mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-03 22:02:12 +00:00

This dialect is intended to model lower level/branch based control-flow constructs. The initial set of operations are: AssertOp, BranchOp, CondBranchOp, SwitchOp; all split out from the current standard dialect. See https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061 Differential Revision: https://reviews.llvm.org/D118966
1859 lines
79 KiB
C++
1859 lines
79 KiB
C++
//===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Analysis/DataLayoutAnalysis.h"
|
|
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
|
|
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
|
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
|
|
#include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
|
|
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
struct AllocOpLowering : public AllocLikeOpLLVMLowering {
|
|
AllocOpLowering(LLVMTypeConverter &converter)
|
|
: AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
|
|
converter) {}
|
|
|
|
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
|
|
Location loc, Value sizeBytes,
|
|
Operation *op) const override {
|
|
// Heap allocations.
|
|
memref::AllocOp allocOp = cast<memref::AllocOp>(op);
|
|
MemRefType memRefType = allocOp.getType();
|
|
|
|
Value alignment;
|
|
if (auto alignmentAttr = allocOp.alignment()) {
|
|
alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
|
|
} else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
|
|
// In the case where no alignment is specified, we may want to override
|
|
// `malloc's` behavior. `malloc` typically aligns at the size of the
|
|
// biggest scalar on a target HW. For non-scalars, use the natural
|
|
// alignment of the LLVM type given by the LLVM DataLayout.
|
|
alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
|
|
}
|
|
|
|
if (alignment) {
|
|
// Adjust the allocation size to consider alignment.
|
|
sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
|
|
}
|
|
|
|
// Allocate the underlying buffer and store a pointer to it in the MemRef
|
|
// descriptor.
|
|
Type elementPtrType = this->getElementPtrType(memRefType);
|
|
auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
|
|
allocOp->getParentOfType<ModuleOp>(), getIndexType());
|
|
auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
|
|
getVoidPtrType());
|
|
Value allocatedPtr =
|
|
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
|
|
|
|
Value alignedPtr = allocatedPtr;
|
|
if (alignment) {
|
|
// Compute the aligned type pointer.
|
|
Value allocatedInt =
|
|
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
|
|
Value alignmentInt =
|
|
createAligned(rewriter, loc, allocatedInt, alignment);
|
|
alignedPtr =
|
|
rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
|
|
}
|
|
|
|
return std::make_tuple(allocatedPtr, alignedPtr);
|
|
}
|
|
};
|
|
|
|
struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
|
|
AlignedAllocOpLowering(LLVMTypeConverter &converter)
|
|
: AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
|
|
converter) {}
|
|
|
|
/// Returns the memref's element size in bytes using the data layout active at
|
|
/// `op`.
|
|
// TODO: there are other places where this is used. Expose publicly?
|
|
unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
|
|
const DataLayout *layout = &defaultLayout;
|
|
if (const DataLayoutAnalysis *analysis =
|
|
getTypeConverter()->getDataLayoutAnalysis()) {
|
|
layout = &analysis->getAbove(op);
|
|
}
|
|
Type elementType = memRefType.getElementType();
|
|
if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
|
|
return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
|
|
*layout);
|
|
if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
|
|
return getTypeConverter()->getUnrankedMemRefDescriptorSize(
|
|
memRefElementType, *layout);
|
|
return layout->getTypeSize(elementType);
|
|
}
|
|
|
|
/// Returns true if the memref size in bytes is known to be a multiple of
|
|
/// factor assuming the data layout active at `op`.
|
|
bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
|
|
Operation *op) const {
|
|
uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
|
|
for (unsigned i = 0, e = type.getRank(); i < e; i++) {
|
|
if (ShapedType::isDynamic(type.getDimSize(i)))
|
|
continue;
|
|
sizeDivisor = sizeDivisor * type.getDimSize(i);
|
|
}
|
|
return sizeDivisor % factor == 0;
|
|
}
|
|
|
|
/// Returns the alignment to be used for the allocation call itself.
|
|
/// aligned_alloc requires the allocation size to be a power of two, and the
|
|
/// allocation size to be a multiple of alignment,
|
|
int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
|
|
if (Optional<uint64_t> alignment = allocOp.alignment())
|
|
return *alignment;
|
|
|
|
// Whenever we don't have alignment set, we will use an alignment
|
|
// consistent with the element type; since the allocation size has to be a
|
|
// power of two, we will bump to the next power of two if it already isn't.
|
|
auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
|
|
return std::max(kMinAlignedAllocAlignment,
|
|
llvm::PowerOf2Ceil(eltSizeBytes));
|
|
}
|
|
|
|
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
|
|
Location loc, Value sizeBytes,
|
|
Operation *op) const override {
|
|
// Heap allocations.
|
|
memref::AllocOp allocOp = cast<memref::AllocOp>(op);
|
|
MemRefType memRefType = allocOp.getType();
|
|
int64_t alignment = getAllocationAlignment(allocOp);
|
|
Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
|
|
|
|
// aligned_alloc requires size to be a multiple of alignment; we will pad
|
|
// the size to the next multiple if necessary.
|
|
if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
|
|
sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
|
|
|
|
Type elementPtrType = this->getElementPtrType(memRefType);
|
|
auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
|
|
allocOp->getParentOfType<ModuleOp>(), getIndexType());
|
|
auto results =
|
|
createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
|
|
getVoidPtrType());
|
|
Value allocatedPtr =
|
|
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
|
|
|
|
return std::make_tuple(allocatedPtr, allocatedPtr);
|
|
}
|
|
|
|
/// The minimum alignment to use with aligned_alloc (has to be a power of 2).
|
|
static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
|
|
|
|
/// Default layout to use in absence of the corresponding analysis.
|
|
DataLayout defaultLayout;
|
|
};
|
|
|
|
// Out of line definition, required till C++17.
|
|
constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
|
|
|
|
struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
|
|
AllocaOpLowering(LLVMTypeConverter &converter)
|
|
: AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
|
|
converter) {}
|
|
|
|
/// Allocates the underlying buffer using the right call. `allocatedBytePtr`
|
|
/// is set to null for stack allocations. `accessAlignment` is set if
|
|
/// alignment is needed post allocation (for eg. in conjunction with malloc).
|
|
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
|
|
Location loc, Value sizeBytes,
|
|
Operation *op) const override {
|
|
|
|
// With alloca, one gets a pointer to the element type right away.
|
|
// For stack allocations.
|
|
auto allocaOp = cast<memref::AllocaOp>(op);
|
|
auto elementPtrType = this->getElementPtrType(allocaOp.getType());
|
|
|
|
auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
|
|
loc, elementPtrType, sizeBytes,
|
|
allocaOp.alignment() ? *allocaOp.alignment() : 0);
|
|
|
|
return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
|
|
}
|
|
};
|
|
|
|
struct AllocaScopeOpLowering
|
|
: public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
|
|
using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
Location loc = allocaScopeOp.getLoc();
|
|
|
|
// Split the current block before the AllocaScopeOp to create the inlining
|
|
// point.
|
|
auto *currentBlock = rewriter.getInsertionBlock();
|
|
auto *remainingOpsBlock =
|
|
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
|
|
Block *continueBlock;
|
|
if (allocaScopeOp.getNumResults() == 0) {
|
|
continueBlock = remainingOpsBlock;
|
|
} else {
|
|
continueBlock = rewriter.createBlock(
|
|
remainingOpsBlock, allocaScopeOp.getResultTypes(),
|
|
SmallVector<Location>(allocaScopeOp->getNumResults(),
|
|
allocaScopeOp.getLoc()));
|
|
rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
|
|
}
|
|
|
|
// Inline body region.
|
|
Block *beforeBody = &allocaScopeOp.bodyRegion().front();
|
|
Block *afterBody = &allocaScopeOp.bodyRegion().back();
|
|
rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
|
|
|
|
// Save stack and then branch into the body of the region.
|
|
rewriter.setInsertionPointToEnd(currentBlock);
|
|
auto stackSaveOp =
|
|
rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
|
|
rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
|
|
|
|
// Replace the alloca_scope return with a branch that jumps out of the body.
|
|
// Stack restore before leaving the body region.
|
|
rewriter.setInsertionPointToEnd(afterBody);
|
|
auto returnOp =
|
|
cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
|
|
auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
|
|
returnOp, returnOp.results(), continueBlock);
|
|
|
|
// Insert stack restore before jumping out the body of the region.
