mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-25 10:48:14 +00:00
1ca772ed95
This changes adds the option to lower to NvGpu dialect ops during the VectorToGPU convsersion pass. Because this transformation reuses existing VectorToGPU logic, a seperate VectorToNvGpu conversion pass is not created. The option `use-nvgpu` is added to the VectorToGPU pass. When this is true, the pass will attempt to convert slices rooted at `vector.contract` operations into `nvgpu.mma.sync` ops, and `vector.transfer_read` ops are converted to either `nvgpu.ldmatrix` or one or more `vector.load` operations. The specific data loaded will depend on the thread id within a subgroup (warp). These index calculations depend on data type and shape of the MMA op according to the downstream PTX specification. The code for supporting these details is separated into `NvGpuSupport.cpp|h`. Differential Revision: https://reviews.llvm.org/D122940
917 lines
36 KiB
C++
917 lines
36 KiB
C++
//===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements lowering of vector operations to GPU dialect ops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <type_traits>
|
|
|
|
#include "NvGpuSupport.h"
|
|
#include "mlir/Conversion/VectorToGPU/VectorToGPU.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/NVGPU/NVGPUDialect.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an
|
|
/// AffineMap representing offsets to apply to indices, the function fills
|
|
/// `indices` with the original indices plus the offsets. The offsets are
|
|
/// applied by taking into account the permutation map of the transfer op. If
|
|
/// the `offsetMap` has dimension placeholders, those should be provided in
|
|
/// `dimValues`.
|
|
template <typename TransferOpType>
|
|
static void getXferIndices(OpBuilder &b, TransferOpType xferOp,
|
|
AffineMap offsetMap, ArrayRef<Value> dimValues,
|
|
SmallVector<Value, 4> &indices) {
|
|
indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
|
|
Location loc = xferOp.getLoc();
|
|
unsigned offsetsIdx = 0;
|
|
for (auto expr : xferOp.getPermutationMap().getResults()) {
|
|
if (auto dim = expr.template dyn_cast<AffineDimExpr>()) {
|
|
Value prevIdx = indices[dim.getPosition()];
|
|
SmallVector<Value, 3> dims(dimValues.begin(), dimValues.end());
|
|
dims.push_back(prevIdx);
|
|
AffineExpr d0 = b.getAffineDimExpr(offsetMap.getNumDims());
|
|
indices[dim.getPosition()] = makeComposedAffineApply(
|
|
b, loc, d0 + offsetMap.getResult(offsetsIdx++), dims);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if the contract op can be convert to MMA matmul.
|
|
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract,
|
|
bool useNvGpu) {
|
|
if (llvm::size(contract.getMasks()) != 0)
|
|
return false;
|
|
|
|
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
|
|
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
|
|
AffineExpr m, n, k;
|
|
bindDims(contract.getContext(), m, n, k);
|
|
auto iteratorTypes = contract.getIteratorTypes().getValue();
|
|
if (!(isParallelIterator(iteratorTypes[0]) &&
|
|
isParallelIterator(iteratorTypes[1]) &&
|
|
isReductionIterator(iteratorTypes[2])))
|
|
return false;
|
|
|
|
// The contract needs to represent a matmul to be able to convert to
|
|
// MMAMatrix matmul.
|
|
if (!useNvGpu &&
|
|
contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}}))
|
|
return false;
|
|
if (useNvGpu && contract.getIndexingMaps() != infer({{m, k}, {n, k}, {m, n}}))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return the stide for the dimension 0 of |type| if it is a memref and has a
|
|
// constant stride.
|
|
static llvm::Optional<int64_t>
|
|
getMemrefConstantHorizontalStride(ShapedType type) {
|
|
auto memrefType = type.dyn_cast<MemRefType>();
|
|
if (!memrefType)
|
|
return false;
|
|
// If the memref is 0 or 1D the horizontal stride is 0.
|
|
if (memrefType.getRank() < 2)
|
|
return 0;
|
|
int64_t offset = 0;
|
|
SmallVector<int64_t, 2> strides;
|
|
if (failed(getStridesAndOffset(memrefType, strides, offset)) ||
|
|
strides.back() != 1)
|
|
return llvm::None;
|
|
int64_t stride = strides[strides.size() - 2];
|
|
if (stride == ShapedType::kDynamicStrideOrOffset)
|
|
return llvm::None;
|
|
return stride;
|
|
}
|
|
|
|
// Return true if the transfer op can be converted to a MMA matrix load.
