
// Now, compare the remaining count and if there aren't enough iterations to
// execute the vectorized epilogue skip to the scalar part.
BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
LoopVectorPreHeader =
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
LI, nullptr, "vec.epilog.ph");
emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
VecEpilogueIterationCountCheck);
// Adjust the control flow taking the state info from the main loop
// vectorization into account.
assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
"expected this to be saved from the previous pass.");
EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopVectorPreHeader);
DT->changeImmediateDominator(LoopVectorPreHeader,
EPI.MainLoopIterationCountCheck);
EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
if (EPI.SCEVSafetyCheck)
EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
if (EPI.MemSafetyCheck)
EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
DT->changeImmediateDominator(
VecEpilogueIterationCountCheck,
VecEpilogueIterationCountCheck->getSinglePredecessor());
DT->changeImmediateDominator(LoopScalarPreHeader,
EPI.EpilogueIterationCountCheck);
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()))
// If there is an epilogue which must run, there's no edge from the
// middle block to exit blocks and thus no need to update the immediate
// dominator of the exit blocks.
DT->changeImmediateDominator(LoopExitBlock,
EPI.EpilogueIterationCountCheck);
// Keep track of bypass blocks, as they feed start values to the induction and
// reduction phis in the scalar loop preheader.
if (EPI.SCEVSafetyCheck)
LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
if (EPI.MemSafetyCheck)
LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
// The vec.epilog.iter.check block may contain Phi nodes from inductions or
// reductions which merge control-flow from the latch block and the middle
// block. Update the incoming values here and move the Phi into the preheader.
SmallVector<PHINode *, 4> PhisInBlock;
for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
PhisInBlock.push_back(&Phi);
for (PHINode *Phi : PhisInBlock) {
Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
Phi->replaceIncomingBlockWith(
VecEpilogueIterationCountCheck->getSinglePredecessor(),
VecEpilogueIterationCountCheck);
// If the phi doesn't have an incoming value from the
// EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
// value and also those from other check blocks. This is needed for
// reduction phis only.
if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
return EPI.EpilogueIterationCountCheck == IncB;
}))
continue;
Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
if (EPI.SCEVSafetyCheck)
Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
if (EPI.MemSafetyCheck)
Phi->removeIncomingValue(EPI.MemSafetyCheck);
}
// Generate a resume induction for the vector epilogue and put it in the
// vector epilogue preheader
Type *IdxTy = Legal->getWidestInductionType();
PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
LoopVectorPreHeader->getFirstNonPHI());
EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
EPI.MainLoopIterationCountCheck);
// Generate induction resume values. These variables save the new starting
// indexes for the scalar loop. They are used to test if there are any tail
// iterations left once the vector loop has completed.
// Note that when the vectorized epilogue is skipped due to iteration count
// check, then the resume value for the induction variable comes from
// the trip count of the main vector loop, hence passing the AdditionalBypass
// argument.
createInductionResumeValues(ExpandedSCEVs,
{VecEpilogueIterationCountCheck,
EPI.VectorTripCount} /* AdditionalBypass */);
return {completeLoopSkeleton(), EPResumeVal};
}
BasicBlock *
EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
BasicBlock *Bypass, BasicBlock *Insert) {
assert(EPI.TripCount &&
"Expected trip count to have been safed in the first pass.");
assert(
(!isa<Instruction>(EPI.TripCount) ||
DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
"saved trip count does not dominate insertion point.");
Value *TC = EPI.TripCount;
IRBuilder<> Builder(Insert->getTerminator());
Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
// Generate code to check if the loop's trip count is less than VF * UF of the
// vector epilogue loop.
auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector())
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_ULT;
Value *CheckMinIters =
Builder.CreateICmp(P, Count,
createStepForVF(Builder, Count->getType(),
EPI.EpilogueVF, EPI.EpilogueUF),
"min.epilog.iters.check");
ReplaceInstWithInst(
Insert->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
LoopBypassBlocks.push_back(Insert);
return Insert;
}
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
LLVM_DEBUG({
dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
<< "Epilogue Loop VF:" << EPI.EpilogueVF
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
});
}
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
});
}
bool LoopVectorizationPlanner::getDecisionAndClampRange(
const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
assert(!Range.isEmpty() && "Trying to test an empty VF range.");
bool PredicateAtRangeStart = Predicate(Range.Start);
for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
if (Predicate(TmpVF) != PredicateAtRangeStart) {
Range.End = TmpVF;
break;
}
return PredicateAtRangeStart;
}
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
ElementCount MaxVF) {
auto MaxVFTimes2 = MaxVF * 2;
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
VFRange SubRange = {VF, MaxVFTimes2};
VPlans.push_back(buildVPlan(SubRange));
VF = SubRange.End;
}
}
VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
VPlan &Plan) {
assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
// Look for cached value.
std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
if (ECEntryIt != EdgeMaskCache.end())
return ECEntryIt->second;
VPValue *SrcMask = createBlockInMask(Src, Plan);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
return EdgeMaskCache[Edge] = SrcMask;
// If source is an exiting block, we know the exit edge is dynamically dead
// in the vector loop, and thus we don't need to restrict the mask. Avoid
// adding uses of an otherwise potentially dead instruction.
if (OrigLoop->isLoopExiting(Src))
return EdgeMaskCache[Edge] = SrcMask;
VPValue *EdgeMask = Plan.getVPValueOrAddLiveIn(BI->getCondition());
assert(EdgeMask && "No Edge Mask found for condition");
if (BI->getSuccessor(0) != Dst)
EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
// The condition is 'SrcMask && EdgeMask', which is equivalent to
// 'select i1 SrcMask, i1 EdgeMask, i1 false'.
// The select version does not introduce new UB if SrcMask is false and
// EdgeMask is poison. Using 'and' here introduces undefined behavior.
VPValue *False = Plan.getVPValueOrAddLiveIn(
ConstantInt::getFalse(BI->getCondition()->getType()));
EdgeMask =
Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
}
return EdgeMaskCache[Edge] = EdgeMask;
}
VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlan &Plan) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Look for cached value.
BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
if (BCEntryIt != BlockMaskCache.end())
return BCEntryIt->second;
// All-one mask is modelled as no-mask following the convention for masked
// load/store/gather/scatter. Initialize BlockMask to no-mask.
VPValue *BlockMask = nullptr;
if (OrigLoop->getHeader() == BB) {
if (!CM.blockNeedsPredicationForAnyReason(BB))
return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
assert(CM.foldTailByMasking() && "must fold the tail");
// If we're using the active lane mask for control flow, then we get the
// mask from the active lane mask PHI that is cached in the VPlan.
TailFoldingStyle TFStyle = CM.getTailFoldingStyle();
if (useActiveLaneMaskForControlFlow(TFStyle))
return BlockMaskCache[BB] = Plan.getActiveLaneMaskPhi();
// Introduce the early-exit compare IV <= BTC to form header block mask.
// This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
// constructing the desired canonical IV in the header block as its first
// non-phi instructions.
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV());
HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
VPBuilder::InsertPointGuard Guard(Builder);
Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
if (useActiveLaneMask(TFStyle)) {
VPValue *TC = Plan.getTripCount();
BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
nullptr, "active.lane.mask");
} else {
VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
}
return BlockMaskCache[BB] = BlockMask;
}
// This is the block mask. We OR all incoming edges.
for (auto *Predecessor : predecessors(BB)) {
VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
return BlockMaskCache[BB] = EdgeMask;
if (!BlockMask) { // BlockMask has its initialized nullptr value.
BlockMask = EdgeMask;
continue;
}
BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
}
return BlockMaskCache[BB] = BlockMask;
}
VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
ArrayRef<VPValue *> Operands,
VFRange &Range,
VPlanPtr &Plan) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Must be called with either a load or store");
auto willWiden = [&](ElementCount VF) -> bool {
LoopVectorizationCostModel::InstWidening Decision =
CM.getWideningDecision(I, VF);
assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
"CM decision should be taken at this point.");
if (Decision == LoopVectorizationCostModel::CM_Interleave)
return true;
if (CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF))
return false;
return Decision != LoopVectorizationCostModel::CM_Scalarize;
};
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
return nullptr;
VPValue *Mask = nullptr;
if (Legal->isMaskRequired(I))
Mask = createBlockInMask(I->getParent(), *Plan);
// Determine if the pointer operand of the access is either consecutive or
// reverse consecutive.
LoopVectorizationCostModel::InstWidening Decision =
CM.getWideningDecision(I, Range.Start);
bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
bool Consecutive =
Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
if (LoadInst *Load = dyn_cast<LoadInst>(I))
return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
Consecutive, Reverse);
StoreInst *Store = cast<StoreInst>(I);
return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
Mask, Consecutive, Reverse);
}
/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
/// insert a recipe to expand the step for the induction recipe.
static VPWidenIntOrFpInductionRecipe *
createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc,
VPValue *Start, const InductionDescriptor &IndDesc,
VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop,
VFRange &Range) {
assert(IndDesc.getStartValue() ==
Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
"step must be loop invariant");
VPValue *Step =
vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI);
}
assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc);
}
VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
// Check if this is an integer or fp induction. If so, build the recipe that
// produces its scalar and vector values.
if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
*PSE.getSE(), *OrigLoop, Range);
// Check if this is pointer induction. If so, build the recipe for it.
if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(),
*PSE.getSE());
return new VPWidenPointerInductionRecipe(
Phi, Operands[0], Step, *II,
LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) {
return CM.isScalarAfterVectorization(Phi, VF);
},
Range));
}
return nullptr;
}
VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
// Optimize the special case where the source is a constant integer
// induction variable. Notice that we can only optimize the 'trunc' case
// because (a) FP conversions lose precision, (b) sext/zext may wrap, and
// (c) other casts depend on pointer size.