|
|
rewriter.setInsertionPoint(branchOp);
|
|
rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
|
|
|
|
// Replace the op with values return from the body region.
|
|
rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct AssumeAlignmentOpLowering
|
|
: public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
|
|
using ConvertOpToLLVMPattern<
|
|
memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value memref = adaptor.memref();
|
|
unsigned alignment = op.alignment();
|
|
auto loc = op.getLoc();
|
|
|
|
MemRefDescriptor memRefDescriptor(memref);
|
|
Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
|
|
|
|
// Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
|
|
// the asserted memref.alignedPtr isn't used anywhere else, as the real
|
|
// users like load/store/views always re-extract memref.alignedPtr as they
|
|
// get lowered.
|
|
//
|
|
// This relies on LLVM's CSE optimization (potentially after SROA), since
|
|
// after CSE all memref.alignedPtr instances get de-duplicated into the same
|
|
// pointer SSA value.
|
|
auto intPtrType =
|
|
getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
|
|
Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
|
|
Value mask =
|
|
createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
|
|
Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
|
|
rewriter.create<LLVM::AssumeOp>(
|
|
loc, rewriter.create<LLVM::ICmpOp>(
|
|
loc, LLVM::ICmpPredicate::eq,
|
|
rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
|
|
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// A `dealloc` is converted into a call to `free` on the underlying data buffer.
|
|
// The memref descriptor being an SSA value, there is no need to clean it up
|
|
// in any way.
|
|
struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
|
|
using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
|
|
|
|
explicit DeallocOpLowering(LLVMTypeConverter &converter)
|
|
: ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Insert the `free` declaration if it is not already present.
|
|
auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
|
|
MemRefDescriptor memref(adaptor.memref());
|
|
Value casted = rewriter.create<LLVM::BitcastOp>(
|
|
op.getLoc(), getVoidPtrType(),
|
|
memref.allocatedPtr(rewriter, op.getLoc()));
|
|
rewriter.replaceOpWithNewOp<LLVM::CallOp>(
|
|
op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// A `dim` is converted to a constant for static sizes and to an access to the
|
|
// size stored in the memref descriptor for dynamic sizes.
|
|
struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
|
|
using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type operandType = dimOp.source().getType();
|
|
if (operandType.isa<UnrankedMemRefType>()) {
|
|
rewriter.replaceOp(
|
|
dimOp, {extractSizeOfUnrankedMemRef(
|
|
operandType, dimOp, adaptor.getOperands(), rewriter)});
|
|
|
|
return success();
|
|
}
|
|
if (operandType.isa<MemRefType>()) {
|
|
rewriter.replaceOp(
|
|
dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
|
|
adaptor.getOperands(), rewriter)});
|
|
return success();
|
|
}
|
|
llvm_unreachable("expected MemRefType or UnrankedMemRefType");
|
|
}
|
|
|
|
private:
|
|
Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Location loc = dimOp.getLoc();
|
|
|
|
auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
|
|
auto scalarMemRefType =
|
|
MemRefType::get({}, unrankedMemRefType.getElementType());
|
|
unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
|
|
|
|
// Extract pointer to the underlying ranked descriptor and bitcast it to a
|
|
// memref<element_type> descriptor pointer to minimize the number of GEP
|
|
// operations.
|
|
UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
|
|
Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
|
|
Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
|
|
loc,
|
|
LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
|
|
addressSpace),
|
|
underlyingRankedDesc);
|
|
|
|
// Get pointer to offset field of memref<element_type> descriptor.
|
|
Type indexPtrTy = LLVM::LLVMPointerType::get(
|
|
getTypeConverter()->getIndexType(), addressSpace);
|
|
Value two = rewriter.create<LLVM::ConstantOp>(
|
|
loc, typeConverter->convertType(rewriter.getI32Type()),
|
|
rewriter.getI32IntegerAttr(2));
|
|
Value offsetPtr = rewriter.create<LLVM::GEPOp>(
|
|
loc, indexPtrTy, scalarMemRefDescPtr,
|
|
ValueRange({createIndexConstant(rewriter, loc, 0), two}));
|
|
|
|
// The size value that we have to extract can be obtained using GEPop with
|
|
// `dimOp.index() + 1` index argument.
|
|
Value idxPlusOne = rewriter.create<LLVM::AddOp>(
|
|
loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
|
|
Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
|
|
ValueRange({idxPlusOne}));
|
|
return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
|
|
}
|
|
|
|
Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
|
|
if (Optional<int64_t> idx = dimOp.getConstantIndex())
|
|
return idx;
|
|
|
|
if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
|
|
return constantOp.getValue()
|
|
.cast<IntegerAttr>()
|
|
.getValue()
|
|
.getSExtValue();
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
|
|
OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Location loc = dimOp.getLoc();
|
|
|
|
// Take advantage if index is constant.
|
|
MemRefType memRefType = operandType.cast<MemRefType>();
|
|
if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
|
|
int64_t i = index.getValue();
|
|
if (memRefType.isDynamicDim(i)) {
|
|
// extract dynamic size from the memref descriptor.
|
|
MemRefDescriptor descriptor(adaptor.source());
|
|
return descriptor.size(rewriter, loc, i);
|
|
}
|
|
// Use constant for static size.
|
|
int64_t dimSize = memRefType.getDimSize(i);
|
|
return createIndexConstant(rewriter, loc, dimSize);
|
|
}
|
|
Value index = adaptor.index();
|
|
int64_t rank = memRefType.getRank();
|
|
MemRefDescriptor memrefDescriptor(adaptor.source());
|
|
return memrefDescriptor.size(rewriter, loc, index, rank);
|
|
}
|
|
};
|
|
|
|
/// Common base for load and store operations on MemRefs. Restricts the match
|
|
/// to supported MemRef types. Provides functionality to emit code accessing a
|
|
/// specific element of the underlying data buffer.
|
|
template <typename Derived>
|
|
struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
|
|
using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
|
|
using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
|
|
using Base = LoadStoreOpLowering<Derived>;
|
|
|
|
LogicalResult match(Derived op) const override {
|
|
MemRefType type = op.getMemRefType();
|
|
return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
|
|
}
|
|
};
|
|
|
|
/// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be
|
|
/// retried until it succeeds in atomically storing a new value into memory.
|
|
///
|
|
/// +---------------------------------+
|
|
/// | <code before the AtomicRMWOp> |
|
|
/// | <compute initial %loaded> |
|
|
/// | cf.br loop(%loaded) |
|
|
/// +---------------------------------+
|
|
/// |
|
|
/// -------| |
|
|
/// | v v
|
|
/// | +--------------------------------+
|
|
/// | | loop(%loaded): |
|
|
/// | | <body contents> |
|
|
/// | | %pair = cmpxchg |
|
|
/// | | %ok = %pair[0] |
|
|
/// | | %new = %pair[1] |
|
|
/// | | cf.cond_br %ok, end, loop(%new) |
|
|
/// | +--------------------------------+
|
|
/// | | |
|
|
/// |----------- |
|
|
/// v
|
|
/// +--------------------------------+
|
|
/// | end: |
|
|
/// | <code after the AtomicRMWOp> |
|
|
/// +--------------------------------+
|
|
///
|
|
struct GenericAtomicRMWOpLowering
|
|
: public LoadStoreOpLowering<memref::GenericAtomicRMWOp> {
|
|
using Base::Base;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::GenericAtomicRMWOp atomicOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = atomicOp.getLoc();
|
|
Type valueType = typeConverter->convertType(atomicOp.getResult().getType());
|
|
|
|
// Split the block into initial, loop, and ending parts.
|
|
auto *initBlock = rewriter.getInsertionBlock();
|
|
auto *loopBlock = rewriter.createBlock(
|
|
initBlock->getParent(), std::next(Region::iterator(initBlock)),
|
|
valueType, loc);
|
|
auto *endBlock = rewriter.createBlock(
|
|
loopBlock->getParent(), std::next(Region::iterator(loopBlock)));
|
|
|
|
// Operations range to be moved to `endBlock`.
|
|
auto opsToMoveStart = atomicOp->getIterator();
|
|
auto opsToMoveEnd = initBlock->back().getIterator();
|
|
|
|
// Compute the loaded value and branch to the loop block.