|
|
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp,
|
|
bool useNvGpu) {
|
|
if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
|
|
readOp.getVectorType().getRank() != 2)
|
|
return false;
|
|
if (!getMemrefConstantHorizontalStride(readOp.getShapedType()))
|
|
return false;
|
|
AffineMap map = readOp.getPermutationMap();
|
|
OpBuilder b(readOp.getContext());
|
|
AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1);
|
|
AffineExpr zero = b.getAffineConstantExpr(0);
|
|
auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim},
|
|
readOp.getContext());
|
|
|
|
if (!useNvGpu) {
|
|
// TODO: Support transpose once it is added to GPU dialect ops.
|
|
// For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1).
|
|
return map.isMinorIdentity() || map == broadcastInnerDim;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if the transfer op can be converted to a MMA matrix store.
|
|
static bool
|
|
transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) {
|
|
// TODO: support 0-d corner case.
|
|
if (writeOp.getTransferRank() == 0)
|
|
return false;
|
|
|
|
if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
|
|
writeOp.getVectorType().getRank() != 2)
|
|
return false;
|
|
if (!getMemrefConstantHorizontalStride(writeOp.getShapedType()))
|
|
return false;
|
|
// TODO: Support transpose once it is added to GPU dialect ops.
|
|
if (!writeOp.getPermutationMap().isMinorIdentity())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the constant is a splat to a 2D vector so that it can be
|
|
/// converted to a MMA constant matrix op.
|
|
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) {
|
|
auto vecType = constantOp.getType().dyn_cast<VectorType>();
|
|
if (!vecType || vecType.getRank() != 2)
|
|
return false;
|
|
return constantOp.getValue().isa<SplatElementsAttr>();
|
|
}
|
|
|
|
/// Return true if this is a broadcast from scalar to a 2D vector.
|
|
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) {
|
|
return broadcastOp.getVectorType().getRank() == 2 &&
|
|
broadcastOp.getSource().getType().isa<FloatType>();
|
|
}
|
|
|
|
/// Return the MMA elementwise enum associated with `op` if it is supported.
|
|
/// Return `llvm::None` otherwise.
|
|
static llvm::Optional<gpu::MMAElementwiseOp>
|
|
convertElementwiseOpToMMA(Operation *op) {
|
|
if (isa<arith::AddFOp>(op))
|
|
return gpu::MMAElementwiseOp::ADDF;
|
|
if (isa<arith::MulFOp>(op))
|
|
return gpu::MMAElementwiseOp::MULF;
|
|
if (isa<arith::MaxFOp>(op))
|
|
return gpu::MMAElementwiseOp::MAXF;
|
|
if (isa<arith::MinFOp>(op))
|
|
return gpu::MMAElementwiseOp::MINF;
|
|
if (isa<arith::DivFOp>(op))
|
|
return gpu::MMAElementwiseOp::DIVF;
|
|
return llvm::None;
|
|
}
|
|
|
|
/// Return true if the op is supported as elementwise op on MMAMatrix type.
|
|
static bool elementwiseSupportsMMAMatrixType(Operation *op) {
|
|
return convertElementwiseOpToMMA(op).hasValue();
|
|
}
|
|
|
|
static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) {
|
|
if (isa<scf::ForOp, scf::YieldOp>(op))
|
|
return true;
|
|
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op))
|
|
return transferReadSupportsMMAMatrixType(transferRead, useNvGpu);
|
|
if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
|
|
return transferWriteSupportsMMAMatrixType(transferWrite);
|
|
if (auto contract = dyn_cast<vector::ContractionOp>(op))
|
|
return contractSupportsMMAMatrixType(contract, useNvGpu);
|
|
if (auto constant = dyn_cast<arith::ConstantOp>(op))
|
|
return constantSupportsMMAMatrixType(constant);
|
|
if (auto broadcast = dyn_cast<vector::BroadcastOp>(op))
|
|
return broadcastSupportsMMAMatrixType(broadcast);
|
|
return elementwiseSupportsMMAMatrixType(op);
|
|
}
|
|
|
|
/// Return an unsorted slice handling scf.for region differently than
|
|
/// `getSlice`. In scf.for we only want to include as part of the slice elements
|
|
/// that are part of the use/def chain.
|
|
static SetVector<Operation *> getSliceContract(Operation *op,
|
|
TransitiveFilter backwardFilter,
|
|
TransitiveFilter forwardFilter) {
|
|
SetVector<Operation *> slice;
|
|
slice.insert(op);
|
|
unsigned currentIndex = 0;
|
|
SetVector<Operation *> backwardSlice;
|
|
SetVector<Operation *> forwardSlice;
|
|
while (currentIndex != slice.size()) {
|
|
auto *currentOp = (slice)[currentIndex];
|
|
// Compute and insert the backwardSlice starting from currentOp.