// Determine whether \p K is a truncation based on an induction variable that
// can be optimized.
auto isOptimizableIVTruncate =
[&](Instruction *K) -> std::function<bool(ElementCount)> {
return [=](ElementCount VF) -> bool {
return CM.isOptimizableIVTruncate(K, VF);
};
};
if (LoopVectorizationPlanner::getDecisionAndClampRange(
isOptimizableIVTruncate(I), Range)) {
auto *Phi = cast<PHINode>(I->getOperand(0));
const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
VPValue *Start = Plan.getVPValueOrAddLiveIn(II.getStartValue());
return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
*OrigLoop, Range);
}
return nullptr;
}
VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
ArrayRef<VPValue *> Operands,
VPlanPtr &Plan) {
// If all incoming values are equal, the incoming VPValue can be used directly
// instead of creating a new VPBlendRecipe.
if (llvm::all_equal(Operands))
return Operands[0];
unsigned NumIncoming = Phi->getNumIncomingValues();
// For in-loop reductions, we do not need to create an additional select.
VPValue *InLoopVal = nullptr;
for (unsigned In = 0; In < NumIncoming; In++) {
PHINode *PhiOp =
dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
if (PhiOp && CM.isInLoopReduction(PhiOp)) {
assert(!InLoopVal && "Found more than one in-loop reduction!");
InLoopVal = Operands[In];
}
}
assert((!InLoopVal || NumIncoming == 2) &&
"Found an in-loop reduction for PHI with unexpected number of "
"incoming values");
if (InLoopVal)
return Operands[Operands[0] == InLoopVal ? 1 : 0];
// We know that all PHIs in non-header blocks are converted into selects, so
// we don't have to worry about the insertion order and we can just use the
// builder. At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
SmallVector<VPValue *, 2> OperandsWithMask;
for (unsigned In = 0; In < NumIncoming; In++) {
VPValue *EdgeMask =
createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), *Plan);
assert((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask");
OperandsWithMask.push_back(Operands[In]);
if (EdgeMask)
OperandsWithMask.push_back(EdgeMask);
}
return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
}
VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
ArrayRef<VPValue *> Operands,
VFRange &Range,
VPlanPtr &Plan) {
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
[this, CI](ElementCount VF) {
return CM.isScalarWithPredication(CI, VF);
},
Range);
if (IsPredicated)
return nullptr;
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
ID == Intrinsic::pseudoprobe ||
ID == Intrinsic::experimental_noalias_scope_decl))
return nullptr;
SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size()));
// Is it beneficial to perform intrinsic call compared to lib call?
bool ShouldUseVectorIntrinsic =
ID && LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) -> bool {
Function *Variant;
// Is it beneficial to perform intrinsic call compared to lib
// call?
InstructionCost CallCost =
CM.getVectorCallCost(CI, VF, &Variant);
InstructionCost IntrinsicCost =
CM.getVectorIntrinsicCost(CI, VF);
return IntrinsicCost <= CallCost;
},
Range);
if (ShouldUseVectorIntrinsic)
return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID);
Function *Variant = nullptr;
ElementCount VariantVF;
bool NeedsMask = false;
// Is better to call a vectorized version of the function than to to scalarize
// the call?
auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) -> bool {
// The following case may be scalarized depending on the VF.
// The flag shows whether we can use a usual Call for vectorized
// version of the instruction.
// If we've found a variant at a previous VF, then stop looking. A
// vectorized variant of a function expects input in a certain shape
// -- basically the number of input registers, the number of lanes
// per register, and whether there's a mask required.
// We store a pointer to the variant in the VPWidenCallRecipe, so
// once we have an appropriate variant it's only valid for that VF.
// This will force a different vplan to be generated for each VF that
// finds a valid variant.
if (Variant)
return false;
CM.getVectorCallCost(CI, VF, &Variant, &NeedsMask);
// If we found a valid vector variant at this VF, then store the VF
// in case we need to generate a mask.
if (Variant)
VariantVF = VF;
return Variant != nullptr;
},
Range);
if (ShouldUseVectorCall) {
if (NeedsMask) {
// We have 2 cases that would require a mask:
// 1) The block needs to be predicated, either due to a conditional
// in the scalar loop or use of an active lane mask with
// tail-folding, and we use the appropriate mask for the block.
// 2) No mask is required for the block, but the only available
// vector variant at this VF requires a mask, so we synthesize an
// all-true mask.
VPValue *Mask = nullptr;
if (Legal->isMaskRequired(CI))
Mask = createBlockInMask(CI->getParent(), *Plan);
else
Mask = Plan->getVPValueOrAddLiveIn(ConstantInt::getTrue(
IntegerType::getInt1Ty(Variant->getFunctionType()->getContext())));
VFShape Shape = VFShape::get(*CI, VariantVF, /*HasGlobalPred=*/true);
unsigned MaskPos = 0;
for (const VFInfo &Info : VFDatabase::getMappings(*CI))
if (Info.Shape == Shape) {
assert(Info.isMasked() && "Vector function info shape mismatch");
MaskPos = Info.getParamIndexForOptionalMask().value();
break;
}
Ops.insert(Ops.begin() + MaskPos, Mask);
}
return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()),
Intrinsic::not_intrinsic, Variant);
}
return nullptr;
}
bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
!isa<StoreInst>(I) && "Instruction should have been handled earlier");
// Instruction should be widened, unless it is scalar after vectorization,
// scalarization is profitable or it is predicated.
auto WillScalarize = [this, I](ElementCount VF) -> bool {
return CM.isScalarAfterVectorization(I, VF) ||
CM.isProfitableToScalarize(I, VF) ||
CM.isScalarWithPredication(I, VF);
};
return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
Range);
}
VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I,
ArrayRef<VPValue *> Operands,
VPBasicBlock *VPBB, VPlanPtr &Plan) {
switch (I->getOpcode()) {
default:
return nullptr;
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem: {
// If not provably safe, use a select to form a safe divisor before widening the
// div/rem operation itself. Otherwise fall through to general handling below.
if (CM.isPredicatedInst(I)) {
SmallVector<VPValue *> Ops(Operands.begin(), Operands.end());
VPValue *Mask = createBlockInMask(I->getParent(), *Plan);
VPValue *One = Plan->getVPValueOrAddLiveIn(
ConstantInt::get(I->getType(), 1u, false));
auto *SafeRHS =
new VPInstruction(Instruction::Select, {Mask, Ops[1], One},
I->getDebugLoc());
VPBB->appendRecipe(SafeRHS);
Ops[1] = SafeRHS;
return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end()));
}
[[fallthrough]];
}
case Instruction::Add:
case Instruction::And:
case Instruction::AShr:
case Instruction::FAdd:
case Instruction::FCmp:
case Instruction::FDiv:
case Instruction::FMul:
case Instruction::FNeg:
case Instruction::FRem:
case Instruction::FSub:
case Instruction::ICmp:
case Instruction::LShr:
case Instruction::Mul:
case Instruction::Or:
case Instruction::Select:
case Instruction::Shl:
case Instruction::Sub:
case Instruction::Xor:
case Instruction::Freeze:
return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
};
}
void VPRecipeBuilder::fixHeaderPhis() {
BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
for (VPHeaderPHIRecipe *R : PhisToFix) {
auto *PN = cast<PHINode>(R->getUnderlyingValue());
VPRecipeBase *IncR =
getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
R->addOperand(IncR->getVPSingleValue());
}
}
VPRecipeOrVPValueTy VPRecipeBuilder::handleReplication(Instruction *I,
VFRange &Range,
VPlan &Plan) {
bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
Range);
bool IsPredicated = CM.isPredicatedInst(I);
// Even if the instruction is not marked as uniform, there are certain
// intrinsic calls that can be effectively treated as such, so we check for
// them here. Conservatively, we only do this for scalable vectors, since
// for fixed-width VFs we can always fall back on full scalarization.
if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
case Intrinsic::assume:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// For scalable vectors if one of the operands is variant then we still
// want to mark as uniform, which will generate one instruction for just
// the first lane of the vector. We can't scalarize the call in the same
// way as for fixed-width vectors because we don't know how many lanes
// there are.
//
// The reasons for doing it this way for scalable vectors are:
// 1. For the assume intrinsic generating the instruction for the first
// lane is still be better than not generating any at all. For
// example, the input may be a splat across all lanes.
// 2. For the lifetime start/end intrinsics the pointer operand only
// does anything useful when the input comes from a stack object,
// which suggests it should always be uniform. For non-stack objects
// the effect is to poison the object, which still allows us to
// remove the call.
IsUniform = true;
break;
default:
break;
}
}
VPValue *BlockInMask = nullptr;
if (!IsPredicated) {
// Finalize the recipe for Instr, first if it is not predicated.
LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
} else {
LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
// Instructions marked for predication are replicated and a mask operand is
// added initially. Masked replicate recipes will later be placed under an
// if-then construct to prevent side-effects. Generate recipes to compute
// the block mask for this region.
BlockInMask = createBlockInMask(I->getParent(), Plan);
}
auto *Recipe = new VPReplicateRecipe(I, Plan.mapToVPValues(I->operands()),
IsUniform, BlockInMask);
return toVPRecipeResult(Recipe);
}
VPRecipeOrVPValueTy
VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
ArrayRef<VPValue *> Operands,
VFRange &Range, VPBasicBlock *VPBB,
VPlanPtr &Plan) {
// First, check for specific widening recipes that deal with inductions, Phi
// nodes, calls and memory operations.