|
|
rewriter.setInsertionPointToEnd(initBlock);
|
|
auto memRefType = atomicOp.memref().getType().cast<MemRefType>();
|
|
auto dataPtr = getStridedElementPtr(loc, memRefType, adaptor.memref(),
|
|
adaptor.indices(), rewriter);
|
|
Value init = rewriter.create<LLVM::LoadOp>(loc, dataPtr);
|
|
rewriter.create<LLVM::BrOp>(loc, init, loopBlock);
|
|
|
|
// Prepare the body of the loop block.
|
|
rewriter.setInsertionPointToStart(loopBlock);
|
|
|
|
// Clone the GenericAtomicRMWOp region and extract the result.
|
|
auto loopArgument = loopBlock->getArgument(0);
|
|
BlockAndValueMapping mapping;
|
|
mapping.map(atomicOp.getCurrentValue(), loopArgument);
|
|
Block &entryBlock = atomicOp.body().front();
|
|
for (auto &nestedOp : entryBlock.without_terminator()) {
|
|
Operation *clone = rewriter.clone(nestedOp, mapping);
|
|
mapping.map(nestedOp.getResults(), clone->getResults());
|
|
}
|
|
Value result = mapping.lookup(entryBlock.getTerminator()->getOperand(0));
|
|
|
|
// Prepare the epilog of the loop block.
|
|
// Append the cmpxchg op to the end of the loop block.
|
|
auto successOrdering = LLVM::AtomicOrdering::acq_rel;
|
|
auto failureOrdering = LLVM::AtomicOrdering::monotonic;
|
|
auto boolType = IntegerType::get(rewriter.getContext(), 1);
|
|
auto pairType = LLVM::LLVMStructType::getLiteral(rewriter.getContext(),
|
|
{valueType, boolType});
|
|
auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>(
|
|
loc, pairType, dataPtr, loopArgument, result, successOrdering,
|
|
failureOrdering);
|
|
// Extract the %new_loaded and %ok values from the pair.
|
|
Value newLoaded = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, valueType, cmpxchg, rewriter.getI64ArrayAttr({0}));
|
|
Value ok = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, boolType, cmpxchg, rewriter.getI64ArrayAttr({1}));
|
|
|
|
// Conditionally branch to the end or back to the loop depending on %ok.
|
|
rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(),
|
|
loopBlock, newLoaded);
|
|
|
|
rewriter.setInsertionPointToEnd(endBlock);
|
|
moveOpsRange(atomicOp.getResult(), newLoaded, std::next(opsToMoveStart),
|
|
std::next(opsToMoveEnd), rewriter);
|
|
|
|
// The 'result' of the atomic_rmw op is the newly loaded value.
|
|
rewriter.replaceOp(atomicOp, {newLoaded});
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
// Clones a segment of ops [start, end) and erases the original.
|
|
void moveOpsRange(ValueRange oldResult, ValueRange newResult,
|
|
Block::iterator start, Block::iterator end,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
BlockAndValueMapping mapping;
|
|
mapping.map(oldResult, newResult);
|
|
SmallVector<Operation *, 2> opsToErase;
|
|
for (auto it = start; it != end; ++it) {
|
|
rewriter.clone(*it, mapping);
|
|
opsToErase.push_back(&*it);
|
|
}
|
|
for (auto *it : opsToErase)
|
|
rewriter.eraseOp(it);
|
|
}
|
|
};
|
|
|
|
/// Returns the LLVM type of the global variable given the memref type `type`.
|
|
static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
|
|
LLVMTypeConverter &typeConverter) {
|
|
// LLVM type for a global memref will be a multi-dimension array. For
|
|
// declarations or uninitialized global memrefs, we can potentially flatten
|
|
// this to a 1D array. However, for memref.global's with an initial value,
|
|
// we do not intend to flatten the ElementsAttribute when going from std ->
|
|
// LLVM dialect, so the LLVM type needs to me a multi-dimension array.
|
|
Type elementType = typeConverter.convertType(type.getElementType());
|
|
Type arrayTy = elementType;
|
|
// Shape has the outermost dim at index 0, so need to walk it backwards
|
|
for (int64_t dim : llvm::reverse(type.getShape()))
|
|
arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
|
|
return arrayTy;
|
|
}
|
|
|
|
/// GlobalMemrefOp is lowered to a LLVM Global Variable.
|
|
struct GlobalMemrefOpLowering
|
|
: public ConvertOpToLLVMPattern<memref::GlobalOp> {
|
|
using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
MemRefType type = global.type();
|
|
if (!isConvertibleAndHasIdentityMaps(type))
|
|
return failure();
|
|
|
|
Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
|
|
|
|
LLVM::Linkage linkage =
|
|
global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
|
|
|
|
Attribute initialValue = nullptr;
|
|
if (!global.isExternal() && !global.isUninitialized()) {
|
|
auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
|
|
initialValue = elementsAttr;
|
|
|
|
// For scalar memrefs, the global variable created is of the element type,
|
|
// so unpack the elements attribute to extract the value.
|
|
if (type.getRank() == 0)
|
|
initialValue = elementsAttr.getSplatValue<Attribute>();
|
|
}
|
|
|
|
uint64_t alignment = global.alignment().getValueOr(0);
|
|
|
|
auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
|
|
global, arrayTy, global.constant(), linkage, global.sym_name(),
|
|
initialValue, alignment, type.getMemorySpaceAsInt());
|
|
if (!global.isExternal() && global.isUninitialized()) {
|
|
Block *blk = new Block();
|
|
newGlobal.getInitializerRegion().push_back(blk);
|
|
rewriter.setInsertionPointToStart(blk);
|
|
Value undef[] = {
|
|
rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
|
|
rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
|
|
/// the first element stashed into the descriptor. This reuses
|
|
/// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
|
|
struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
|
|
GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
|
|
: AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
|
|
converter) {}
|
|
|
|
/// Buffer "allocation" for memref.get_global op is getting the address of
|
|
/// the global variable referenced.
|
|
std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
|
|
Location loc, Value sizeBytes,
|
|
Operation *op) const override {
|
|
auto getGlobalOp = cast<memref::GetGlobalOp>(op);
|
|
MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
|
|
unsigned memSpace = type.getMemorySpaceAsInt();
|
|
|
|
Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
|
|
auto addressOf = rewriter.create<LLVM::AddressOfOp>(
|
|
loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
|
|
|
|
// Get the address of the first element in the array by creating a GEP with
|
|
// the address of the GV as the base, and (rank + 1) number of 0 indices.
|
|
Type elementType = typeConverter->convertType(type.getElementType());
|
|
Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
|
|
|
|
SmallVector<Value> operands;
|
|
operands.insert(operands.end(), type.getRank() + 1,
|
|
createIndexConstant(rewriter, loc, 0));
|
|
auto gep =
|
|
rewriter.create<LLVM::GEPOp>(loc, elementPtrType, addressOf, operands);
|
|
|
|
// We do not expect the memref obtained using `memref.get_global` to be
|
|
// ever deallocated. Set the allocated pointer to be known bad value to
|
|
// help debug if that ever happens.
|
|
auto intPtrType = getIntPtrType(memSpace);
|
|
Value deadBeefConst =
|
|
createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
|
|
auto deadBeefPtr =
|
|
rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
|
|
|
|
// Both allocated and aligned pointers are same. We could potentially stash
|
|
// a nullptr for the allocated pointer since we do not expect any dealloc.
|
|
return std::make_tuple(deadBeefPtr, gep);
|
|
}
|
|
};
|
|
|
|
// Load operation is lowered to obtaining a pointer to the indexed element
|
|
// and loading it.
|
|
struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
|
|
using Base::Base;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto type = loadOp.getMemRefType();
|
|
|
|
Value dataPtr = getStridedElementPtr(
|
|
loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
|
|
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Store operation is lowered to obtaining a pointer to the indexed element,
|
|
// and storing the given value to it.
|
|
struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
|
|
using Base::Base;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto type = op.getMemRefType();
|
|
|
|
Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
|
|
adaptor.indices(), rewriter);
|
|
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// The prefetch operation is lowered in a way similar to the load operation
|
|
// except that the llvm.prefetch operation is used for replacement.
|
|
struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
|
|
using Base::Base;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto type = prefetchOp.getMemRefType();
|
|
auto loc = prefetchOp.getLoc();
|
|
|
|
Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
|
|
adaptor.indices(), rewriter);
|
|
|
|
// Replace with llvm.prefetch.