|
|
backwardSlice.clear();
|
|
getBackwardSlice(currentOp, &backwardSlice, backwardFilter);
|
|
slice.insert(backwardSlice.begin(), backwardSlice.end());
|
|
|
|
// Compute and insert the forwardSlice starting from currentOp.
|
|
forwardSlice.clear();
|
|
// Special case for ForOp, we don't want to include the whole region but
|
|
// only the value using the region arguments.
|
|
// TODO: We should refine this to only care about the region arguments being
|
|
// converted to matrix type.
|
|
if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
|
|
for (Value forOpResult : forOp.getResults())
|
|
getForwardSlice(forOpResult, &forwardSlice, forwardFilter);
|
|
for (BlockArgument &arg : forOp.getRegionIterArgs())
|
|
getForwardSlice(arg, &forwardSlice, forwardFilter);
|
|
} else {
|
|
getForwardSlice(currentOp, &forwardSlice, forwardFilter);
|
|
}
|
|
slice.insert(forwardSlice.begin(), forwardSlice.end());
|
|
++currentIndex;
|
|
}
|
|
return slice;
|
|
}
|
|
|
|
// Analyze slice of operations based on convert op to figure out if the whole
|
|
// slice can be converted to MMA operations.
|
|
static SetVector<Operation *> getOpToConvert(mlir::Operation *op,
|
|
bool useNvGpu) {
|
|
auto hasVectorDest = [](Operation *op) {
|
|
return llvm::any_of(op->getResultTypes(),
|
|
[](Type t) { return t.isa<VectorType>(); });
|
|
};
|
|
auto hasVectorSrc = [](Operation *op) {
|
|
return llvm::any_of(op->getOperandTypes(),
|
|
[](Type t) { return t.isa<VectorType>(); });
|
|
};
|
|
SetVector<Operation *> opToConvert;
|
|
op->walk([&](vector::ContractionOp contract) {
|
|
if (opToConvert.contains(contract.getOperation()))
|
|
return;
|
|
SetVector<Operation *> dependentOps =
|
|
getSliceContract(contract, hasVectorDest, hasVectorSrc);
|
|
// If any instruction cannot use MMA matrix type drop the whole
|
|
// chain. MMA matrix are stored in an opaque type so they cannot be used
|
|
// by all operations.
|
|
if (llvm::any_of(dependentOps, [useNvGpu](Operation *op) {
|
|
return !supportsMMaMatrixType(op, useNvGpu);
|
|
}))
|
|
return;
|
|
opToConvert.insert(dependentOps.begin(), dependentOps.end());
|
|
});
|
|
// Sort the operations so that we can convert them in topological order.
|
|
return topologicalSort(opToConvert);
|
|
}
|
|
|
|
namespace {
|
|
// Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted
|
|
// to MMA matmul.
|
|
struct PrepareContractToGPUMMA
|
|
: public OpRewritePattern<vector::ContractionOp> {
|
|
using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ContractionOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();
|
|
|
|
// Set up the parallel/reduction structure in right form.
|
|
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
|
|
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
|
|
AffineExpr m, n, k;
|
|
bindDims(rewriter.getContext(), m, n, k);
|
|
static constexpr std::array<int64_t, 2> perm = {1, 0};
|
|
auto iteratorTypes = op.getIteratorTypes().getValue();
|
|
SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
|
|
if (!(isParallelIterator(iteratorTypes[0]) &&
|
|
isParallelIterator(iteratorTypes[1]) &&
|
|
isReductionIterator(iteratorTypes[2])))
|
|
return failure();
|
|
//
|
|
// Two outer parallel, one inner reduction (matmat flavor).
|
|
//
|
|
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
|
|
// This is the classical row-major matmul, nothing to do.
|
|
return failure();
|
|
}
|
|
if (maps == infer({{m, k}, {n, k}, {m, n}})) {
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
|
|
std::swap(rhs, lhs);
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
|
|
std::swap(rhs, lhs);
|
|
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
|
|
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
|
|
std::swap(lhs, rhs);
|
|
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
|
|
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
|
|
std::swap(lhs, rhs);
|
|
} else {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
|
|
op, lhs, rhs, res,
|
|
rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})),
|
|
op.getIteratorTypes());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Merge transpose op into the transfer read op. Transpose are not supported on
|
|
// MMA types but MMA load can transpose the matrix when loading.
