llvm with tablegen backend for capstone disassembler
Go to file
Jay Foad aa50b93e7c [AMDGPU][GlobalISel] Add more sign/zero/any-extension tests
Add s1 to s16 cases, and for sgprs s1 to s64 and s32 to s64.
2022-01-24 10:16:51 +00:00
.github workflows: Make issue-subscriber more robust for labels with special characters 2022-01-14 22:04:54 -08:00
bolt [BOLT][NFC] Reduce includes with include-what-you-use 2022-01-21 12:05:47 -08:00
clang [clang][tests] Fix a c++/libc++ -stdlib value typo 2022-01-24 09:59:20 +01:00
clang-tools-extra [clang] Forward-declare DynTypedNode (NFC) 2022-01-23 13:28:04 -08:00
cmake Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
compiler-rt [TSan] Mark test unsupported on Darwin 2022-01-23 22:01:48 -08:00
cross-project-tests [mlir] Finish removing Identifier from the C++ API 2022-01-12 11:58:23 -08:00
flang [flang][examples] Add missing CMake dependencies 2022-01-24 09:34:46 +00:00
libc [libc][NFC] Add 'struct_' prefix to type headers defining struct types. 2022-01-21 07:04:32 +00:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libcxx][test] Make MSVC <charconv> test compile when testing MSVC 2022-01-23 10:12:53 -08:00
libcxxabi [demangler][NFC] Small cleanups and sync 2022-01-20 11:47:06 -08:00
libunwind Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
lld [LLD][ELF][AArch64] Update test with incorrect REQUIRES line [NFC] 2022-01-24 10:04:28 +00:00
lldb Rough guess at fixing lldb tests to handle Clang defaulting to DWARFv5 2022-01-23 21:24:25 -08:00
llvm [AMDGPU][GlobalISel] Add more sign/zero/any-extension tests 2022-01-24 10:16:51 +00:00
mlir [MLIR][Presburger] Silence -Wdangling-else warning (NFC) 2022-01-24 09:16:05 +01:00
openmp [openmp] Allow x87 fp functions only in Openmp runtime for x86. 2022-01-22 22:09:44 +00:00
polly Add missing llvm/support/Regex.h include in polly/lib/Analysis/ScopDetection.cpp 2022-01-21 16:04:37 +01:00
pstl [cmake] Make include(GNUInstallDirs) always below project(..) 2022-01-20 18:59:17 +00:00
runtimes Revert "[cmake] Duplicate {llvm,compiler_rt}_check_linker_flag for runtime libs and llvm" 2022-01-21 09:53:14 -08:00
third-party
utils [mlir] Move linalg::PadTensorOp to tensor::PadOp. 2022-01-21 20:02:39 +01:00
.arcconfig
.arclint
.clang-format
.clang-tidy Add modernize-use-default-member-init.UseAssignment to .clang-tidy 2022-01-23 20:32:52 -08:00
.git-blame-ignore-revs
.gitignore
.mailmap
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, compiler-rt,cross-project-tests, flang, libc, libclc, libcxx, libcxxabi, libunwind, lld, lldb, mlir, openmp, polly, or pstl.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.