|
|
auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
|
|
auto isWrite = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
|
|
auto localityHint = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmI32Type,
|
|
rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
|
|
auto isData = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
|
|
|
|
rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
|
|
localityHint, isData);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
|
|
using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Type operandType = op.memref().getType();
|
|
if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) {
|
|
UnrankedMemRefDescriptor desc(adaptor.memref());
|
|
rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
|
|
return success();
|
|
}
|
|
if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) {
|
|
rewriter.replaceOp(
|
|
op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())});
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
|
|
using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult match(memref::CastOp memRefCastOp) const override {
|
|
Type srcType = memRefCastOp.getOperand().getType();
|
|
Type dstType = memRefCastOp.getType();
|
|
|
|
// memref::CastOp reduce to bitcast in the ranked MemRef case and can be
|
|
// used for type erasure. For now they must preserve underlying element type
|
|
// and require source and result type to have the same rank. Therefore,
|
|
// perform a sanity check that the underlying structs are the same. Once op
|
|
// semantics are relaxed we can revisit.
|
|
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
|
|
return success(typeConverter->convertType(srcType) ==
|
|
typeConverter->convertType(dstType));
|
|
|
|
// At least one of the operands is unranked type
|
|
assert(srcType.isa<UnrankedMemRefType>() ||
|
|
dstType.isa<UnrankedMemRefType>());
|
|
|
|
// Unranked to unranked cast is disallowed
|
|
return !(srcType.isa<UnrankedMemRefType>() &&
|
|
dstType.isa<UnrankedMemRefType>())
|
|
? success()
|
|
: failure();
|
|
}
|
|
|
|
void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto srcType = memRefCastOp.getOperand().getType();
|
|
auto dstType = memRefCastOp.getType();
|
|
auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
|
|
auto loc = memRefCastOp.getLoc();
|
|
|
|
// For ranked/ranked case, just keep the original descriptor.
|
|
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
|
|
return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
|
|
|
|
if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
|
|
// Casting ranked to unranked memref type
|
|
// Set the rank in the destination from the memref type
|
|
// Allocate space on the stack and copy the src memref descriptor
|
|
// Set the ptr in the destination to the stack space
|
|
auto srcMemRefType = srcType.cast<MemRefType>();
|
|
int64_t rank = srcMemRefType.getRank();
|
|
// ptr = AllocaOp sizeof(MemRefDescriptor)
|
|
auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
|
|
loc, adaptor.source(), rewriter);
|
|
// voidptr = BitCastOp srcType* to void*
|
|
auto voidPtr =
|
|
rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
|
|
.getResult();
|
|
// rank = ConstantOp srcRank
|
|
auto rankVal = rewriter.create<LLVM::ConstantOp>(
|
|
loc, typeConverter->convertType(rewriter.getIntegerType(64)),
|
|
rewriter.getI64IntegerAttr(rank));
|
|
// undef = UndefOp
|
|
UnrankedMemRefDescriptor memRefDesc =
|
|
UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
|
|
// d1 = InsertValueOp undef, rank, 0
|
|
memRefDesc.setRank(rewriter, loc, rankVal);
|
|
// d2 = InsertValueOp d1, voidptr, 1
|
|
memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
|
|
rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
|
|
|
|
} else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
|
|
// Casting from unranked type to ranked.
|
|
// The operation is assumed to be doing a correct cast. If the destination
|
|
// type mismatches the unranked the type, it is undefined behavior.
|
|
UnrankedMemRefDescriptor memRefDesc(adaptor.source());
|
|
// ptr = ExtractValueOp src, 1
|
|
auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
|
|
// castPtr = BitCastOp i8* to structTy*
|
|
auto castPtr =
|
|
rewriter
|
|
.create<LLVM::BitcastOp>(
|
|
loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
|
|
.getResult();
|
|
// struct = LoadOp castPtr
|
|
auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
|
|
rewriter.replaceOp(memRefCastOp, loadOp.getResult());
|
|
} else {
|
|
llvm_unreachable("Unsupported unranked memref to unranked memref cast");
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Pattern to lower a `memref.copy` to llvm.
|
|
///
|
|
/// For memrefs with identity layouts, the copy is lowered to the llvm
|
|
/// `memcpy` intrinsic. For non-identity layouts, the copy is lowered to a call
|
|
/// to the generic `MemrefCopyFn`.
|
|
struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
|
|
using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
lowerToMemCopyIntrinsic(memref::CopyOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto loc = op.getLoc();
|
|
auto srcType = op.source().getType().dyn_cast<MemRefType>();
|
|
|
|
MemRefDescriptor srcDesc(adaptor.source());
|
|
|
|
// Compute number of elements.
|
|
Value numElements = rewriter.create<LLVM::ConstantOp>(
|
|
loc, getIndexType(), rewriter.getIndexAttr(1));
|
|
for (int pos = 0; pos < srcType.getRank(); ++pos) {
|
|
auto size = srcDesc.size(rewriter, loc, pos);
|
|
numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size);
|
|
}
|
|
|
|
// Get element size.
|
|
auto sizeInBytes = getSizeInBytes(loc, srcType.getElementType(), rewriter);
|
|
// Compute total.
|
|
Value totalSize =
|
|
rewriter.create<LLVM::MulOp>(loc, numElements, sizeInBytes);
|
|
|
|
Value srcBasePtr = srcDesc.alignedPtr(rewriter, loc);
|
|
MemRefDescriptor targetDesc(adaptor.target());
|
|
Value targetBasePtr = targetDesc.alignedPtr(rewriter, loc);
|
|
Value isVolatile = rewriter.create<LLVM::ConstantOp>(
|
|
loc, typeConverter->convertType(rewriter.getI1Type()),
|
|
rewriter.getBoolAttr(false));
|
|
rewriter.create<LLVM::MemcpyOp>(loc, targetBasePtr, srcBasePtr, totalSize,
|
|
isVolatile);
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
lowerToMemCopyFunctionCall(memref::CopyOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto loc = op.getLoc();
|
|
auto srcType = op.source().getType().cast<BaseMemRefType>();
|
|
auto targetType = op.target().getType().cast<BaseMemRefType>();
|
|
|
|
// First make sure we have an unranked memref descriptor representation.
|
|
auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
|
|
auto rank = rewriter.create<LLVM::ConstantOp>(
|
|
loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
|
|
auto *typeConverter = getTypeConverter();
|
|
auto ptr =
|
|
typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
|
|
auto voidPtr =
|
|
rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
|
|
.getResult();
|
|
auto unrankedType =
|
|
UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
|
|
return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
|
|
unrankedType,
|
|
ValueRange{rank, voidPtr});
|
|
};
|
|
|
|
Value unrankedSource = srcType.hasRank()
|
|
? makeUnranked(adaptor.source(), srcType)
|
|
: adaptor.source();
|
|
Value unrankedTarget = targetType.hasRank()
|
|
? makeUnranked(adaptor.target(), targetType)
|
|
: adaptor.target();
|
|
|
|
// Now promote the unranked descriptors to the stack.
|
|
auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
|
|
rewriter.getIndexAttr(1));
|
|
auto promote = [&](Value desc) {
|
|
auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
|
|
auto allocated =
|
|
rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
|
|
rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
|
|
return allocated;
|
|
};
|
|
|
|
auto sourcePtr = promote(unrankedSource);
|
|
auto targetPtr = promote(unrankedTarget);
|
|
|
|
unsigned bitwidth = mlir::DataLayout::closest(op).getTypeSizeInBits(
|
|
srcType.getElementType());
|
|
auto elemSize = rewriter.create<LLVM::ConstantOp>(
|
|
loc, getIndexType(), rewriter.getIndexAttr(bitwidth / 8));
|
|
auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
|
|
op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
|
|
rewriter.create<LLVM::CallOp>(loc, copyFn,
|
|
ValueRange{elemSize, sourcePtr, targetPtr});
|
|
rewriter.eraseOp(op);
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto srcType = op.source().getType().cast<BaseMemRefType>();
|
|
auto targetType = op.target().getType().cast<BaseMemRefType>();
|
|
|
|
if (srcType.hasRank() &&
|
|
srcType.cast<MemRefType>().getLayout().isIdentity() &&
|
|
targetType.hasRank() &&
|
|
targetType.cast<MemRefType>().getLayout().isIdentity())
|
|
return lowerToMemCopyIntrinsic(op, adaptor, rewriter);
|
|
|
|
return lowerToMemCopyFunctionCall(op, adaptor, rewriter);
|
|
}
|
|
};
|
|
|
|
/// Extracts allocated, aligned pointers and offset from a ranked or unranked
|
|
/// memref type. In unranked case, the fields are extracted from the underlying
|
|
/// ranked descriptor.