|
|
struct CombineTransferReadOpTranspose final
|
|
: public OpRewritePattern<vector::TransposeOp> {
|
|
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto transferReadOp =
|
|
op.getVector().getDefiningOp<vector::TransferReadOp>();
|
|
if (!transferReadOp)
|
|
return failure();
|
|
|
|
// TODO: support 0-d corner case.
|
|
if (transferReadOp.getTransferRank() == 0)
|
|
return failure();
|
|
|
|
if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
SmallVector<int64_t, 2> perm;
|
|
op.getTransp(perm);
|
|
SmallVector<unsigned, 2> permU;
|
|
for (int64_t o : perm)
|
|
permU.push_back(unsigned(o));
|
|
AffineMap permutationMap =
|
|
AffineMap::getPermutationMap(permU, op.getContext());
|
|
AffineMap newMap =
|
|
permutationMap.compose(transferReadOp.getPermutationMap());
|
|
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
|
|
op, op.getType(), transferReadOp.getSource(),
|
|
transferReadOp.getIndices(), AffineMapAttr::get(newMap),
|
|
transferReadOp.getPadding(), transferReadOp.getMask(),
|
|
transferReadOp.getInBoundsAttr());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// MMA types have different layout based on how they are used in matmul ops.
|
|
// Figure the right layout to use by looking at op uses.
|
|
// TODO: Change the GPU dialect to abstract the layout at the this level and
|
|
// only care about it during lowering to NVVM.
|
|
template <typename OpTy>
|
|
static const char *inferFragType(OpTy op) {
|
|
for (Operation *users : op->getUsers()) {
|
|
auto contract = dyn_cast<vector::ContractionOp>(users);
|
|
if (!contract)
|
|
continue;
|
|
if (contract.getLhs() == op.getResult())
|
|
return "AOp";
|
|
if (contract.getRhs() == op.getResult())
|
|
return "BOp";
|
|
}
|
|
return "COp";
|
|
}
|
|
|
|
static void convertTransferReadOp(vector::TransferReadOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
assert(op.getTransferRank() > 0 && "unexpected 0-d transfer");
|
|
assert(transferReadSupportsMMAMatrixType(op, /*useNvGpu=*/false));
|
|
Optional<int64_t> stride =
|
|
getMemrefConstantHorizontalStride(op.getShapedType());
|
|
AffineMap map = op.getPermutationMap();
|
|
// Handle broadcast by setting the stride to 0.
|
|
if (map.getResult(0).isa<AffineConstantExpr>()) {
|
|
assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0);
|
|
stride = 0;
|
|
}
|
|
assert(stride);
|
|
const char *fragType = inferFragType(op);
|
|
gpu::MMAMatrixType type =
|
|
gpu::MMAMatrixType::get(op.getVectorType().getShape(),
|
|
op.getVectorType().getElementType(), fragType);
|
|
OpBuilder b(op);
|
|
Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>(
|
|
op.getLoc(), type, op.getSource(), op.getIndices(),
|
|
b.getIndexAttr(*stride));
|
|
valueMapping[op.getResult()] = load;
|
|
}
|
|
|
|
static void convertTransferWriteOp(vector::TransferWriteOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
assert(transferWriteSupportsMMAMatrixType(op));
|
|
Optional<int64_t> stride =
|
|
getMemrefConstantHorizontalStride(op.getShapedType());
|
|
assert(stride);
|
|
OpBuilder b(op);
|
|
Value matrix = valueMapping.find(op.getVector())->second;
|
|
b.create<gpu::SubgroupMmaStoreMatrixOp>(op.getLoc(), matrix, op.getSource(),
|
|
op.getIndices(),
|
|
b.getIndexAttr(*stride));
|
|
op.erase();
|
|
}
|
|
|
|
/// Returns the vector type which represents a matrix fragment.
