llvm-capstone/flang/runtime/findloc.cpp
Peter Steinfeld e3550f1903 [flang] Improve runtime crash messages
Where possible, I added additional information to the messages to help
programmers figure out what went wrong.  I also removed all uses of the word
"bad" from the messages since (to me) that implies a moral judgement rather
than a programming error.  I replaced it with either "invalid" or "unsupported"
where appropriate.

Differential Revision: https://reviews.llvm.org/D121493
2022-03-12 15:15:56 -08:00

343 lines
14 KiB
C++

//===-- runtime/findloc.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements FINDLOC for all required operand types and shapes and result
// integer kinds.
#include "reduction-templates.h"
#include "flang/Common/long-double.h"
#include "flang/Runtime/character.h"
#include "flang/Runtime/reduction.h"
#include <cinttypes>
#include <complex>
namespace Fortran::runtime {
template <TypeCategory CAT1, int KIND1, TypeCategory CAT2, int KIND2>
struct Equality {
using Type1 = CppTypeFor<CAT1, KIND1>;
using Type2 = CppTypeFor<CAT2, KIND2>;
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
return *array.Element<Type1>(at) == *target.OffsetElement<Type2>();
}
};
template <int KIND1, int KIND2>
struct Equality<TypeCategory::Complex, KIND1, TypeCategory::Complex, KIND2> {
using Type1 = CppTypeFor<TypeCategory::Complex, KIND1>;
using Type2 = CppTypeFor<TypeCategory::Complex, KIND2>;
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
const Type1 &xz{*array.Element<Type1>(at)};
const Type2 &tz{*target.OffsetElement<Type2>()};
return xz.real() == tz.real() && xz.imag() == tz.imag();
}
};
template <int KIND1, TypeCategory CAT2, int KIND2>
struct Equality<TypeCategory::Complex, KIND1, CAT2, KIND2> {
using Type1 = CppTypeFor<TypeCategory::Complex, KIND1>;
using Type2 = CppTypeFor<CAT2, KIND2>;
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
const Type1 &z{*array.Element<Type1>(at)};
return z.imag() == 0 && z.real() == *target.OffsetElement<Type2>();
}
};
template <TypeCategory CAT1, int KIND1, int KIND2>
struct Equality<CAT1, KIND1, TypeCategory::Complex, KIND2> {
using Type1 = CppTypeFor<CAT1, KIND1>;
using Type2 = CppTypeFor<TypeCategory::Complex, KIND2>;
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
const Type2 &z{*target.OffsetElement<Type2>()};
return *array.Element<Type1>(at) == z.real() && z.imag() == 0;
}
};
template <int KIND> struct CharacterEquality {
using Type = CppTypeFor<TypeCategory::Character, KIND>;
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
return CharacterScalarCompare<Type>(array.Element<Type>(at),
target.OffsetElement<Type>(),
array.ElementBytes() / static_cast<unsigned>(KIND),
target.ElementBytes() / static_cast<unsigned>(KIND)) == 0;
}
};
struct LogicalEquivalence {
bool operator()(const Descriptor &array, const SubscriptValue at[],
const Descriptor &target) const {
return IsLogicalElementTrue(array, at) ==
IsLogicalElementTrue(target, at /*ignored*/);
}
};
template <typename EQUALITY> class LocationAccumulator {
public:
LocationAccumulator(
const Descriptor &array, const Descriptor &target, bool back)
: array_{array}, target_{target}, back_{back} {
Reinitialize();
}
void Reinitialize() {
// per standard: result indices are all zero if no data
for (int j{0}; j < rank_; ++j) {
location_[j] = 0;
}
}
template <typename A> void GetResult(A *p, int zeroBasedDim = -1) {
if (zeroBasedDim >= 0) {
*p = location_[zeroBasedDim] -
array_.GetDimension(zeroBasedDim).LowerBound() + 1;
} else {
for (int j{0}; j < rank_; ++j) {
p[j] = location_[j] - array_.GetDimension(j).LowerBound() + 1;
}
}
}
template <typename IGNORED> bool AccumulateAt(const SubscriptValue at[]) {
if (equality_(array_, at, target_)) {
for (int j{0}; j < rank_; ++j) {
location_[j] = at[j];
}
return back_;
} else {
return true;
}
}
private:
const Descriptor &array_;
const Descriptor &target_;
const bool back_{false};
const int rank_{array_.rank()};