|
|
static void extractPointersAndOffset(Location loc,
|
|
ConversionPatternRewriter &rewriter,
|
|
LLVMTypeConverter &typeConverter,
|
|
Value originalOperand,
|
|
Value convertedOperand,
|
|
Value *allocatedPtr, Value *alignedPtr,
|
|
Value *offset = nullptr) {
|
|
Type operandType = originalOperand.getType();
|
|
if (operandType.isa<MemRefType>()) {
|
|
MemRefDescriptor desc(convertedOperand);
|
|
*allocatedPtr = desc.allocatedPtr(rewriter, loc);
|
|
*alignedPtr = desc.alignedPtr(rewriter, loc);
|
|
if (offset != nullptr)
|
|
*offset = desc.offset(rewriter, loc);
|
|
return;
|
|
}
|
|
|
|
unsigned memorySpace =
|
|
operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
|
|
Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
|
|
Type llvmElementType = typeConverter.convertType(elementType);
|
|
Type elementPtrPtrType = LLVM::LLVMPointerType::get(
|
|
LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
|
|
|
|
// Extract pointer to the underlying ranked memref descriptor and cast it to
|
|
// ElemType**.
|
|
UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
|
|
Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
|
|
|
|
*allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
|
|
rewriter, loc, underlyingDescPtr, elementPtrPtrType);
|
|
*alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
|
|
rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
|
|
if (offset != nullptr) {
|
|
*offset = UnrankedMemRefDescriptor::offset(
|
|
rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
|
|
}
|
|
}
|
|
|
|
struct MemRefReinterpretCastOpLowering
|
|
: public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
|
|
using ConvertOpToLLVMPattern<
|
|
memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type srcType = castOp.source().getType();
|
|
|
|
Value descriptor;
|
|
if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
|
|
adaptor, &descriptor)))
|
|
return failure();
|
|
rewriter.replaceOp(castOp, {descriptor});
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
LogicalResult convertSourceMemRefToDescriptor(
|
|
ConversionPatternRewriter &rewriter, Type srcType,
|
|
memref::ReinterpretCastOp castOp,
|
|
memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
|
|
MemRefType targetMemRefType =
|
|
castOp.getResult().getType().cast<MemRefType>();
|
|
auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
|
|
.dyn_cast_or_null<LLVM::LLVMStructType>();
|
|
if (!llvmTargetDescriptorTy)
|
|
return failure();
|
|
|
|
// Create descriptor.
|
|
Location loc = castOp.getLoc();
|
|
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
|
|
|
|
// Set allocated and aligned pointers.
|
|
Value allocatedPtr, alignedPtr;
|
|
extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
|
|
castOp.source(), adaptor.source(), &allocatedPtr,
|
|
&alignedPtr);
|
|
desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
|
|
desc.setAlignedPtr(rewriter, loc, alignedPtr);
|
|
|
|
// Set offset.
|
|
if (castOp.isDynamicOffset(0))
|
|
desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
|
|
else
|
|
desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
|
|
|
|
// Set sizes and strides.
|
|
unsigned dynSizeId = 0;
|
|
unsigned dynStrideId = 0;
|
|
for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
|
|
if (castOp.isDynamicSize(i))
|
|
desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
|
|
else
|
|
desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
|
|
|
|
if (castOp.isDynamicStride(i))
|
|
desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
|
|
else
|
|
desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
|
|
}
|
|
*descriptor = desc;
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct MemRefReshapeOpLowering
|
|
: public ConvertOpToLLVMPattern<memref::ReshapeOp> {
|
|
using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type srcType = reshapeOp.source().getType();
|
|
|
|
Value descriptor;
|
|
if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
|
|
adaptor, &descriptor)))
|
|
return failure();
|
|
rewriter.replaceOp(reshapeOp, {descriptor});
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
LogicalResult
|
|
convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
|
|
Type srcType, memref::ReshapeOp reshapeOp,
|
|
memref::ReshapeOp::Adaptor adaptor,
|
|
Value *descriptor) const {
|
|
// Conversion for statically-known shape args is performed via
|
|
// `memref_reinterpret_cast`.
|
|
auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
|
|
if (shapeMemRefType.hasStaticShape())
|
|
return failure();
|
|
|
|
// The shape is a rank-1 tensor with unknown length.
|
|
Location loc = reshapeOp.getLoc();
|
|
MemRefDescriptor shapeDesc(adaptor.shape());
|
|
Value resultRank = shapeDesc.size(rewriter, loc, 0);
|
|
|
|
// Extract address space and element type.
|
|
auto targetType =
|
|
reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
|
|
unsigned addressSpace = targetType.getMemorySpaceAsInt();
|
|
Type elementType = targetType.getElementType();
|
|
|
|
// Create the unranked memref descriptor that holds the ranked one. The
|
|
// inner descriptor is allocated on stack.
|
|
auto targetDesc = UnrankedMemRefDescriptor::undef(
|
|
rewriter, loc, typeConverter->convertType(targetType));
|
|
targetDesc.setRank(rewriter, loc, resultRank);
|
|
SmallVector<Value, 4> sizes;
|
|
UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
|
|
targetDesc, sizes);
|
|
Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
|
|
loc, getVoidPtrType(), sizes.front(), llvm::None);
|
|
targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
|
|
|
|
// Extract pointers and offset from the source memref.
|
|
Value allocatedPtr, alignedPtr, offset;
|
|
extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
|
|
reshapeOp.source(), adaptor.source(),
|
|
&allocatedPtr, &alignedPtr, &offset);
|
|
|
|
// Set pointers and offset.
|
|
Type llvmElementType = typeConverter->convertType(elementType);
|
|
auto elementPtrPtrType = LLVM::LLVMPointerType::get(
|
|
LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
|
|
UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
|
|
elementPtrPtrType, allocatedPtr);
|
|
UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
|
|
underlyingDescPtr,
|
|
elementPtrPtrType, alignedPtr);
|
|
UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
|
|
underlyingDescPtr, elementPtrPtrType,
|
|
offset);
|
|
|
|
// Use the offset pointer as base for further addressing. Copy over the new
|
|
// shape and compute strides. For this, we create a loop from rank-1 to 0.
|
|
Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
|
|
rewriter, loc, *getTypeConverter(), underlyingDescPtr,
|
|
elementPtrPtrType);
|
|
Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
|
|
rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
|
|
Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
|
|
Value oneIndex = createIndexConstant(rewriter, loc, 1);
|
|
Value resultRankMinusOne =
|
|
rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
|
|
|
|
Block *initBlock = rewriter.getInsertionBlock();
|
|
Type indexType = getTypeConverter()->getIndexType();
|
|
Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
|
|
|
|
Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
|
|
{indexType, indexType}, {loc, loc});
|
|
|
|
// Move the remaining initBlock ops to condBlock.
|
|
Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
|
|
rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
|
|
|
|
rewriter.setInsertionPointToEnd(initBlock);
|
|
rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
|
|
condBlock);
|
|
rewriter.setInsertionPointToStart(condBlock);
|
|
Value indexArg = condBlock->getArgument(0);
|
|
Value strideArg = condBlock->getArgument(1);
|
|
|
|
Value zeroIndex = createIndexConstant(rewriter, loc, 0);
|
|
Value pred = rewriter.create<LLVM::ICmpOp>(
|
|
loc, IntegerType::get(rewriter.getContext(), 1),
|
|
LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
|
|
|
|
Block *bodyBlock =
|
|
rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
|
|
rewriter.setInsertionPointToStart(bodyBlock);
|
|
|
|
// Copy size from shape to descriptor.
|
|
Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
|
|
Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
|
|
loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
|
|
Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
|
|
UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
|
|
targetSizesBase, indexArg, size);
|
|
|
|
// Write stride value and compute next one.
|
|
UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
|
|
targetStridesBase, indexArg, strideArg);
|
|
Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
|
|
|
|
// Decrement loop counter and branch back.
|
|
Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
|
|
rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
|
|
condBlock);
|
|
|
|
Block *remainder =
|
|
rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
|
|
|
|
// Hook up the cond exit to the remainder.
|
|
rewriter.setInsertionPointToEnd(condBlock);
|
|
rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
|
|
llvm::None);
|
|
|
|
// Reset position to beginning of new remainder block.