|
|
static VectorType
|
|
getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info) {
|
|
SmallVector<int64_t> shape{regInfo.numRegistersPerFragment,
|
|
regInfo.elementsPerRegister};
|
|
Type elType = regInfo.registerLLVMType;
|
|
if (auto vecType = elType.dyn_cast<VectorType>())
|
|
elType = vecType.getElementType();
|
|
return VectorType::get(shape, elType);
|
|
}
|
|
|
|
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
|
|
static LogicalResult
|
|
convertConstantOpMmaSync(arith::ConstantOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
|
|
nvgpu::getWarpMatrixInfo(op);
|
|
if (failed(warpMatrixInfo))
|
|
return failure();
|
|
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
|
|
if (failed(regInfo))
|
|
return failure();
|
|
|
|
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
|
|
auto dense = op.getValue().dyn_cast<SplatElementsAttr>();
|
|
if (!dense)
|
|
return failure();
|
|
Value result = b.create<arith::ConstantOp>(
|
|
op.getLoc(), vectorType,
|
|
DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>()));
|
|
valueMapping[op.getResult()] = result;
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult
|
|
creatLdMatrixCompatibleLoads(vector::TransferReadOp op, OpBuilder &builder,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
Location loc = op->getLoc();
|
|
|
|
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
|
|
nvgpu::getWarpMatrixInfo(op);
|
|
if (failed(warpMatrixInfo))
|
|
return failure();
|
|
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
|
|
if (failed(regInfo))
|
|
return failure();
|
|
|
|
FailureOr<nvgpu::LdMatrixParams> params = nvgpu::getLdMatrixParams(
|
|
*warpMatrixInfo,
|
|
/*transpose=*/!op.getPermutationMap().isMinorIdentity());
|
|
if (failed(params)) {
|
|
return op->emitError()
|
|
<< "failed to convert vector.transfer_read to ldmatrix; this op "
|
|
"likely "
|
|
"should not be converted to a nvgpu.ldmatrix call.";
|
|
}
|
|
|
|
// Adjust the load offset.
|
|
auto laneId = builder.create<gpu::LaneIdOp>(loc);
|
|
FailureOr<AffineMap> offsets =
|
|
nvgpu::getLaneIdToLdMatrixMatrixCoord(loc, builder, *params);
|
|
if (failed(offsets))
|
|
return failure();
|
|
|
|
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
|
|
|
|
SmallVector<Value, 4> indices;
|
|
getXferIndices<vector::TransferReadOp>(builder, op, *offsets, {laneId},
|
|
indices);
|
|
nvgpu::LdMatrixOp newOp = builder.create<nvgpu::LdMatrixOp>(
|
|
loc, vectorType, op.getSource(), indices,
|
|
!op.getPermutationMap().isMinorIdentity(), params->numTiles);
|
|
valueMapping[op] = newOp->getResult(0);
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult
|
|
createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
Location loc = op.getLoc();
|
|
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
|
|
nvgpu::getWarpMatrixInfo(op);
|
|
if (failed(warpMatrixInfo))
|
|
return failure();
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
|
|
if (failed(regInfo)) {
|
|
op->emitError() << "Failed to deduce register fragment type during "
|
|
"conversion to distributed non-ldmatrix compatible load";
|
|
return failure();
|
|
}
|
|
|
|
NVVM::MMALayout targetLayout =
|
|
warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::B
|
|
? NVVM::MMALayout::col
|
|
: NVVM::MMALayout::row;
|
|
|
|
Value laneId = builder.create<gpu::LaneIdOp>(loc);
|
|
SmallVector<Value, 4> elements;
|
|
|
|
// This is the individual element type.
|
|
Type loadedElType = regInfo->registerLLVMType;
|
|
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
|
|
|
|
Value fill = builder.create<arith::ConstantOp>(
|
|
op.getLoc(), vectorType.getElementType(),
|
|
builder.getZeroAttr(vectorType.getElementType()));
|
|
Value result = builder.create<vector::SplatOp>(op.getLoc(), fill, vectorType);
|
|
|
|
bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();
|
|
|
|
// Vectorized loads.
|
|
if (!isTransposeLoad && targetLayout == NVVM::MMALayout::row) {
|
|
if (!loadedElType.isa<VectorType>()) {
|
|
loadedElType = VectorType::get({1}, loadedElType);
|
|
}
|
|
|
|
for (int i = 0; i < vectorType.getShape()[0]; i++) {
|
|
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
|
|
op.getLoc(), builder, *warpMatrixInfo);
|
|
if (failed(coords))
|
|
return failure();
|
|
Value logicalValueId = builder.create<arith::ConstantOp>(
|
|
loc, builder.getIndexType(),
|
|
builder.getIndexAttr(i * regInfo->elementsPerRegister));
|
|
SmallVector<Value, 4> newIndices;
|
|
getXferIndices<vector::TransferReadOp>(
|
|
builder, op, *coords, {laneId, logicalValueId}, newIndices);
|
|
|
|
Value el = builder.create<vector::LoadOp>(loc, loadedElType,
|
|
op.getSource(), newIndices);
|
|
result = builder.create<vector::InsertOp>(loc, el, result,
|
|
builder.getI64ArrayAttr(i));
|
|
}
|
|
} else if (isTransposeLoad && targetLayout == NVVM::MMALayout::col) {
|
|
if (auto vecType = loadedElType.dyn_cast<VectorType>()) {
|
|
loadedElType = vecType.getElementType();
|
|
}
|
|
// Load each element individually.