VPRecipeBase *Recipe;
if (auto Phi = dyn_cast<PHINode>(Instr)) {
if (Phi->getParent() != OrigLoop->getHeader())
return tryToBlend(Phi, Operands, Plan);
// Always record recipes for header phis. Later first-order recurrence phis
// can have earlier phis as incoming values.
recordRecipeOf(Phi);
if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
return toVPRecipeResult(Recipe);
VPHeaderPHIRecipe *PhiRecipe = nullptr;
assert((Legal->isReductionVariable(Phi) ||
Legal->isFixedOrderRecurrence(Phi)) &&
"can only widen reductions and fixed-order recurrences here");
VPValue *StartV = Operands[0];
if (Legal->isReductionVariable(Phi)) {
const RecurrenceDescriptor &RdxDesc =
Legal->getReductionVars().find(Phi)->second;
assert(RdxDesc.getRecurrenceStartValue() ==
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
CM.isInLoopReduction(Phi),
CM.useOrderedReductions(RdxDesc));
} else {
// TODO: Currently fixed-order recurrences are modeled as chains of
// first-order recurrences. If there are no users of the intermediate
// recurrences in the chain, the fixed order recurrence should be modeled
// directly, enabling more efficient codegen.
PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
}
// Record the incoming value from the backedge, so we can add the incoming
// value from the backedge after all recipes have been created.
auto *Inc = cast<Instruction>(
Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
auto RecipeIter = Ingredient2Recipe.find(Inc);
if (RecipeIter == Ingredient2Recipe.end())
recordRecipeOf(Inc);
PhisToFix.push_back(PhiRecipe);
return toVPRecipeResult(PhiRecipe);
}
if (isa<TruncInst>(Instr) &&
(Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
Range, *Plan)))
return toVPRecipeResult(Recipe);
// All widen recipes below deal only with VF > 1.
if (LoopVectorizationPlanner::getDecisionAndClampRange(
[&](ElementCount VF) { return VF.isScalar(); }, Range))
return nullptr;
if (auto *CI = dyn_cast<CallInst>(Instr))
return toVPRecipeResult(tryToWidenCall(CI, Operands, Range, Plan));
if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
if (!shouldWiden(Instr, Range))
return nullptr;
if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
return toVPRecipeResult(new VPWidenGEPRecipe(
GEP, make_range(Operands.begin(), Operands.end())));
if (auto *SI = dyn_cast<SelectInst>(Instr)) {
return toVPRecipeResult(new VPWidenSelectRecipe(
*SI, make_range(Operands.begin(), Operands.end())));
}
if (auto *CI = dyn_cast<CastInst>(Instr)) {
return toVPRecipeResult(
new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(), CI));
}
return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan));
}
void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
ElementCount MaxVF) {
assert(OrigLoop->isInnermost() && "Inner loop expected.");
// Add assume instructions we need to drop to DeadInstructions, to prevent
// them from being added to the VPlan.
// TODO: We only need to drop assumes in blocks that get flattend. If the
// control flow is preserved, we should keep them.
SmallPtrSet<Instruction *, 4> DeadInstructions;
auto &ConditionalAssumes = Legal->getConditionalAssumes();
DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
auto MaxVFTimes2 = MaxVF * 2;
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
VFRange SubRange = {VF, MaxVFTimes2};
if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange, DeadInstructions))
VPlans.push_back(std::move(*Plan));
VF = SubRange.End;
}
}
// Add the necessary canonical IV and branch recipes required to control the
// loop.
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
TailFoldingStyle Style) {
Value *StartIdx = ConstantInt::get(IdxTy, 0);
auto *StartV = Plan.getVPValueOrAddLiveIn(StartIdx);
// Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
Header->insert(CanonicalIVPHI, Header->begin());
// Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
// IV by VF * UF.
bool HasNUW = Style == TailFoldingStyle::None;
auto *CanonicalIVIncrement =
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
: VPInstruction::CanonicalIVIncrement,
{CanonicalIVPHI}, DL, "index.next");
CanonicalIVPHI->addOperand(CanonicalIVIncrement);
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
if (useActiveLaneMaskForControlFlow(Style)) {
// Create the active lane mask instruction in the vplan preheader.
VPBasicBlock *VecPreheader =
cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSinglePredecessor());
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
// we have to take unrolling into account. Each part needs to start at
// Part * VF
auto *CanonicalIVIncrementParts =
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
: VPInstruction::CanonicalIVIncrementForPart,
{StartV}, DL, "index.part.next");
VecPreheader->appendRecipe(CanonicalIVIncrementParts);
// Create the ActiveLaneMask instruction using the correct start values.
VPValue *TC = Plan.getTripCount();
VPValue *TripCount, *IncrementValue;
if (Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
// When avoiding a runtime check, the active.lane.mask inside the loop
// uses a modified trip count and the induction variable increment is
// done after the active.lane.mask intrinsic is called.
auto *TCMinusVF =
new VPInstruction(VPInstruction::CalculateTripCountMinusVF, {TC}, DL);
VecPreheader->appendRecipe(TCMinusVF);
IncrementValue = CanonicalIVPHI;
TripCount = TCMinusVF;
} else {
// When the loop is guarded by a runtime overflow check for the loop
// induction variable increment by VF, we can increment the value before
// the get.active.lane mask and use the unmodified tripcount.
EB->appendRecipe(CanonicalIVIncrement);
IncrementValue = CanonicalIVIncrement;
TripCount = TC;
}
auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
{CanonicalIVIncrementParts, TC}, DL,
"active.lane.mask.entry");
VecPreheader->appendRecipe(EntryALM);
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
// preheader ActiveLaneMask instruction.
auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
Header->insert(LaneMaskPhi, Header->getFirstNonPhi());
// Create the active lane mask for the next iteration of the loop.
CanonicalIVIncrementParts =
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
: VPInstruction::CanonicalIVIncrementForPart,
{IncrementValue}, DL);
EB->appendRecipe(CanonicalIVIncrementParts);
auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
{CanonicalIVIncrementParts, TripCount}, DL,
"active.lane.mask.next");
EB->appendRecipe(ALM);
LaneMaskPhi->addOperand(ALM);
if (Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
// Do the increment of the canonical IV after the active.lane.mask, because
// that value is still based off %CanonicalIVPHI
EB->appendRecipe(CanonicalIVIncrement);
}
// We have to invert the mask here because a true condition means jumping
// to the exit block.
auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
EB->appendRecipe(NotMask);
VPInstruction *BranchBack =
new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
EB->appendRecipe(BranchBack);
} else {
EB->appendRecipe(CanonicalIVIncrement);
// Add the BranchOnCount VPInstruction to the latch.
VPInstruction *BranchBack = new VPInstruction(
VPInstruction::BranchOnCount,
{CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
EB->appendRecipe(BranchBack);
}
}
// Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
// original exit block.
static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
VPlan &Plan) {
BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
// Only handle single-exit loops with unique exit blocks for now.
if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
return;
// Introduce VPUsers modeling the exit values.
for (PHINode &ExitPhi : ExitBB->phis()) {
Value *IncomingValue =
ExitPhi.getIncomingValueForBlock(ExitingBB);
VPValue *V = Plan.getVPValueOrAddLiveIn(IncomingValue);
Plan.addLiveOut(&ExitPhi, V);
}
}
std::optional<VPlanPtr> LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions) {
SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
// ---------------------------------------------------------------------------
// Pre-construction: record ingredients whose recipes we'll need to further
// process after constructing the initial VPlan.
// ---------------------------------------------------------------------------
for (const auto &Reduction : CM.getInLoopReductionChains()) {
PHINode *Phi = Reduction.first;
RecurKind Kind =
Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
RecipeBuilder.recordRecipeOf(Phi);
for (const auto &R : ReductionOperations) {
RecipeBuilder.recordRecipeOf(R);
// For min/max reductions, where we have a pair of icmp/select, we also
// need to record the ICmp recipe, so it can be removed later.
assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
"Only min/max recurrences allowed for inloop reductions");
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
}
}
// For each interleave group which is relevant for this (possibly trimmed)
// Range, add it to the set of groups to be later applied to the VPlan and add
// placeholders for its members' Recipes which we'll be replacing with a
// single VPInterleaveRecipe.
for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
auto applyIG = [IG, this](ElementCount VF) -> bool {
bool Result = (VF.isVector() && // Query is illegal for VF == 1
CM.getWideningDecision(IG->getInsertPos(), VF) ==
LoopVectorizationCostModel::CM_Interleave);
// For scalable vectors, the only interleave factor currently supported
// is 2 since we require the (de)interleave2 intrinsics instead of
// shufflevectors.
assert((!Result || !VF.isScalable() || IG->getFactor() == 2) &&
"Unsupported interleave factor for scalable vectors");
return Result;
};
if (!getDecisionAndClampRange(applyIG, Range))
continue;
InterleaveGroups.insert(IG);
for (unsigned i = 0; i < IG->getFactor(); i++)
if (Instruction *Member = IG->getMember(i))
RecipeBuilder.recordRecipeOf(Member);
};
// ---------------------------------------------------------------------------
// Build initial VPlan: Scan the body of the loop in a topological order to
// visit each basic block after having visited its predecessor basic blocks.
// ---------------------------------------------------------------------------
// Create initial VPlan skeleton, having a basic block for the pre-header
// which contains SCEV expansions that need to happen before the CFG is
// modified; a basic block for the vector pre-header, followed by a region for
// the vector loop, followed by the middle basic block. The skeleton vector
// loop region contains a header and latch basic blocks.
VPlanPtr Plan = VPlan::createInitialVPlan(
createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop),
*PSE.getSE());
VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
VPBlockUtils::insertBlockAfter(TopRegion, Plan->getEntry());
VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
// Don't use getDecisionAndClampRange here, because we don't know the UF
// so this function is better to be conservative, rather than to split
// it up into different VPlans.
bool IVUpdateMayOverflow = false;
for (ElementCount VF : Range)
IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
Instruction *DLInst =
getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
DLInst ? DLInst->getDebugLoc() : DebugLoc(),
CM.getTailFoldingStyle(IVUpdateMayOverflow));
// Scan the body of the loop in a topological order to visit each basic block
// after having visited its predecessor basic blocks.