|
|
rewriter.setInsertionPointToStart(remainder);
|
|
|
|
*descriptor = targetDesc;
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Helper function to convert a vector of `OpFoldResult`s into a vector of
|
|
/// `Value`s.
|
|
static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
|
|
Type &llvmIndexType,
|
|
ArrayRef<OpFoldResult> valueOrAttrVec) {
|
|
return llvm::to_vector<4>(
|
|
llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
|
|
if (auto attr = value.dyn_cast<Attribute>())
|
|
return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
|
|
return value.get<Value>();
|
|
}));
|
|
}
|
|
|
|
/// Compute a map that for a given dimension of the expanded type gives the
|
|
/// dimension in the collapsed type it maps to. Essentially its the inverse of
|
|
/// the `reassocation` maps.
|
|
static DenseMap<int64_t, int64_t>
|
|
getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
|
|
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
|
|
for (auto &en : enumerate(reassociation)) {
|
|
for (auto dim : en.value())
|
|
expandedDimToCollapsedDim[dim] = en.index();
|
|
}
|
|
return expandedDimToCollapsedDim;
|
|
}
|
|
|
|
static OpFoldResult
|
|
getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
|
|
int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
|
|
MemRefDescriptor &inDesc,
|
|
ArrayRef<int64_t> inStaticShape,
|
|
ArrayRef<ReassociationIndices> reassocation,
|
|
DenseMap<int64_t, int64_t> &outDimToInDimMap) {
|
|
int64_t outDimSize = outStaticShape[outDimIndex];
|
|
if (!ShapedType::isDynamic(outDimSize))
|
|
return b.getIndexAttr(outDimSize);
|
|
|
|
// Calculate the multiplication of all the out dim sizes except the
|
|
// current dim.
|
|
int64_t inDimIndex = outDimToInDimMap[outDimIndex];
|
|
int64_t otherDimSizesMul = 1;
|
|
for (auto otherDimIndex : reassocation[inDimIndex]) {
|
|
if (otherDimIndex == static_cast<unsigned>(outDimIndex))
|
|
continue;
|
|
int64_t otherDimSize = outStaticShape[otherDimIndex];
|
|
assert(!ShapedType::isDynamic(otherDimSize) &&
|
|
"single dimension cannot be expanded into multiple dynamic "
|
|
"dimensions");
|
|
otherDimSizesMul *= otherDimSize;
|
|
}
|
|
|
|
// outDimSize = inDimSize / otherOutDimSizesMul
|
|
int64_t inDimSize = inStaticShape[inDimIndex];
|
|
Value inDimSizeDynamic =
|
|
ShapedType::isDynamic(inDimSize)
|
|
? inDesc.size(b, loc, inDimIndex)
|
|
: b.create<LLVM::ConstantOp>(loc, llvmIndexType,
|
|
b.getIndexAttr(inDimSize));
|
|
Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
|
|
loc, inDimSizeDynamic,
|
|
b.create<LLVM::ConstantOp>(loc, llvmIndexType,
|
|
b.getIndexAttr(otherDimSizesMul)));
|
|
return outDimSizeDynamic;
|
|
}
|
|
|
|
static OpFoldResult getCollapsedOutputDimSize(
|
|
OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
|
|
int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
|
|
MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
|
|
if (!ShapedType::isDynamic(outDimSize))
|
|
return b.getIndexAttr(outDimSize);
|
|
|
|
Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
|
|
Value outDimSizeDynamic = c1;
|
|
for (auto inDimIndex : reassocation[outDimIndex]) {
|
|
int64_t inDimSize = inStaticShape[inDimIndex];
|
|
Value inDimSizeDynamic =
|
|
ShapedType::isDynamic(inDimSize)
|
|
? inDesc.size(b, loc, inDimIndex)
|
|
: b.create<LLVM::ConstantOp>(loc, llvmIndexType,
|
|
b.getIndexAttr(inDimSize));
|
|
outDimSizeDynamic =
|
|
b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
|
|
}
|
|
return outDimSizeDynamic;
|
|
}
|
|
|
|
static SmallVector<OpFoldResult, 4>
|
|
getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
|
|
ArrayRef<ReassociationIndices> reassocation,
|
|
ArrayRef<int64_t> inStaticShape,
|
|
MemRefDescriptor &inDesc,
|
|
ArrayRef<int64_t> outStaticShape) {
|
|
return llvm::to_vector<4>(llvm::map_range(
|
|
llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
|
|
return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
|
|
outStaticShape[outDimIndex],
|
|
inStaticShape, inDesc, reassocation);
|
|
}));
|
|
}
|
|
|
|
static SmallVector<OpFoldResult, 4>
|
|
getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
|
|
ArrayRef<ReassociationIndices> reassocation,
|
|
ArrayRef<int64_t> inStaticShape,
|
|
MemRefDescriptor &inDesc,
|
|
ArrayRef<int64_t> outStaticShape) {
|
|
DenseMap<int64_t, int64_t> outDimToInDimMap =
|
|
getExpandedDimToCollapsedDimMap(reassocation);
|
|
return llvm::to_vector<4>(llvm::map_range(
|
|
llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
|
|
return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
|
|
outStaticShape, inDesc, inStaticShape,
|
|
reassocation, outDimToInDimMap);
|
|
}));
|
|
}
|
|
|
|
static SmallVector<Value>
|
|
getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
|
|
ArrayRef<ReassociationIndices> reassocation,
|
|
ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
|
|
ArrayRef<int64_t> outStaticShape) {
|
|
return outStaticShape.size() < inStaticShape.size()
|
|
? getAsValues(b, loc, llvmIndexType,
|
|
getCollapsedOutputShape(b, loc, llvmIndexType,
|
|
reassocation, inStaticShape,
|
|
inDesc, outStaticShape))
|
|
: getAsValues(b, loc, llvmIndexType,
|
|
getExpandedOutputShape(b, loc, llvmIndexType,
|
|
reassocation, inStaticShape,
|
|
inDesc, outStaticShape));
|
|
}
|
|
|
|
// ReshapeOp creates a new view descriptor of the proper rank.
|
|
// For now, the only conversion supported is for target MemRef with static sizes
|
|
// and strides.
|
|
template <typename ReshapeOp>
|
|
class ReassociatingReshapeOpConversion
|
|
: public ConvertOpToLLVMPattern<ReshapeOp> {
|
|
public:
|
|
using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
|
|
using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
MemRefType dstType = reshapeOp.getResultType();
|
|
MemRefType srcType = reshapeOp.getSrcType();
|
|
|
|
// The condition on the layouts can be ignored when all shapes are static.
|
|
if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) {
|
|
if (!srcType.getLayout().isIdentity() ||
|
|
!dstType.getLayout().isIdentity()) {
|
|
return rewriter.notifyMatchFailure(
|
|
reshapeOp, "only empty layout map is supported");
|
|
}
|
|
}
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
if (failed(getStridesAndOffset(dstType, strides, offset))) {
|
|
return rewriter.notifyMatchFailure(
|
|
reshapeOp, "failed to get stride and offset exprs");
|
|
}
|
|
|
|
MemRefDescriptor srcDesc(adaptor.src());
|
|
Location loc = reshapeOp->getLoc();
|
|
auto dstDesc = MemRefDescriptor::undef(
|
|
rewriter, loc, this->typeConverter->convertType(dstType));
|
|
dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
|
|
dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
|
|
dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
|
|
|
|
ArrayRef<int64_t> srcStaticShape = srcType.getShape();
|
|
ArrayRef<int64_t> dstStaticShape = dstType.getShape();
|
|
Type llvmIndexType =
|
|
this->typeConverter->convertType(rewriter.getIndexType());
|
|
SmallVector<Value> dstShape = getDynamicOutputShape(
|
|
rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
|
|
srcStaticShape, srcDesc, dstStaticShape);
|
|
for (auto &en : llvm::enumerate(dstShape))
|
|
dstDesc.setSize(rewriter, loc, en.index(), en.value());
|
|
|
|
auto isStaticStride = [](int64_t stride) {
|
|
return !ShapedType::isDynamicStrideOrOffset(stride);
|
|
};
|
|
if (llvm::all_of(strides, isStaticStride)) {
|
|
for (auto &en : llvm::enumerate(strides))
|
|
dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
|
|
} else {
|
|
Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
|
|
rewriter.getIndexAttr(1));
|
|
Value stride = c1;
|
|
for (auto dimIndex :
|
|
llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
|
|
dstDesc.setStride(rewriter, loc, dimIndex, stride);
|
|
stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
|
|
}
|
|
}
|
|
rewriter.replaceOp(reshapeOp, {dstDesc});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Conversion pattern that transforms a subview op into:
|
|
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
|
|
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
|
|
/// and stride.