|
|
for (int i = 0; i < vectorType.getShape()[0]; i++) {
|
|
for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
|
|
innerIdx++) {
|
|
|
|
Value logicalValueId = builder.create<arith::ConstantOp>(
|
|
loc, builder.getIndexType(),
|
|
builder.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
|
|
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
|
|
op.getLoc(), builder, *warpMatrixInfo);
|
|
if (failed(coords))
|
|
return failure();
|
|
|
|
SmallVector<Value, 4> newIndices;
|
|
getXferIndices<vector::TransferReadOp>(
|
|
builder, op, *coords, {laneId, logicalValueId}, newIndices);
|
|
Value el = builder.create<memref::LoadOp>(op.getLoc(), loadedElType,
|
|
op.getSource(), newIndices);
|
|
result = builder.create<vector::InsertOp>(
|
|
op.getLoc(), el, result, builder.getI64ArrayAttr({i, innerIdx}));
|
|
}
|
|
}
|
|
} else {
|
|
return failure();
|
|
}
|
|
|
|
valueMapping[op.getResult()] = result;
|
|
return success();
|
|
}
|
|
|
|
/// Converts a `vector.transfer_read` operation directly to either a
|
|
/// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be
|
|
/// used when converting to `nvgpu.mma.sync` operations.
|
|
static LogicalResult
|
|
convertTransferReadToLoads(vector::TransferReadOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
|
|
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
|
|
nvgpu::getWarpMatrixInfo(op);
|
|
if (failed(warpMatrixInfo))
|
|
return failure();
|
|
|
|
bool isLdMatrixCompatible =
|
|
op.getSource().getType().cast<MemRefType>().getMemorySpaceAsInt() == 3 &&
|
|
nvgpu::inferTileWidthInBits(*warpMatrixInfo) == 128;
|
|
|
|
VectorType vecTy = op.getVectorType();
|
|
int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();
|
|
|
|
// When we are transposing the B operand, ldmatrix will only work if we have
|
|
// at least 8 rows to read and the width to read for the transpose is 128
|
|
// bits.
|
|
if (!op.getPermutationMap().isMinorIdentity() &&
|
|
(vecTy.getDimSize(1) < 8 || vecTy.getDimSize(0) * bitWidth < 128))
|
|
isLdMatrixCompatible = false;
|
|
|
|
if (!isLdMatrixCompatible)
|
|
return createNonLdMatrixLoads(op, b, valueMapping);
|
|
|
|
return creatLdMatrixCompatibleLoads(op, b, valueMapping);
|
|
}
|
|
|
|
static LogicalResult
|
|
convertTransferWriteToStores(vector::TransferWriteOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
Location loc = op->getLoc();
|
|
Value matrix = valueMapping.find(op.getVector())->second;
|
|
|
|
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
|
|
nvgpu::getWarpMatrixInfo(op);
|
|
if (failed(warpMatrixInfo))
|
|
return failure();
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
|
|
if (failed(regInfo))
|
|
return failure();
|
|
|
|
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
|
|
Value laneId = b.create<gpu::LaneIdOp>(loc);
|
|
|
|
for (unsigned i = 0; i < vectorType.getShape()[0]; i++) {
|
|
Value logicalValueId = b.create<arith::ConstantOp>(
|
|
loc, b.getIndexType(),
|
|
b.getIndexAttr(i * regInfo->elementsPerRegister));
|
|
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
|
|
op.getLoc(), b, *warpMatrixInfo);
|
|
if (failed(coords))
|
|
return failure();
|
|
|
|
Value el = b.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i});
|
|
SmallVector<Value, 4> newIndices;
|
|
getXferIndices<vector::TransferWriteOp>(
|
|
b, op, *coords, {laneId, logicalValueId}, newIndices);
|
|
b.create<vector::StoreOp>(loc, el, op.getSource(), newIndices);
|
|
}
|
|
op->erase();
|
|
return success();
|
|
}
|
|
|
|
static void convertContractOp(vector::ContractionOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
Value opA = valueMapping.find(op.getLhs())->second;
|
|
Value opB = valueMapping.find(op.getRhs())->second;
|
|
Value opC = valueMapping.find(op.getAcc())->second;
|
|
Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(),
|
|
opA, opB, opC);
|
|
valueMapping[op.getResult()] = matmul;
|
|
}
|
|
|
|
static LogicalResult
|
|
convertContractOpToMmaSync(vector::ContractionOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
Value opA = valueMapping.find(op.getLhs())->second;
|
|
Value opB = valueMapping.find(op.getRhs())->second;
|
|
Value opC = valueMapping.find(op.getAcc())->second;
|
|
int64_t m = op.getLhs().getType().cast<VectorType>().getShape()[0];