LoopBlocksDFS DFS(OrigLoop);
DFS.perform(LI);
VPBasicBlock *VPBB = HeaderVPBB;
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
// Relevant instructions from basic block BB will be grouped into VPRecipe
// ingredients and fill a new VPBasicBlock.
if (VPBB != HeaderVPBB)
VPBB->setName(BB->getName());
Builder.setInsertPoint(VPBB);
// Introduce each ingredient into VPlan.
// TODO: Model and preserve debug intrinsics in VPlan.
for (Instruction &I : BB->instructionsWithoutDebug(false)) {
Instruction *Instr = &I;
// First filter out irrelevant instructions, to ensure no recipes are
// built for them.
if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
continue;
SmallVector<VPValue *, 4> Operands;
auto *Phi = dyn_cast<PHINode>(Instr);
if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
Operands.push_back(Plan->getVPValueOrAddLiveIn(
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
} else {
auto OpRange = Plan->mapToVPValues(Instr->operands());
Operands = {OpRange.begin(), OpRange.end()};
}
// Invariant stores inside loop will be deleted and a single store
// with the final reduction value will be added to the exit block
StoreInst *SI;
if ((SI = dyn_cast<StoreInst>(&I)) &&
Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
continue;
auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
Instr, Operands, Range, VPBB, Plan);
if (!RecipeOrValue)
RecipeOrValue = RecipeBuilder.handleReplication(Instr, Range, *Plan);
// If Instr can be simplified to an existing VPValue, use it.
if (isa<VPValue *>(RecipeOrValue)) {
auto *VPV = cast<VPValue *>(RecipeOrValue);
Plan->addVPValue(Instr, VPV);
// If the re-used value is a recipe, register the recipe for the
// instruction, in case the recipe for Instr needs to be recorded.
if (VPRecipeBase *R = VPV->getDefiningRecipe())
RecipeBuilder.setRecipe(Instr, R);
continue;
}
// Otherwise, add the new recipe.
VPRecipeBase *Recipe = cast<VPRecipeBase *>(RecipeOrValue);
for (auto *Def : Recipe->definedValues()) {
auto *UV = Def->getUnderlyingValue();
Plan->addVPValue(UV, Def);
}
RecipeBuilder.setRecipe(Instr, Recipe);
if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
// Move VPWidenIntOrFpInductionRecipes for optimized truncates to the
// phi section of HeaderVPBB.
assert(isa<TruncInst>(Instr));
Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
} else
VPBB->appendRecipe(Recipe);
}
VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
}
// After here, VPBB should not be used.
VPBB = nullptr;
if (CM.requiresScalarEpilogue(Range)) {
// No edge from the middle block to the unique exit block has been inserted
// and there is nothing to fix from vector loop; phis should have incoming
// from scalar loop only.
} else
addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
!Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
"entry block must be set to a VPRegionBlock having a non-empty entry "
"VPBasicBlock");
RecipeBuilder.fixHeaderPhis();
// ---------------------------------------------------------------------------
// Transform initial VPlan: Apply previously taken decisions, in order, to
// bring the VPlan to its final state.
// ---------------------------------------------------------------------------
VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
VPlanTransforms::removeRedundantInductionCasts(*Plan);
// Adjust the recipes for any inloop reductions.
adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
RecipeBuilder, Range.Start);
// Sink users of fixed-order recurrence past the recipe defining the previous
// value and introduce FirstOrderRecurrenceSplice VPInstructions.
if (!VPlanTransforms::adjustFixedOrderRecurrences(*Plan, Builder))
return std::nullopt;
// Interleave memory: for each Interleave Group we marked earlier as relevant
// for this VPlan, replace the Recipes widening its memory instructions with a
// single VPInterleaveRecipe at its insertion point.
for (const auto *IG : InterleaveGroups) {
auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
RecipeBuilder.getRecipe(IG->getInsertPos()));
SmallVector<VPValue *, 4> StoredValues;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
auto *StoreR =
cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
StoredValues.push_back(StoreR->getStoredValue());
}
bool NeedsMaskForGaps =
IG->requiresScalarEpilogue() && !CM.isScalarEpilogueAllowed();
auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
Recipe->getMask(), NeedsMaskForGaps);
VPIG->insertBefore(Recipe);
unsigned J = 0;
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *Member = IG->getMember(i)) {
VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
if (!Member->getType()->isVoidTy()) {
VPValue *OriginalV = MemberR->getVPSingleValue();
OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
J++;
}
MemberR->eraseFromParent();
}
}
for (ElementCount VF : Range)
Plan->addVF(VF);
Plan->setName("Initial VPlan");
// Replace VPValues for known constant strides guaranteed by predicate scalar
// evolution.
for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) {
auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV));
// Only handle constant strides for now.
if (!ScevStride)
continue;
Constant *CI = ConstantInt::get(Stride->getType(), ScevStride->getAPInt());
auto *ConstVPV = Plan->getVPValueOrAddLiveIn(CI);
// The versioned value may not be used in the loop directly, so just add a
// new live-in in those cases.
Plan->getVPValueOrAddLiveIn(StrideV)->replaceAllUsesWith(ConstVPV);
}
// From this point onwards, VPlan-to-VPlan transformations may change the plan
// in ways that accessing values using original IR values is incorrect.
Plan->disableValue2VPValue();
VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
VPlanTransforms::removeDeadRecipes(*Plan);
VPlanTransforms::createAndOptimizeReplicateRegions(*Plan);
VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);
assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
return std::make_optional(std::move(Plan));
}
VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
// Outer loop handling: They may require CFG and instruction level
// transformations before even evaluating whether vectorization is profitable.
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline.
assert(!OrigLoop->isInnermost());
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
// Create new empty VPlan
auto Plan = VPlan::createInitialVPlan(
createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop),
*PSE.getSE());
// Build hierarchical CFG
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
HCFGBuilder.buildHierarchicalCFG();
for (ElementCount VF : Range)
Plan->addVF(VF);
VPlanTransforms::VPInstructionsToVPRecipes(
Plan,
[this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
*PSE.getSE(), *TLI);
// Remove the existing terminator of the exiting block of the top-most region.
// A BranchOnCount will be added instead when adding the canonical IV recipes.
auto *Term =
Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
Term->eraseFromParent();
addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
CM.getTailFoldingStyle());
return Plan;
}
// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be converted
// to reductions, with one operand being vector and the other being the scalar
// reduction chain. For other reductions, a select is introduced between the phi
// and live-out recipes when folding the tail.
void LoopVectorizationPlanner::adjustRecipesForReductions(
VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
ElementCount MinVF) {
for (const auto &Reduction : CM.getInLoopReductionChains()) {
PHINode *Phi = Reduction.first;
const RecurrenceDescriptor &RdxDesc =
Legal->getReductionVars().find(Phi)->second;
const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
continue;
// ReductionOperations are orders top-down from the phi's use to the
// LoopExitValue. We keep a track of the previous item (the Chain) to tell
// which of the two operands will remain scalar and which will be reduced.
// For minmax the chain will be the select instructions.
Instruction *Chain = Phi;
for (Instruction *R : ReductionOperations) {
VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
RecurKind Kind = RdxDesc.getRecurrenceKind();
VPValue *ChainOp = Plan->getVPValue(Chain);
unsigned FirstOpId;
assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
"Only min/max recurrences allowed for inloop reductions");
// Recognize a call to the llvm.fmuladd intrinsic.
bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
"Expected instruction to be a call to the llvm.fmuladd intrinsic");
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
"Expected to replace a VPWidenSelectSC");
FirstOpId = 1;
} else {
assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
(IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
"Expected to replace a VPWidenSC");
FirstOpId = 0;
}
unsigned VecOpId =
R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
VPValue *CondOp = nullptr;
if (CM.blockNeedsPredicationForAnyReason(R->getParent())) {
VPBuilder::InsertPointGuard Guard(Builder);
Builder.setInsertPoint(WidenRecipe->getParent(),
WidenRecipe->getIterator());
CondOp = RecipeBuilder.createBlockInMask(R->getParent(), *Plan);
}
if (IsFMulAdd) {
// If the instruction is a call to the llvm.fmuladd intrinsic then we
// need to create an fmul recipe to use as the vector operand for the
// fadd reduction.
VPInstruction *FMulRecipe = new VPInstruction(
Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
FMulRecipe->setFastMathFlags(R->getFastMathFlags());
WidenRecipe->getParent()->insert(FMulRecipe,
WidenRecipe->getIterator());
VecOp = FMulRecipe;
}
VPReductionRecipe *RedRecipe =
new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, &TTI);
WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
Plan->removeVPValueFor(R);
Plan->addVPValue(R, RedRecipe);
// Append the recipe to the end of the VPBasicBlock because we need to
// ensure that it comes after all of it's inputs, including CondOp.