|
|
/// The subview op is replaced by the descriptor.
|
|
struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
|
|
using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = subViewOp.getLoc();
|
|
|
|
auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
|
|
auto sourceElementTy =
|
|
typeConverter->convertType(sourceMemRefType.getElementType());
|
|
|
|
auto viewMemRefType = subViewOp.getType();
|
|
auto inferredType = memref::SubViewOp::inferResultType(
|
|
subViewOp.getSourceType(),
|
|
extractFromI64ArrayAttr(subViewOp.static_offsets()),
|
|
extractFromI64ArrayAttr(subViewOp.static_sizes()),
|
|
extractFromI64ArrayAttr(subViewOp.static_strides()))
|
|
.cast<MemRefType>();
|
|
auto targetElementTy =
|
|
typeConverter->convertType(viewMemRefType.getElementType());
|
|
auto targetDescTy = typeConverter->convertType(viewMemRefType);
|
|
if (!sourceElementTy || !targetDescTy || !targetElementTy ||
|
|
!LLVM::isCompatibleType(sourceElementTy) ||
|
|
!LLVM::isCompatibleType(targetElementTy) ||
|
|
!LLVM::isCompatibleType(targetDescTy))
|
|
return failure();
|
|
|
|
// Extract the offset and strides from the type.
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto successStrides = getStridesAndOffset(inferredType, strides, offset);
|
|
if (failed(successStrides))
|
|
return failure();
|
|
|
|
// Create the descriptor.
|
|
if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
|
|
return failure();
|
|
MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
|
|
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
|
|
|
|
// Copy the buffer pointer from the old descriptor to the new one.
|
|
Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
|
|
Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
|
|
loc,
|
|
LLVM::LLVMPointerType::get(targetElementTy,
|
|
viewMemRefType.getMemorySpaceAsInt()),
|
|
extracted);
|
|
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
|
|
|
|
// Copy the aligned pointer from the old descriptor to the new one.
|
|
extracted = sourceMemRef.alignedPtr(rewriter, loc);
|
|
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
|
|
loc,
|
|
LLVM::LLVMPointerType::get(targetElementTy,
|
|
viewMemRefType.getMemorySpaceAsInt()),
|
|
extracted);
|
|
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
|
|
|
|
size_t inferredShapeRank = inferredType.getRank();
|
|
size_t resultShapeRank = viewMemRefType.getRank();
|
|
|
|
// Extract strides needed to compute offset.
|
|
SmallVector<Value, 4> strideValues;
|
|
strideValues.reserve(inferredShapeRank);
|
|
for (unsigned i = 0; i < inferredShapeRank; ++i)
|
|
strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
|
|
|
|
// Offset.
|
|
auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
|
|
if (!ShapedType::isDynamicStrideOrOffset(offset)) {
|
|
targetMemRef.setConstantOffset(rewriter, loc, offset);
|
|
} else {
|
|
Value baseOffset = sourceMemRef.offset(rewriter, loc);
|
|
// `inferredShapeRank` may be larger than the number of offset operands
|
|
// because of trailing semantics. In this case, the offset is guaranteed
|
|
// to be interpreted as 0 and we can just skip the extra dimensions.
|
|
for (unsigned i = 0, e = std::min(inferredShapeRank,
|
|
subViewOp.getMixedOffsets().size());
|
|
i < e; ++i) {
|
|
Value offset =
|
|
// TODO: need OpFoldResult ODS adaptor to clean this up.
|
|
subViewOp.isDynamicOffset(i)
|
|
? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
|
|
: rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType,
|
|
rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
|
|
Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
|
|
baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
|
|
}
|
|
targetMemRef.setOffset(rewriter, loc, baseOffset);
|
|
}
|
|
|
|
// Update sizes and strides.
|
|
SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
|
|
SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
|
|
assert(mixedSizes.size() == mixedStrides.size() &&
|
|
"expected sizes and strides of equal length");
|
|
llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
|
|
for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
|
|
i >= 0 && j >= 0; --i) {
|
|
if (unusedDims.contains(i))
|
|
continue;
|
|
|
|
// `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
|
|
// In this case, the size is guaranteed to be interpreted as Dim and the
|
|
// stride as 1.
|
|
Value size, stride;
|
|
if (static_cast<unsigned>(i) >= mixedSizes.size()) {
|
|
// If the static size is available, use it directly. This is similar to
|
|
// the folding of dim(constant-op) but removes the need for dim to be
|
|
// aware of LLVM constants and for this pass to be aware of std
|
|
// constants.
|
|
int64_t staticSize =
|
|
subViewOp.source().getType().cast<MemRefType>().getShape()[i];
|
|
if (staticSize != ShapedType::kDynamicSize) {
|
|
size = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
|
|
} else {
|
|
Value pos = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
|
|
Value dim =
|
|
rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
|
|
auto cast = rewriter.create<UnrealizedConversionCastOp>(
|
|
loc, llvmIndexType, dim);
|
|
size = cast.getResult(0);
|
|
}
|
|
stride = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
|
|
} else {
|
|
// TODO: need OpFoldResult ODS adaptor to clean this up.
|
|
size =
|
|
subViewOp.isDynamicSize(i)
|
|
? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
|
|
: rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType,
|
|
rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
|
|
if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
|
|
stride = rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
|
|
} else {
|
|
stride =
|
|
subViewOp.isDynamicStride(i)
|
|
? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
|
|
: rewriter.create<LLVM::ConstantOp>(
|
|
loc, llvmIndexType,
|
|
rewriter.getI64IntegerAttr(
|
|
subViewOp.getStaticStride(i)));
|
|
stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
|
|
}
|
|
}
|
|
targetMemRef.setSize(rewriter, loc, j, size);
|
|
targetMemRef.setStride(rewriter, loc, j, stride);
|
|
j--;
|
|
}
|
|
|
|
rewriter.replaceOp(subViewOp, {targetMemRef});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Conversion pattern that transforms a transpose op into:
|
|
/// 1. A function entry `alloca` operation to allocate a ViewDescriptor.
|
|
/// 2. A load of the ViewDescriptor from the pointer allocated in 1.
|
|
/// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
|
|
/// and stride. Size and stride are permutations of the original values.
|
|
/// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
|
|
/// The transpose op is replaced by the alloca'ed pointer.
|
|
class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
|
|
public:
|
|
using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = transposeOp.getLoc();
|
|
MemRefDescriptor viewMemRef(adaptor.in());
|
|
|
|
// No permutation, early exit.
|
|
if (transposeOp.permutation().isIdentity())
|
|
return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
|
|
|
|
auto targetMemRef = MemRefDescriptor::undef(
|
|
rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
|
|
|
|
// Copy the base and aligned pointers from the old descriptor to the new
|
|
// one.
|
|
targetMemRef.setAllocatedPtr(rewriter, loc,
|
|
viewMemRef.allocatedPtr(rewriter, loc));
|
|
targetMemRef.setAlignedPtr(rewriter, loc,
|
|
viewMemRef.alignedPtr(rewriter, loc));
|
|
|
|
// Copy the offset pointer from the old descriptor to the new one.
|
|
targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
|
|
|
|
// Iterate over the dimensions and apply size/stride permutation.
|
|
for (const auto &en :
|
|
llvm::enumerate(transposeOp.permutation().getResults())) {
|
|
int sourcePos = en.index();
|
|
int targetPos = en.value().cast<AffineDimExpr>().getPosition();
|
|
targetMemRef.setSize(rewriter, loc, targetPos,
|
|
viewMemRef.size(rewriter, loc, sourcePos));
|
|
targetMemRef.setStride(rewriter, loc, targetPos,
|
|
viewMemRef.stride(rewriter, loc, sourcePos));
|
|
}
|
|
|
|
rewriter.replaceOp(transposeOp, {targetMemRef});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Conversion pattern that transforms an op into:
|
|
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
|
|
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
|
|
/// and stride.
|
|
/// The view op is replaced by the descriptor.
|
|
struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
|
|
using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
|
|
|
|
// Build and return the value for the idx^th shape dimension, either by
|
|
// returning the constant shape dimension or counting the proper dynamic size.