|
|
int64_t n = op.getRhs().getType().cast<VectorType>().getShape()[0];
|
|
int64_t k = op.getLhs().getType().cast<VectorType>().getShape()[1];
|
|
Value matmul = b.create<nvgpu::MmaSyncOp>(
|
|
op.getLoc(), opC.getType(), opA, opB, opC, b.getI64ArrayAttr({m, n, k}));
|
|
valueMapping[op.getResult()] = matmul;
|
|
return success();
|
|
}
|
|
|
|
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
|
|
static void convertConstantOp(arith::ConstantOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
assert(constantSupportsMMAMatrixType(op));
|
|
OpBuilder b(op);
|
|
Attribute splat =
|
|
op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>();
|
|
auto scalarConstant =
|
|
b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
|
|
const char *fragType = inferFragType(op);
|
|
auto vecType = op.getType().cast<VectorType>();
|
|
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
|
|
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
|
|
auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
|
|
scalarConstant);
|
|
valueMapping[op.getResult()] = matrix;
|
|
}
|
|
|
|
/// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
|
|
static void convertBroadcastOp(vector::BroadcastOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
assert(broadcastSupportsMMAMatrixType(op));
|
|
OpBuilder b(op);
|
|
const char *fragType = inferFragType(op);
|
|
auto vecType = op.getVectorType();
|
|
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
|
|
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
|
|
auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
|
|
op.getSource());
|
|
valueMapping[op.getResult()] = matrix;
|
|
}
|
|
|
|
// Replace ForOp with a new ForOp with extra operands. The YieldOp is not
|
|
// updated and needs to be updated separatly for the loop to be correct.
|
|
static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop,
|
|
ValueRange newIterOperands) {
|
|
// Create a new loop before the existing one, with the extra operands.
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(loop);
|
|
auto operands = llvm::to_vector<4>(loop.getIterOperands());
|
|
operands.append(newIterOperands.begin(), newIterOperands.end());
|
|
scf::ForOp newLoop =
|
|
b.create<scf::ForOp>(loop.getLoc(), loop.getLowerBound(),
|
|
loop.getUpperBound(), loop.getStep(), operands);
|
|
newLoop.getBody()->erase();
|
|
newLoop.getLoopBody().getBlocks().splice(
|
|
newLoop.getLoopBody().getBlocks().begin(),
|
|
loop.getLoopBody().getBlocks());
|
|
for (Value operand : newIterOperands)
|
|
newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());
|
|
|
|
for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
|
|
loop.getNumResults())))
|
|
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
|
|
loop.erase();
|
|
return newLoop;
|
|
}
|
|
|
|
static void convertForOp(scf::ForOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
SmallVector<Value> newOperands;
|
|
SmallVector<std::pair<size_t, size_t>> argMapping;
|
|
for (const auto &operand : llvm::enumerate(op.getIterOperands())) {
|
|
auto it = valueMapping.find(operand.value());
|
|
if (it == valueMapping.end())
|
|
continue;
|
|
argMapping.push_back(std::make_pair(
|
|
operand.index(), op.getNumIterOperands() + newOperands.size()));
|
|
newOperands.push_back(it->second);
|
|
}
|
|
OpBuilder b(op);
|
|
scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands);
|
|
Block &loopBody = *newForOp.getBody();
|
|
for (auto mapping : argMapping) {
|
|
valueMapping[newForOp.getResult(mapping.first)] =
|
|
newForOp.getResult(mapping.second);
|
|
valueMapping[loopBody.getArgument(mapping.first +
|
|
newForOp.getNumInductionVars())] =
|
|
loopBody.getArgument(mapping.second + newForOp.getNumInductionVars());
|
|
}
|
|
}
|
|
|
|
static void convertYieldOp(scf::YieldOp op,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
auto loop = cast<scf::ForOp>(op->getParentOp());
|
|
auto yieldOperands = llvm::to_vector<4>(op.getOperands());
|
|
for (const auto &operand : llvm::enumerate(op.getOperands())) {
|
|
auto it = valueMapping.find(operand.value());
|
|
if (it == valueMapping.end())
|
|
continue;
|
|
// Replace the yield of old value with the for op argument to make it easier
|
|
// to remove the dead code.