SubscriptValue location_[maxRank];
const EQUALITY equality_{};
};
template <TypeCategory XCAT, int XKIND, TypeCategory TARGET_CAT>
struct TotalNumericFindlocHelper {
template <int TARGET_KIND> struct Functor {
void operator()(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, int dim, const Descriptor *mask,
bool back, Terminator &terminator) const {
using Eq = Equality<XCAT, XKIND, TARGET_CAT, TARGET_KIND>;
using Accumulator = LocationAccumulator<Eq>;
Accumulator accumulator{x, target, back};
DoTotalReduction<void>(x, dim, mask, accumulator, "FINDLOC", terminator);
ApplyIntegerKind<LocationResultHelper<Accumulator>::template Functor,
void>(kind, terminator, accumulator, result);
}
};
};
template <TypeCategory CAT,
template <TypeCategory XCAT, int XKIND, TypeCategory TARGET_CAT>
class HELPER>
struct NumericFindlocHelper {
template <int KIND> struct Functor {
void operator()(TypeCategory targetCat, int targetKind, Descriptor &result,
const Descriptor &x, const Descriptor &target, int kind, int dim,
const Descriptor *mask, bool back, Terminator &terminator) const {
switch (targetCat) {
case TypeCategory::Integer:
ApplyIntegerKind<
HELPER<CAT, KIND, TypeCategory::Integer>::template Functor, void>(
targetKind, terminator, result, x, target, kind, dim, mask, back,
terminator);
break;
case TypeCategory::Real:
ApplyFloatingPointKind<
HELPER<CAT, KIND, TypeCategory::Real>::template Functor, void>(
targetKind, terminator, result, x, target, kind, dim, mask, back,
terminator);
break;
case TypeCategory::Complex:
ApplyFloatingPointKind<
HELPER<CAT, KIND, TypeCategory::Complex>::template Functor, void>(
targetKind, terminator, result, x, target, kind, dim, mask, back,
terminator);
break;
default:
terminator.Crash(
"FINDLOC: bad target category %d for array category %d",
static_cast<int>(targetCat), static_cast<int>(CAT));
}
}
};
};
template <int KIND> struct CharacterFindlocHelper {
void operator()(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, const Descriptor *mask, bool back,
Terminator &terminator) {
using Accumulator = LocationAccumulator<CharacterEquality<KIND>>;
Accumulator accumulator{x, target, back};
DoTotalReduction<void>(x, 0, mask, accumulator, "FINDLOC", terminator);
ApplyIntegerKind<LocationResultHelper<Accumulator>::template Functor, void>(
kind, terminator, accumulator, result);
}
};
static void LogicalFindlocHelper(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, const Descriptor *mask, bool back,
Terminator &terminator) {
using Accumulator = LocationAccumulator<LogicalEquivalence>;
Accumulator accumulator{x, target, back};
DoTotalReduction<void>(x, 0, mask, accumulator, "FINDLOC", terminator);
ApplyIntegerKind<LocationResultHelper<Accumulator>::template Functor, void>(
kind, terminator, accumulator, result);
}
extern "C" {
void RTNAME(Findloc)(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, const char *source, int line,
const Descriptor *mask, bool back) {
int rank{x.rank()};
SubscriptValue extent[1]{rank};
result.Establish(TypeCategory::Integer, kind, nullptr, 1, extent,
CFI_attribute_allocatable);
result.GetDimension(0).SetBounds(1, extent[0]);
Terminator terminator{source, line};
if (int stat{result.Allocate()}) {
terminator.Crash(
"FINDLOC: could not allocate memory for result; STAT=%d", stat);
}
CheckIntegerKind(terminator, kind, "FINDLOC");
auto xType{x.type().GetCategoryAndKind()};
auto targetType{target.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xType.has_value() && targetType.has_value());
switch (xType->first) {
case TypeCategory::Integer:
ApplyIntegerKind<NumericFindlocHelper<TypeCategory::Integer,
TotalNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, 0, mask, back, terminator);
break;
case TypeCategory::Real:
ApplyFloatingPointKind<NumericFindlocHelper<TypeCategory::Real,
TotalNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, 0, mask, back, terminator);
break;
case TypeCategory::Complex:
ApplyFloatingPointKind<NumericFindlocHelper<TypeCategory::Complex,
TotalNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, 0, mask, back, terminator);
break;
case TypeCategory::Character:
RUNTIME_CHECK(terminator,
targetType->first == TypeCategory::Character &&
targetType->second == xType->second);
ApplyCharacterKind<CharacterFindlocHelper, void>(xType->second, terminator,
result, x, target, kind, mask, back, terminator);
break;
case TypeCategory::Logical:
RUNTIME_CHECK(terminator, targetType->first == TypeCategory::Logical);
LogicalFindlocHelper(result, x, target, kind, mask, back, terminator);
break;
default:
terminator.Crash(
"FINDLOC: bad data type code (%d) for array", x.type().raw());
}
}
} // extern "C"
// FINDLOC with DIM=
template <TypeCategory XCAT, int XKIND, TypeCategory TARGET_CAT>
struct PartialNumericFindlocHelper {
template <int TARGET_KIND> struct Functor {
void operator()(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, int dim, const Descriptor *mask,
bool back, Terminator &terminator) const {
using Eq = Equality<XCAT, XKIND, TARGET_CAT, TARGET_KIND>;
using Accumulator = LocationAccumulator<Eq>;
Accumulator accumulator{x, target, back};
ApplyIntegerKind<PartialLocationHelper<Accumulator>::template Functor,
void>(kind, terminator, result, x, dim, mask, terminator, "FINDLOC",
accumulator);
}
};
};
template <int KIND> struct PartialCharacterFindlocHelper {
void operator()(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, int dim, const Descriptor *mask,
bool back, Terminator &terminator) {
using Accumulator = LocationAccumulator<CharacterEquality<KIND>>;
Accumulator accumulator{x, target, back};
ApplyIntegerKind<PartialLocationHelper<Accumulator>::template Functor,
void>(kind, terminator, result, x, dim, mask, terminator, "FINDLOC",
accumulator);
}
};
static void PartialLogicalFindlocHelper(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, int dim, const Descriptor *mask,
bool back, Terminator &terminator) {
using Accumulator = LocationAccumulator<LogicalEquivalence>;
Accumulator accumulator{x, target, back};
ApplyIntegerKind<PartialLocationHelper<Accumulator>::template Functor, void>(
kind, terminator, result, x, dim, mask, terminator, "FINDLOC",
accumulator);
}
extern "C" {
void RTNAME(FindlocDim)(Descriptor &result, const Descriptor &x,
const Descriptor &target, int kind, int dim, const char *source, int line,
const Descriptor *mask, bool back) {
Terminator terminator{source, line};
CheckIntegerKind(terminator, kind, "FINDLOC");
auto xType{x.type().GetCategoryAndKind()};
auto targetType{target.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xType.has_value() && targetType.has_value());
switch (xType->first) {
case TypeCategory::Integer:
ApplyIntegerKind<NumericFindlocHelper<TypeCategory::Integer,
PartialNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, dim, mask, back, terminator);
break;
case TypeCategory::Real:
ApplyFloatingPointKind<NumericFindlocHelper<TypeCategory::Real,
PartialNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, dim, mask, back, terminator);
break;
case TypeCategory::Complex:
ApplyFloatingPointKind<NumericFindlocHelper<TypeCategory::Complex,
PartialNumericFindlocHelper>::template Functor,
void>(xType->second, terminator, targetType->first, targetType->second,
result, x, target, kind, dim, mask, back, terminator);
break;
case TypeCategory::Character:
RUNTIME_CHECK(terminator,
targetType->first == TypeCategory::Character &&
targetType->second == xType->second);
ApplyCharacterKind<PartialCharacterFindlocHelper, void>(xType->second,
terminator, result, x, target, kind, dim, mask, back, terminator);
break;
case TypeCategory::Logical:
RUNTIME_CHECK(terminator, targetType->first == TypeCategory::Logical);
PartialLogicalFindlocHelper(
result, x, target, kind, dim, mask, back, terminator);
break;
default:
terminator.Crash(
"FINDLOC: bad data type code (%d) for array", x.type().raw());
}
}
} // extern "C"
} // namespace Fortran::runtime