|
|
Value getSize(ConversionPatternRewriter &rewriter, Location loc,
|
|
ArrayRef<int64_t> shape, ValueRange dynamicSizes,
|
|
unsigned idx) const {
|
|
assert(idx < shape.size());
|
|
if (!ShapedType::isDynamic(shape[idx]))
|
|
return createIndexConstant(rewriter, loc, shape[idx]);
|
|
// Count the number of dynamic dims in range [0, idx]
|
|
unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
|
|
return ShapedType::isDynamic(v);
|
|
});
|
|
return dynamicSizes[nDynamic];
|
|
}
|
|
|
|
// Build and return the idx^th stride, either by returning the constant stride
|
|
// or by computing the dynamic stride from the current `runningStride` and
|
|
// `nextSize`. The caller should keep a running stride and update it with the
|
|
// result returned by this function.
|
|
Value getStride(ConversionPatternRewriter &rewriter, Location loc,
|
|
ArrayRef<int64_t> strides, Value nextSize,
|
|
Value runningStride, unsigned idx) const {
|
|
assert(idx < strides.size());
|
|
if (!ShapedType::isDynamicStrideOrOffset(strides[idx]))
|
|
return createIndexConstant(rewriter, loc, strides[idx]);
|
|
if (nextSize)
|
|
return runningStride
|
|
? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
|
|
: nextSize;
|
|
assert(!runningStride);
|
|
return createIndexConstant(rewriter, loc, 1);
|
|
}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = viewOp.getLoc();
|
|
|
|
auto viewMemRefType = viewOp.getType();
|
|
auto targetElementTy =
|
|
typeConverter->convertType(viewMemRefType.getElementType());
|
|
auto targetDescTy = typeConverter->convertType(viewMemRefType);
|
|
if (!targetDescTy || !targetElementTy ||
|
|
!LLVM::isCompatibleType(targetElementTy) ||
|
|
!LLVM::isCompatibleType(targetDescTy))
|
|
return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
|
|
failure();
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
|
|
if (failed(successStrides))
|
|
return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
|
|
assert(offset == 0 && "expected offset to be 0");
|
|
|
|
// Create the descriptor.
|
|
MemRefDescriptor sourceMemRef(adaptor.source());
|
|
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
|
|
|
|
// Field 1: Copy the allocated pointer, used for malloc/free.
|
|
Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
|
|
auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
|
|
Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
|
|
loc,
|
|
LLVM::LLVMPointerType::get(targetElementTy,
|
|
srcMemRefType.getMemorySpaceAsInt()),
|
|
allocatedPtr);
|
|
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
|
|
|
|
// Field 2: Copy the actual aligned pointer to payload.
|
|
Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
|
|
alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
|
|
alignedPtr, adaptor.byte_shift());
|
|
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
|
|
loc,
|
|
LLVM::LLVMPointerType::get(targetElementTy,
|
|
srcMemRefType.getMemorySpaceAsInt()),
|
|
alignedPtr);
|
|
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
|
|
|
|
// Field 3: The offset in the resulting type must be 0. This is because of
|
|
// the type change: an offset on srcType* may not be expressible as an
|
|
// offset on dstType*.
|
|
targetMemRef.setOffset(rewriter, loc,
|
|
createIndexConstant(rewriter, loc, offset));
|
|
|
|
// Early exit for 0-D corner case.
|
|
if (viewMemRefType.getRank() == 0)
|
|
return rewriter.replaceOp(viewOp, {targetMemRef}), success();
|
|
|
|
// Fields 4 and 5: Update sizes and strides.
|
|
if (strides.back() != 1)
|
|
return viewOp.emitWarning("cannot cast to non-contiguous shape"),
|
|
failure();
|
|
Value stride = nullptr, nextSize = nullptr;
|
|
for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
|
|
// Update size.
|
|
Value size =
|
|
getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
|
|
targetMemRef.setSize(rewriter, loc, i, size);
|
|
// Update stride.
|
|
stride = getStride(rewriter, loc, strides, nextSize, stride, i);
|
|
targetMemRef.setStride(rewriter, loc, i, stride);
|
|
nextSize = size;
|
|
}
|
|
|
|
rewriter.replaceOp(viewOp, {targetMemRef});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicRMWOpLowering
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Try to match the kind of a std.atomic_rmw to determine whether to use a
|
|
/// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg.
|
|
static Optional<LLVM::AtomicBinOp>
|
|
matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) {
|
|
switch (atomicOp.kind()) {
|
|
case arith::AtomicRMWKind::addf:
|
|
return LLVM::AtomicBinOp::fadd;
|
|
case arith::AtomicRMWKind::addi:
|
|
return LLVM::AtomicBinOp::add;
|
|
case arith::AtomicRMWKind::assign:
|
|
return LLVM::AtomicBinOp::xchg;
|
|
case arith::AtomicRMWKind::maxs:
|
|
return LLVM::AtomicBinOp::max;
|
|
case arith::AtomicRMWKind::maxu:
|
|
return LLVM::AtomicBinOp::umax;
|
|
case arith::AtomicRMWKind::mins:
|
|
return LLVM::AtomicBinOp::min;
|
|
case arith::AtomicRMWKind::minu:
|
|
return LLVM::AtomicBinOp::umin;
|
|
case arith::AtomicRMWKind::ori:
|
|
return LLVM::AtomicBinOp::_or;
|
|
case arith::AtomicRMWKind::andi:
|
|
return LLVM::AtomicBinOp::_and;
|
|
default:
|
|
return llvm::None;
|
|
}
|
|
llvm_unreachable("Invalid AtomicRMWKind");
|
|
}
|
|
|
|
struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> {
|
|
using Base::Base;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(match(atomicOp)))
|
|
return failure();
|
|
auto maybeKind = matchSimpleAtomicOp(atomicOp);
|
|
if (!maybeKind)
|
|
return failure();
|
|
auto resultType = adaptor.value().getType();
|
|
auto memRefType = atomicOp.getMemRefType();
|
|
auto dataPtr =
|
|
getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.memref(),
|
|
adaptor.indices(), rewriter);
|
|
rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>(
|
|
atomicOp, resultType, *maybeKind, dataPtr, adaptor.value(),
|
|
LLVM::AtomicOrdering::acq_rel);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
|
|
RewritePatternSet &patterns) {
|
|
// clang-format off
|
|
patterns.add<
|
|
AllocaOpLowering,
|
|
AllocaScopeOpLowering,
|
|
AtomicRMWOpLowering,
|
|
AssumeAlignmentOpLowering,
|
|
DimOpLowering,
|
|
GenericAtomicRMWOpLowering,
|
|
GlobalMemrefOpLowering,
|
|
GetGlobalMemrefOpLowering,
|
|
LoadOpLowering,
|
|
MemRefCastOpLowering,
|
|
MemRefCopyOpLowering,
|
|
MemRefReinterpretCastOpLowering,
|
|
MemRefReshapeOpLowering,
|
|
PrefetchOpLowering,
|
|
RankOpLowering,
|
|
ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
|
|
ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
|
|
StoreOpLowering,
|
|
SubViewOpLowering,
|
|
TransposeOpLowering,
|
|
ViewOpLowering>(converter);
|
|
// clang-format on
|
|
auto allocLowering = converter.getOptions().allocLowering;
|
|
if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
|
|
patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
|
|
else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
|
|
patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
|
|
}
|
|
|
|
namespace {
|
|
struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
|
|
MemRefToLLVMPass() = default;
|
|
|
|
void runOnOperation() override {
|
|
Operation *op = getOperation();
|
|
const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
|
|
LowerToLLVMOptions options(&getContext(),
|
|
dataLayoutAnalysis.getAtOrAbove(op));
|
|
options.allocLowering =
|
|
(useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
|
|
: LowerToLLVMOptions::AllocLowering::Malloc);
|
|
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
|
|
options.overrideIndexBitwidth(indexBitwidth);
|
|
|
|
LLVMTypeConverter typeConverter(&getContext(), options,
|
|
&dataLayoutAnalysis);
|
|
RewritePatternSet patterns(&getContext());
|
|
populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
|
|
LLVMConversionTarget target(getContext());
|
|
target.addLegalOp<FuncOp>();
|
|
if (failed(applyPartialConversion(op, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
|
|
return std::make_unique<MemRefToLLVMPass>();
|
|
}
|