WidenRecipe->getParent()->appendRecipe(RedRecipe);
WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
WidenRecipe->eraseFromParent();
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
VPRecipeBase *CompareRecipe =
RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
assert(isa<VPWidenRecipe>(CompareRecipe) &&
"Expected to replace a VPWidenSC");
assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
"Expected no remaining users");
CompareRecipe->eraseFromParent();
}
Chain = R;
}
}
// If tail is folded by masking, introduce selects between the phi
// and the live-out instruction of each reduction, at the beginning of the
// dedicated latch block.
if (CM.foldTailByMasking()) {
Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
for (VPRecipeBase &R :
Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
if (!PhiR || PhiR->isInLoop())
continue;
VPValue *Cond =
RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), *Plan);
VPValue *Red = PhiR->getBackedgeValue();
assert(Red->getDefiningRecipe()->getParent() != LatchVPBB &&
"reduction recipe must be defined before latch");
Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
}
}
VPlanTransforms::clearReductionWrapFlags(*Plan);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
IG->getInsertPos()->printAsOperand(O, false);
O << ", ";
getAddr()->printAsOperand(O, SlotTracker);
VPValue *Mask = getMask();
if (Mask) {
O << ", ";
Mask->printAsOperand(O, SlotTracker);
}
unsigned OpIdx = 0;
for (unsigned i = 0; i < IG->getFactor(); ++i) {
if (!IG->getMember(i))
continue;
if (getNumStoreOperands() > 0) {
O << "\n" << Indent << " store ";
getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
O << " to index " << i;
} else {
O << "\n" << Indent << " ";
getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
O << " = load from index " << i;
}
++OpIdx;
}
}
#endif
void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Int or FP induction being replicated.");
Value *Start = getStartValue()->getLiveInIRValue();
const InductionDescriptor &ID = getInductionDescriptor();
TruncInst *Trunc = getTruncInst();
IRBuilderBase &Builder = State.Builder;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
assert(State.VF.isVector() && "must have vector VF");
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
// Now do the actual transformations, and start with fetching the step value.
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
Builder.SetInsertPoint(VectorPH->getTerminator());
if (isa<TruncInst>(EntryVal)) {
assert(Start->getType()->isIntegerTy() &&
"Truncation requires an integer type");
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
Value *SteppedStart = getStepVector(
SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
// We create vector phi nodes for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (Step->getType()->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Multiply the vectorization factor by the step using integer or
// floating-point arithmetic as appropriate.
Type *StepType = Step->getType();
Value *RuntimeVF;
if (Step->getType()->isFloatingPointTy())
RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
else
RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(State.VF, Mul);
Builder.restoreIP(CurrIP);
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
&*State.CFG.PrevBB->getFirstInsertionPt());
VecInd->setDebugLoc(EntryVal->getDebugLoc());
Instruction *LastInduction = VecInd;
for (unsigned Part = 0; Part < State.UF; ++Part) {
State.set(this, LastInduction, Part);
if (isa<TruncInst>(EntryVal))
State.addMetadata(LastInduction, EntryVal);
LastInduction = cast<Instruction>(
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
}
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, VectorPH);
// Add induction update using an incorrect block temporarily. The phi node
// will be fixed after VPlan execution. Note that at this point the latch
// block cannot be used, as it does not exist yet.
// TODO: Model increment value in VPlan, by turning the recipe into a
// multi-def and a subclass of VPHeaderPHIRecipe.
VecInd->addIncoming(LastInduction, VectorPH);
}
void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
"Not a pointer induction according to InductionDescriptor!");
assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
"Unexpected type.");
auto *IVR = getParent()->getPlan()->getCanonicalIV();
PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
if (onlyScalarsGenerated(State.VF)) {
// This is the normalized GEP that starts counting at zero.
Value *PtrInd = State.Builder.CreateSExtOrTrunc(
CanonicalIV, IndDesc.getStep()->getType());
// Determine the number of scalars we need to generate for each unroll
// iteration. If the instruction is uniform, we only need to generate the
// first lane. Otherwise, we generate all VF values.
bool IsUniform = vputils::onlyFirstLaneUsed(this);
assert((IsUniform || !State.VF.isScalable()) &&
"Cannot scalarize a scalable VF");
unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *PartStart =
createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Value *Idx = State.Builder.CreateAdd(
PartStart, ConstantInt::get(PtrInd->getType(), Lane));
Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
Value *Step = State.get(getOperand(1), VPIteration(Part, Lane));
Value *SclrGep = emitTransformedIndex(
State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
SclrGep->setName("next.gep");
State.set(this, SclrGep, VPIteration(Part, Lane));
}
}
return;
}
Type *PhiType = IndDesc.getStep()->getType();
// Build a pointer phi
Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
Type *ScStValueType = ScalarStartValue->getType();
PHINode *NewPointerPhi =
PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
// A pointer induction, performed by using a gep
Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0));
Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
Value *NumUnrolledElems =
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
Value *InductionGEP = GetElementPtrInst::Create(
IndDesc.getElementType(), NewPointerPhi,
State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
InductionLoc);
// Add induction update using an incorrect block temporarily. The phi node
// will be fixed after VPlan execution. Note that at this point the latch
// block cannot be used, as it does not exist yet.
// TODO: Model increment value in VPlan, by turning the recipe into a
// multi-def and a subclass of VPHeaderPHIRecipe.
NewPointerPhi->addIncoming(InductionGEP, VectorPH);
// Create UF many actual address geps that use the pointer
// phi as base and a vectorized version of the step value
// (<step*0, ..., step*N>) as offset.
for (unsigned Part = 0; Part < State.UF; ++Part) {
Type *VecPhiType = VectorType::get(PhiType, State.VF);
Value *StartOffsetScalar =
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
Value *StartOffset =
State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
// Create a vector of consecutive numbers from zero to VF.
StartOffset = State.Builder.CreateAdd(
StartOffset, State.Builder.CreateStepVector(VecPhiType));
assert(ScalarStepValue == State.get(getOperand(1), VPIteration(Part, 0)) &&
"scalar step must be the same across all parts");
Value *GEP = State.Builder.CreateGEP(
IndDesc.getElementType(), NewPointerPhi,
State.Builder.CreateMul(
StartOffset,
State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
"vector.gep"));
State.set(this, GEP, Part);
}
}
void VPDerivedIVRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "VPDerivedIVRecipe being replicated.");
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
if (IndDesc.getInductionBinOp() &&
isa<FPMathOperator>(IndDesc.getInductionBinOp()))
State.Builder.setFastMathFlags(
IndDesc.getInductionBinOp()->getFastMathFlags());
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0));
Value *DerivedIV =
emitTransformedIndex(State.Builder, CanonicalIV,
getStartValue()->getLiveInIRValue(), Step, IndDesc);
DerivedIV->setName("offset.idx");
if (ResultTy != DerivedIV->getType()) {
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy);
}
assert(DerivedIV != CanonicalIV && "IV didn't need transforming?");
State.set(this, DerivedIV, VPIteration(0, 0));
}
void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
if (IndDesc.getInductionBinOp() &&
isa<FPMathOperator>(IndDesc.getInductionBinOp()))
State.Builder.setFastMathFlags(
IndDesc.getInductionBinOp()->getFastMathFlags());
Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
buildScalarSteps(BaseIV, Step, IndDesc, this, State);
}
void VPInterleaveRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Interleave group being replicated.");
State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
getStoredValues(), getMask(),
NeedsMaskForGaps);
}
void VPReductionRecipe::execute(VPTransformState &State) {
assert(!State.Instance && "Reduction being replicated.");
Value *PrevInChain = State.get(getChainOp(), 0);
RecurKind Kind = RdxDesc->getRecurrenceKind();
bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
// Propagate the fast-math flags carried by the underlying instruction.
IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *NewVecOp = State.get(getVecOp(), Part);
if (VPValue *Cond = getCondOp()) {
Value *NewCond = State.get(Cond, Part);
VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
Value *Iden = RdxDesc->getRecurrenceIdentity(
Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
Value *IdenVec =
State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
NewVecOp = Select;
}
Value *NewRed;
Value *NextInChain;
if (IsOrdered) {
if (State.VF.isVector())
NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
PrevInChain);
else
NewRed = State.Builder.CreateBinOp(
(Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
NewVecOp);
PrevInChain = NewRed;
} else {
PrevInChain = State.get(getChainOp(), Part);
NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
}
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
NextInChain =
createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
NewRed, PrevInChain);
} else if (IsOrdered)
NextInChain = NewRed;
else
NextInChain = State.Builder.CreateBinOp(
(Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
PrevInChain);
State.set(this, NextInChain, Part);
}
}
void VPReplicateRecipe::execute(VPTransformState &State) {
Instruction *UI = getUnderlyingInstr();
if (State.Instance) { // Generate a single instance.
assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
State.ILV->scalarizeInstruction(UI, this, *State.Instance, State);
// Insert scalar instance packing it into a vector.
if (State.VF.isVector() && shouldPack()) {
// If we're constructing lane 0, initialize to start from poison.
if (State.Instance->Lane.isFirstLane()) {
assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
Value *Poison = PoisonValue::get(
VectorType::get(UI->getType(), State.VF));
State.set(this, Poison, State.Instance->Part);
}
State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
}
return;
}
if (IsUniform) {
// If the recipe is uniform across all parts (instead of just per VF), only
// generate a single instance.
if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) &&
all_of(operands(), [](VPValue *Op) {
return Op->isDefinedOutsideVectorRegions();
})) {
State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), State);
if (user_begin() != user_end()) {
for (unsigned Part = 1; Part < State.UF; ++Part)
State.set(this, State.get(this, VPIteration(0, 0)),
VPIteration(Part, 0));
}
return;
}
// Uniform within VL means we need to generate lane 0 only for each
// unrolled copy.
for (unsigned Part = 0; Part < State.UF; ++Part)
State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0), State);
return;
}
// A store of a loop varying value to a uniform address only needs the last
// copy of the store.
if (isa<StoreInst>(UI) &&
vputils::isUniformAfterVectorization(getOperand(1))) {
auto Lane = VPLane::getLastLaneForVF(State.VF);
State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane),
State);
return;
}
// Generate scalar instances for all VF lanes of all UF parts.
assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
const unsigned EndLane = State.VF.getKnownMinValue();
for (unsigned Part = 0; Part < State.UF; ++Part)
for (unsigned Lane = 0; Lane < EndLane; ++Lane)
State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane), State);
}
void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
// Attempt to issue a wide load.
LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
assert((LI || SI) && "Invalid Load/Store instruction");
assert((!SI || StoredValue) && "No stored value provided for widened store");
assert((!LI || !StoredValue) && "Stored value provided for widened load");
Type *ScalarDataTy = getLoadStoreType(&Ingredient);
auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
const Align Alignment = getLoadStoreAlignment(&Ingredient);
bool CreateGatherScatter = !isConsecutive();
auto &Builder = State.Builder;
InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
bool isMaskRequired = getMask();
if (isMaskRequired)
for (unsigned Part = 0; Part < State.UF; ++Part)
BlockInMaskParts[Part] = State.get(getMask(), Part);
const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
// Calculate the pointer for the specific unroll-part.
Value *PartPtr = nullptr;
// Use i32 for the gep index type when the value is constant,
// or query DataLayout for a more suitable index type otherwise.
const DataLayout &DL =
Builder.GetInsertBlock()->getModule()->getDataLayout();
Type *IndexTy = State.VF.isScalable() && (isReverse() || Part > 0)
? DL.getIndexType(ScalarDataTy->getPointerTo())
: Builder.getInt32Ty();
bool InBounds = false;
if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
InBounds = gep->isInBounds();
if (isReverse()) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
// RunTimeVF = VScale * VF.getKnownMinValue()
// For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
Value *RunTimeVF = getRuntimeVF(Builder, IndexTy, State.VF);
// NumElt = -Part * RunTimeVF
Value *NumElt =
Builder.CreateMul(ConstantInt::get(IndexTy, -(int64_t)Part), RunTimeVF);
// LastLane = 1 - RunTimeVF
Value *LastLane =
Builder.CreateSub(ConstantInt::get(IndexTy, 1), RunTimeVF);
PartPtr = Builder.CreateGEP(ScalarDataTy, Ptr, NumElt, "", InBounds);
PartPtr =
Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane, "", InBounds);
if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
BlockInMaskParts[Part] =
Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
} else {
Value *Increment = createStepForVF(Builder, IndexTy, State.VF, Part);
PartPtr = Builder.CreateGEP(ScalarDataTy, Ptr, Increment, "", InBounds);
}
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
};
// Handle Stores:
if (SI) {
State.setDebugLocFromInst(SI);
for (unsigned Part = 0; Part < State.UF; ++Part) {
Instruction *NewSI = nullptr;
Value *StoredVal = State.get(StoredValue, Part);
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
Value *VectorGep = State.get(getAddr(), Part);
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
MaskPart);
} else {
if (isReverse()) {
// If we store to reverse consecutive memory locations, then we need
// to reverse the order of elements in the stored value.
StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
// We don't want to update the value in the map as it might be used in
// another expression. So don't call resetVectorValue(StoredVal).
}
auto *VecPtr =
CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
if (isMaskRequired)
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
BlockInMaskParts[Part]);
else
NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
}
State.addMetadata(NewSI, SI);
}
return;
}
// Handle loads.
assert(LI && "Must have a load instruction");
State.setDebugLocFromInst(LI);
for (unsigned Part = 0; Part < State.UF; ++Part) {
Value *NewLI;
if (CreateGatherScatter) {
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
Value *VectorGep = State.get(getAddr(), Part);
NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
nullptr, "wide.masked.gather");
State.addMetadata(NewLI, LI);
} else {
auto *VecPtr =
CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
if (isMaskRequired)
NewLI = Builder.CreateMaskedLoad(
DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
PoisonValue::get(DataTy), "wide.masked.load");
else
NewLI =
Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
// Add metadata to the load, but setVectorValue to the reverse shuffle.
State.addMetadata(NewLI, LI);
if (Reverse)
NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
}
State.set(getVPSingleValue(), NewLI, Part);
}
}
// Determine how to lower the scalar epilogue, which depends on 1) optimising
// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
// predication, and 4) a TTI hook that analyses whether the loop is suitable
// for predication.
static ScalarEpilogueLowering getScalarEpilogueLowering(
Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) {
// 1) OptSize takes precedence over all other options, i.e. if this is set,
// don't look at hints or options, and don't request a scalar epilogue.
// (For PGSO, as shouldOptimizeForSize isn't currently accessible from
// LoopAccessInfo (due to code dependency and not being able to reliably get
// PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
// of strides in LoopAccessInfo::analyzeLoop() and vectorize without
// versioning when the vectorization is forced, unlike hasOptSize. So revert
// back to the old way and vectorize with versioning when forced. See D81345.)
if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
PGSOQueryType::IRPass) &&
Hints.getForce() != LoopVectorizeHints::FK_Enabled))
return CM_ScalarEpilogueNotAllowedOptSize;
// 2) If set, obey the directives
if (PreferPredicateOverEpilogue.getNumOccurrences()) {
switch (PreferPredicateOverEpilogue) {
case PreferPredicateTy::ScalarEpilogue:
return CM_ScalarEpilogueAllowed;
case PreferPredicateTy::PredicateElseScalarEpilogue:
return CM_ScalarEpilogueNotNeededUsePredicate;
case PreferPredicateTy::PredicateOrDontVectorize:
return CM_ScalarEpilogueNotAllowedUsePredicate;
};
}
// 3) If set, obey the hints
switch (Hints.getPredicate()) {
case LoopVectorizeHints::FK_Enabled:
return CM_ScalarEpilogueNotNeededUsePredicate;
case LoopVectorizeHints::FK_Disabled:
return CM_ScalarEpilogueAllowed;
};
// 4) if the TTI hook indicates this is profitable, request predication.
TailFoldingInfo TFI(TLI, &LVL, IAI);
if (TTI->preferPredicateOverEpilogue(&TFI))
return CM_ScalarEpilogueNotNeededUsePredicate;
return CM_ScalarEpilogueAllowed;
}
Value *VPTransformState::get(VPValue *Def, unsigned Part) {
// If Values have been set for this Def return the one relevant for \p Part.
if (hasVectorValue(Def, Part))
return Data.PerPartOutput[Def][Part];
auto GetBroadcastInstrs = [this, Def](Value *V) {
bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
if (VF.isScalar())
return V;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist) {
BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
Plan->getVectorLoopRegion()->getSinglePredecessor())];
if (LoopVectorPreHeader)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
}
// Place the code for broadcasting invariant variables in the new preheader.
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
};
if (!hasScalarValue(Def, {Part, 0})) {
Value *IRV = Def->getLiveInIRValue();
Value *B = GetBroadcastInstrs(IRV);
set(Def, B, Part);
return B;
}
Value *ScalarValue = get(Def, {Part, 0});
// If we aren't vectorizing, we can just copy the scalar map values over
// to the vector map.
if (VF.isScalar()) {
set(Def, ScalarValue, Part);
return ScalarValue;
}
bool IsUniform = vputils::isUniformAfterVectorization(Def);
unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
// Check if there is a scalar value for the selected lane.
if (!hasScalarValue(Def, {Part, LastLane})) {
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
// VPExpandSCEVRecipes can also be uniform.
assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
"unexpected recipe found to be invariant");
IsUniform = true;
LastLane = 0;
}
auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
// Set the insert point after the last scalarized instruction or after the
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
// will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP =
isa<PHINode>(LastInst)
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
: std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using
// insertelement instructions. Since the resulting vectors are stored in
// State, we will only generate the insertelements once.
Value *VectorValue = nullptr;
if (IsUniform) {
VectorValue = GetBroadcastInstrs(ScalarValue);
set(Def, VectorValue, Part);
} else {
// Initialize packing with insertelements to start from undef.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
set(Def, Undef, Part);
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
VectorValue = get(Def, Part);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
// Process the loop in the VPlan-native vectorization path. This path builds
// VPlan upfront in the vectorization pipeline, which allows to apply
// VPlan-to-VPlan transformations from the very beginning without modifying the
// input LLVM IR.
static bool processLoopInVPlanNativePath(
Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
LoopVectorizationRequirements &Requirements) {
if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
return false;
}
assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
Function *F = L->getHeader()->getParent();
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
ScalarEpilogueLowering SEL =
getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
&Hints, IAI);
// Use the planner for outer loop vectorization.
// TODO: CM is not used at this point inside the planner. Turn CM into an
// optional argument if we don't need it in the future.
LoopVectorizationPlanner LVP(L, LI, TLI, *TTI, LVL, CM, IAI, PSE, Hints, ORE);
// Get user vectorization factor.
ElementCount UserVF = Hints.getWidth();
CM.collectElementTypesForWidening();
// Plan how to best vectorize, return the best VF and its cost.
const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
// If we are stress testing VPlan builds, do not attempt to generate vector
// code. Masked vector code generation support will follow soon.
// Also, do not attempt to vectorize if no vector code will be produced.
if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
return false;
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
{
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
F->getParent()->getDataLayout());
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
<< L->getHeader()->getParent()->getName() << "\"\n");
LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
}
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
return true;
}
// Emit a remark if there are stores to floats that required a floating point
// extension. If the vectorized loop was generated with floating point there
// will be a performance penalty from the conversion overhead and the change in
// the vector width.
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
SmallVector<Instruction *, 4> Worklist;
for (BasicBlock *BB : L->getBlocks()) {
for (Instruction &Inst : *BB) {
if (auto *S = dyn_cast<StoreInst>(&Inst)) {
if (S->getValueOperand()->getType()->isFloatTy())
Worklist.push_back(S);
}
}
}
// Traverse the floating point stores upwards searching, for floating point
// conversions.