|
|
yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()];
|
|
yieldOperands.push_back(it->second);
|
|
}
|
|
b.create<scf::YieldOp>(op.getLoc(), yieldOperands);
|
|
op.erase();
|
|
}
|
|
|
|
/// Convert an elementwise op to the equivalent elementwise op on MMA matrix.
|
|
static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType,
|
|
llvm::DenseMap<Value, Value> &valueMapping) {
|
|
OpBuilder b(op);
|
|
SmallVector<Value> matrixOperands;
|
|
for (Value operand : op->getOperands())
|
|
matrixOperands.push_back(valueMapping.find(operand)->second);
|
|
Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>(
|
|
op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType);
|
|
valueMapping[op->getResult(0)] = newOp;
|
|
}
|
|
|
|
void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns,
|
|
bool useNvGpu) {
|
|
if (!useNvGpu) {
|
|
patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
|
|
patterns.getContext());
|
|
return;
|
|
}
|
|
patterns
|
|
.add<nvgpu::PrepareContractToGPUMMASync, CombineTransferReadOpTranspose>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
void mlir::convertVectorToMMAOps(Operation *rootOp) {
|
|
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/false);
|
|
llvm::DenseMap<Value, Value> valueMapping;
|
|
for (Operation *op : ops) {
|
|
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
|
|
convertTransferReadOp(transferRead, valueMapping);
|
|
} else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
|
|
convertTransferWriteOp(transferWrite, valueMapping);
|
|
} else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
|
|
convertContractOp(contractOp, valueMapping);
|
|
} else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
|
|
convertConstantOp(constantOp, valueMapping);
|
|
} else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
|
|
convertBroadcastOp(broadcastOp, valueMapping);
|
|
} else if (auto forOp = dyn_cast<scf::ForOp>(op)) {
|
|
convertForOp(forOp, valueMapping);
|
|
} else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) {
|
|
convertYieldOp(yiledOp, valueMapping);
|
|
} else if (auto elementwiseType = convertElementwiseOpToMMA(op)) {
|
|
convertElementwiseOp(op, *elementwiseType, valueMapping);
|
|
}
|
|
}
|
|
}
|
|
|
|
LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(Operation *rootOp) {
|
|
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/true);
|
|
llvm::DenseMap<Value, Value> valueMapping;
|
|
for (Operation *op : ops) {
|
|
if (llvm::TypeSwitch<Operation *, LogicalResult>(op)
|
|
.Case([&](vector::TransferReadOp transferReadOp) {
|
|
return convertTransferReadToLoads(transferReadOp, valueMapping);
|
|
})
|
|
.Case([&](vector::TransferWriteOp transferWriteOp) {
|
|
return convertTransferWriteToStores(transferWriteOp,
|
|
valueMapping);
|
|
})
|
|
.Case([&](vector::ContractionOp contractionOp) {
|
|
return convertContractOpToMmaSync(contractionOp, valueMapping);
|
|
})
|
|
.Case([&](scf::ForOp forOp) {
|
|
convertForOp(forOp, valueMapping);
|
|
return success();
|
|
})
|
|
.Case([&](scf::YieldOp yieldOp) {
|
|
convertYieldOp(yieldOp, valueMapping);
|
|
return success();
|
|
})
|
|
.Case([&](arith::ConstantOp constOp) {
|
|
return convertConstantOpMmaSync(constOp, valueMapping);
|
|
})
|
|
.Default([&](Operation *op) {
|
|
op->emitError() << "unhandled vector to mma type: " << *op;
|
|
return failure();
|
|
})
|
|
.failed()) {
|
|
op->emitError() << "Failed to convert op " << *op;
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct ConvertVectorToGPUPass
|
|
: public ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
|
|
|
|
explicit ConvertVectorToGPUPass(bool useNvGpu_) {
|
|
useNvGpu.setValue(useNvGpu_);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
RewritePatternSet patterns(&getContext());
|
|
populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue());
|
|
if (failed(
|
|
applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
|
|
return signalPassFailure();
|
|
|
|
if (useNvGpu.getValue()) {
|
|
if (failed(convertVectorToNVVMCompatibleMMASync(getOperation())))
|
|
return signalPassFailure();
|
|
}
|
|
|
|
(void)convertVectorToMMAOps(getOperation());
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) {
|
|
return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
|
|
}
|