SmallPtrSet<const Instruction *, 4> Visited;
SmallPtrSet<const Instruction *, 4> EmittedRemark;
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
if (!L->contains(I))
continue;
if (!Visited.insert(I).second)
continue;
// Emit a remark if the floating point store required a floating
// point conversion.
// TODO: More work could be done to identify the root cause such as a
// constant or a function return type and point the user to it.
if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
ORE->emit([&]() {
return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
I->getDebugLoc(), L->getHeader())
<< "floating point conversion changes vector width. "
<< "Mixed floating point precision requires an up/down "
<< "cast that will negatively impact performance.";
});
for (Use &Op : I->operands())
if (auto *OpI = dyn_cast<Instruction>(Op))
Worklist.push_back(OpI);
}
}
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
VectorizationFactor &VF,
std::optional<unsigned> VScale, Loop *L,
ScalarEvolution &SE) {
InstructionCost CheckCost = Checks.getCost();
if (!CheckCost.isValid())
return false;
// When interleaving only scalar and vector cost will be equal, which in turn
// would lead to a divide by 0. Fall back to hard threshold.
if (VF.Width.isScalar()) {
if (CheckCost > VectorizeMemoryCheckThreshold) {
LLVM_DEBUG(
dbgs()
<< "LV: Interleaving only is not profitable due to runtime checks\n");
return false;
}
return true;
}
// The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
double ScalarC = *VF.ScalarCost.getValue();
if (ScalarC == 0)
return true;
// First, compute the minimum iteration count required so that the vector
// loop outperforms the scalar loop.
// The total cost of the scalar loop is
// ScalarC * TC
// where
// * TC is the actual trip count of the loop.
// * ScalarC is the cost of a single scalar iteration.
//
// The total cost of the vector loop is
// RtC + VecC * (TC / VF) + EpiC
// where
// * RtC is the cost of the generated runtime checks
// * VecC is the cost of a single vector iteration.
// * TC is the actual trip count of the loop
// * VF is the vectorization factor
// * EpiCost is the cost of the generated epilogue, including the cost
// of the remaining scalar operations.
//
// Vectorization is profitable once the total vector cost is less than the
// total scalar cost:
// RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
//
// Now we can compute the minimum required trip count TC as
// (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
//
// For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
// the computations are performed on doubles, not integers and the result
// is rounded up, hence we get an upper estimate of the TC.
unsigned IntVF = VF.Width.getKnownMinValue();
if (VF.Width.isScalable()) {
unsigned AssumedMinimumVscale = 1;
if (VScale)
AssumedMinimumVscale = *VScale;
IntVF *= AssumedMinimumVscale;
}
double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
double RtC = *CheckCost.getValue();
double MinTC1 = RtC / (ScalarC - VecCOverVF);
// Second, compute a minimum iteration count so that the cost of the
// runtime checks is only a fraction of the total scalar loop cost. This
// adds a loop-dependent bound on the overhead incurred if the runtime
// checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
// * TC. To bound the runtime check to be a fraction 1/X of the scalar
// cost, compute
// RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
double MinTC2 = RtC * 10 / ScalarC;
// Now pick the larger minimum. If it is not a multiple of VF, choose the
// next closest multiple of VF. This should partly compensate for ignoring
// the epilogue cost.
uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));
LLVM_DEBUG(
dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
<< VF.MinProfitableTripCount << "\n");
// Skip vectorization if the expected trip count is less than the minimum
// required trip count.
if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
VF.MinProfitableTripCount)) {
LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
"trip count < minimum profitable VF ("
<< *ExpectedTC << " < " << VF.MinProfitableTripCount
<< ")\n");
return false;
}
}
return true;
}
LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
: InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
!EnableLoopInterleaving),
VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
!EnableLoopVectorization) {}
bool LoopVectorizePass::processLoop(Loop *L) {
assert((EnableVPlanNativePath || L->isInnermost()) &&
"VPlan-native path is not enabled. Only process inner loops.");
#ifndef NDEBUG
const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */
LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
<< L->getHeader()->getParent()->getName() << "' from "
<< DebugLocStr << "\n");
LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
LLVM_DEBUG(
dbgs() << "LV: Loop hints:"
<< " force="
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
? "disabled"
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
? "enabled"
: "?"))
<< " width=" << Hints.getWidth()
<< " interleave=" << Hints.getInterleave() << "\n");
// Function containing loop
Function *F = L->getHeader()->getParent();
// Looking at the diagnostic output is the only way to determine if a loop
// was vectorized (other than looking at the IR or machine code), so it
// is important to generate an optimization remark for each loop. Most of
// these messages are generated as OptimizationRemarkAnalysis. Remarks
// generated as OptimizationRemark and OptimizationRemarkMissed are
// less verbose reporting vectorized loops and unvectorized loops that may
// benefit from vectorization, respectively.
if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
return false;
}
PredicatedScalarEvolution PSE(*SE, *L);
// Check if it is legal to vectorize the loop.
LoopVectorizationRequirements Requirements;
LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
&Requirements, &Hints, DB, AC, BFI, PSI);
if (!LVL.canVectorize(EnableVPlanNativePath)) {
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
Hints.emitRemarkWithHints();
return false;
}
// Entrance to the VPlan-native vectorization path. Outer loops are processed
// here. They may require CFG and instruction level transformations before
// even evaluating whether vectorization is profitable. Since we cannot modify
// the incoming IR, we need to build VPlan upfront in the vectorization
// pipeline.
if (!L->isInnermost())
return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
ORE, BFI, PSI, Hints, Requirements);
assert(L->isInnermost() && "Inner loop expected.");
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
// If an override option has been passed in for interleaved accesses, use it.
if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
UseInterleaved = EnableInterleavedMemAccesses;
// Analyze interleaved memory accesses.
if (UseInterleaved)
IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
// Check the function attributes and profiles to find out if this function
// should be optimized for size.
ScalarEpilogueLowering SEL =
getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
// Check the loop for a trip count threshold: vectorize loops with a tiny trip
// count by optimizing for size, to minimize overheads.
auto ExpectedTC = getSmallBestKnownTC(*SE, L);
if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred.");
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
else {
if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) {
LLVM_DEBUG(dbgs() << "\n");
SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
} else {
LLVM_DEBUG(dbgs() << " But the target considers the trip count too "
"small to consider vectorizing.\n");
reportVectorizationFailure(
"The trip count is below the minial threshold value.",
"loop trip count is too low, avoiding vectorization",
"LowTripCount", ORE, L);
Hints.emitRemarkWithHints();
return false;
}
}
}
// Check the function attributes to see if implicit floats or vectors are
// allowed.
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
reportVectorizationFailure(
"Can't vectorize when the NoImplicitFloat attribute is used",
"loop not vectorized due to NoImplicitFloat attribute",
"NoImplicitFloat", ORE, L);
Hints.emitRemarkWithHints();
return false;
}
// Check if the target supports potentially unsafe FP vectorization.
// FIXME: Add a check for the type of safety issue (denormal, signaling)
// for the target we're vectorizing for, to make sure none of the
// additional fp-math flags can help.
if (Hints.isPotentiallyUnsafe() &&
TTI->isFPVectorizationPotentiallyUnsafe()) {
reportVectorizationFailure(
"Potentially unsafe FP op prevents vectorization",
"loop not vectorized due to unsafe FP support.",
"UnsafeFP", ORE, L);
Hints.emitRemarkWithHints();
return false;
}
bool AllowOrderedReductions;
// If the flag is set, use that instead and override the TTI behaviour.
if (ForceOrderedReductions.getNumOccurrences() > 0)
AllowOrderedReductions = ForceOrderedReductions;
else
AllowOrderedReductions = TTI->enableOrderedReductions();
if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
ORE->emit([&]() {
auto *ExactFPMathInst = Requirements.getExactFPInst();
return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
ExactFPMathInst->getDebugLoc(),
ExactFPMathInst->getParent())
<< "loop not vectorized: cannot prove it is safe to reorder "
"floating-point operations";
});
LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
"reorder floating-point operations\n");
Hints.emitRemarkWithHints();
return false;
}
// Use the cost model.
LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
F, &Hints, IAI);
// Use the planner for vectorization.
LoopVectorizationPlanner LVP(L, LI, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
ORE);
// Get user vectorization factor and interleave count.
ElementCount UserVF = Hints.getWidth();
unsigned UserIC = Hints.getInterleave();
// Plan how to best vectorize, return the best VF and its cost.
std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
VectorizationFactor VF = VectorizationFactor::Disabled();
unsigned IC = 1;
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
F->getParent()->getDataLayout());
if (MaybeVF) {
VF = *MaybeVF;
// Select the interleave count.
IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
unsigned SelectedIC = std::max(IC, UserIC);
// Optimistically generate runtime checks if they are needed. Drop them if
// they turn out to not be profitable.
if (VF.Width.isVector() || SelectedIC > 1)
Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
// Check if it is profitable to vectorize with runtime checks.
bool ForceVectorization =
Hints.getForce() == LoopVectorizeHints::FK_Enabled;
if (!ForceVectorization &&
!areRuntimeChecksProfitable(Checks, VF, getVScaleForTuning(L, *TTI), L,
*PSE.getSE())) {
ORE->emit([&]() {
return OptimizationRemarkAnalysisAliasing(
DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
L->getHeader())
<< "loop not vectorized: cannot prove it is safe to reorder "
"memory operations";
});
LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
Hints.emitRemarkWithHints();
return false;
}
}
// Identify the diagnostic messages that should be produced.
std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
if (VF.Width.isScalar()) {
LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg = std::make_pair(
"VectorizationNotBeneficial",
"the cost-model indicates that vectorization is not beneficial");
VectorizeLoop = false;
}
if (!MaybeVF && UserIC > 1) {
// Tell the user interleaving was avoided up-front, despite being explicitly
// requested.
LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
"interleaving should be avoided up front\n");
IntDiagMsg = std::make_pair(
"InterleavingAvoided",
"Ignoring UserIC, because interleaving was avoided up front");
InterleaveLoop = false;
} else if (IC == 1 && UserIC <= 1) {
// Tell the user interleaving is not beneficial.
LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
IntDiagMsg = std::make_pair(
"InterleavingNotBeneficial",
"the cost-model indicates that interleaving is not beneficial");
InterleaveLoop = false;
if (UserIC == 1) {
IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
IntDiagMsg.second +=
" and is explicitly disabled or interleave count is set to 1";
}
} else if (IC > 1 && UserIC == 1) {
// Tell the user interleaving is beneficial, but it explicitly disabled.
LLVM_DEBUG(
dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
IntDiagMsg = std::make_pair(
"InterleavingBeneficialButDisabled",
"the cost-model indicates that interleaving is beneficial "
"but is explicitly disabled or interleave count is set to 1");
InterleaveLoop = false;
}
// Override IC if user provided an interleave count.
IC = UserIC > 0 ? UserIC : IC;
// Emit diagnostic messages, if any.
const char *VAPassName = Hints.vectorizeAnalysisPassName();
if (!VectorizeLoop && !InterleaveLoop) {
// Do not vectorize or interleaving the loop.
ORE->emit([&]() {
return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
ORE->emit([&]() {
return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
return false;
} else if (!VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< VecDiagMsg.second;
});
} else if (VectorizeLoop && !InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
ORE->emit([&]() {
return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
L->getStartLoc(), L->getHeader())
<< IntDiagMsg.second;
});
} else if (VectorizeLoop && InterleaveLoop) {
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
<< ") in " << DebugLocStr << '\n');
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
}
bool DisableRuntimeUnroll = false;
MDNode *OrigLoopID = L->getLoopID();
{
using namespace ore;
if (!VectorizeLoop) {
assert(IC > 1 && "interleave count should not be 1 or 0");
// If we decided that it is not legal to vectorize the loop, then
// interleave it.
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
&CM, BFI, PSI, Checks);
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
L->getHeader())
<< "interleaved loop (interleaved count: "
<< NV("InterleaveCount", IC) << ")";
});
} else {
// If we decided that it is *legal* to vectorize the loop, then do it.
// Consider vectorizing the epilogue too if it's profitable.
VectorizationFactor EpilogueVF =
LVP.selectEpilogueVectorizationFactor(VF.Width, IC);
if (EpilogueVF.Width.isVector()) {
// The first pass vectorizes the main loop and creates a scalar epilogue
// to be vectorized by executing the plan (potentially with a different
// factor) again shortly afterwards.
EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, &LVL, &CM, BFI, PSI, Checks);
VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
BestMainPlan, MainILV, DT, true);
++LoopsVectorized;
// Second pass vectorizes the epilogue and adjusts the control flow
// edges from the first pass.
EPI.MainLoopVF = EPI.EpilogueVF;
EPI.MainLoopUF = EPI.EpilogueUF;
EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
ORE, EPI, &LVL, &CM, BFI, PSI,
Checks);
VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
Header->setName("vec.epilog.vector.body");
// Re-use the trip count and steps expanded for the main loop, as
// skeleton creation needs it as a value that dominates both the scalar
// and vector epilogue loops
// TODO: This is a workaround needed for epilogue vectorization and it
// should be removed once induction resume value creation is done
// directly in VPlan.
EpilogILV.setTripCount(MainILV.getTripCount());
for (auto &R : make_early_inc_range(*BestEpiPlan.getPreheader())) {
auto *ExpandR = cast<VPExpandSCEVRecipe>(&R);
auto *ExpandedVal = BestEpiPlan.getVPValueOrAddLiveIn(
ExpandedSCEVs.find(ExpandR->getSCEV())->second);
ExpandR->replaceAllUsesWith(ExpandedVal);
ExpandR->eraseFromParent();
}
// Ensure that the start values for any VPWidenIntOrFpInductionRecipe,
// VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated
// before vectorizing the epilogue loop.
for (VPRecipeBase &R : Header->phis()) {
if (isa<VPCanonicalIVPHIRecipe>(&R))
continue;
Value *ResumeV = nullptr;
// TODO: Move setting of resume values to prepareToExecute.
if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
ResumeV = MainILV.getReductionResumeValue(
ReductionPhi->getRecurrenceDescriptor());
} else {
// Create induction resume values for both widened pointer and
// integer/fp inductions and update the start value of the induction
// recipes to use the resume value.
PHINode *IndPhi = nullptr;
const InductionDescriptor *ID;
if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
IndPhi = cast<PHINode>(Ind->getUnderlyingValue());
ID = &Ind->getInductionDescriptor();
} else {
auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R);
IndPhi = WidenInd->getPHINode();
ID = &WidenInd->getInductionDescriptor();
}
ResumeV = MainILV.createInductionResumeValue(
IndPhi, *ID, getExpandedStep(*ID, ExpandedSCEVs),
{EPI.MainLoopIterationCountCheck});
}
assert(ResumeV && "Must have a resume value");
VPValue *StartVal = BestEpiPlan.getVPValueOrAddLiveIn(ResumeV);
cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
}
LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
DT, true, &ExpandedSCEVs);
++LoopsEpilogueVectorized;
if (!MainILV.areSafetyChecksAdded())
DisableRuntimeUnroll = true;
} else {
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
PSI, Checks);
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
++LoopsVectorized;
// Add metadata to disable runtime unrolling a scalar loop when there
// are no runtime checks about strides and memory. A scalar loop that is
// rarely used is not worth unrolling.
if (!LB.areSafetyChecksAdded())
DisableRuntimeUnroll = true;
}
// Report the vectorization decision.
ORE->emit([&]() {
return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
L->getHeader())
<< "vectorized loop (vectorization width: "
<< NV("VectorizationFactor", VF.Width)
<< ", interleaved count: " << NV("InterleaveCount", IC) << ")";
});
}
if (ORE->allowExtraAnalysis(LV_NAME))
checkMixedPrecision(L, ORE);
}
std::optional<MDNode *> RemainderLoopID =
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
LLVMLoopVectorizeFollowupEpilogue});
if (RemainderLoopID) {
L->setLoopID(*RemainderLoopID);
} else {
if (DisableRuntimeUnroll)
AddRuntimeUnrollDisableMetaData(L);
// Mark the loop as already vectorized to avoid vectorizing again.
Hints.setAlreadyVectorized();
}
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
return true;
}
LoopVectorizeResult LoopVectorizePass::runImpl(
Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
DominatorTree &DT_, BlockFrequencyInfo *BFI_, TargetLibraryInfo *TLI_,
DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_,
OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
SE = &SE_;
LI = &LI_;
TTI = &TTI_;
DT = &DT_;
BFI = BFI_;
TLI = TLI_;
AC = &AC_;
LAIs = &LAIs_;
DB = &DB_;
ORE = &ORE_;
PSI = PSI_;
// Don't attempt if
// 1. the target claims to have no vector registers, and
// 2. interleaving won't help ILP.
//
// The second condition is necessary because, even if the target has no
// vector registers, loop vectorization may still enable scalar
// interleaving.
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
return LoopVectorizeResult(false, false);
bool Changed = false, CFGChanged = false;
// The vectorizer requires loops to be in simplified form.
// Since simplification may add new inner loops, it has to run before the
// legality and profitability checks. This means running the loop vectorizer
// will simplify all loops, regardless of whether anything end up being
// vectorized.
for (const auto &L : *LI)
Changed |= CFGChanged |=
simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
// Build up a worklist of inner-loops to vectorize. This is necessary as
// the act of vectorizing or partially unrolling a loop creates new loops
// and can invalidate iterators across the loops.
SmallVector<Loop *, 8> Worklist;
for (Loop *L : *LI)
collectSupportedLoops(*L, LI, ORE, Worklist);
LoopsAnalyzed += Worklist.size();
// Now walk the identified inner loops.
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
// For the inner loops we actually process, form LCSSA to simplify the
// transform.
Changed |= formLCSSARecursively(*L, *DT, LI, SE);
Changed |= CFGChanged |= processLoop(L);
if (Changed)
LAIs->clear();
}
// Process each loop nest in the function.
return LoopVectorizeResult(Changed, CFGChanged);
}
PreservedAnalyses LoopVectorizePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &LI = AM.getResult<LoopAnalysis>(F);
// There are no loops in the function. Return before computing other expensive
// analyses.
if (LI.empty())
return PreservedAnalyses::all();
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
ProfileSummaryInfo *PSI =
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
BlockFrequencyInfo *BFI = nullptr;
if (PSI && PSI->hasProfileSummary())
BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
LoopVectorizeResult Result =
runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI);
if (!Result.MadeAnyChange)
return PreservedAnalyses::all();
PreservedAnalyses PA;
if (isAssignmentTrackingEnabled(*F.getParent())) {
for (auto &BB : F)
RemoveRedundantDbgInstrs(&BB);
}
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<ScalarEvolutionAnalysis>();
#ifdef EXPENSIVE_CHECKS
SE.verify();
#endif
}
if (Result.MadeCFGChange) {
// Making CFG changes likely means a loop got vectorized. Indicate that
// extra simplification passes should be run.
// TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
// be run if runtime checks have been added.
AM.getResult<ShouldRunExtraVectorPasses>(F);
PA.preserve<ShouldRunExtraVectorPasses>();
} else {
PA.preserveSet<CFGAnalyses>();
}
return PA;
}
void LoopVectorizePass::printPipeline(
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
OS, MapClassName2PassName);
OS << '<';
OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
OS << '>';
}