mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-08 00:52:54 +00:00
2946cd7010
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
865 lines
30 KiB
C++
865 lines
30 KiB
C++
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the abstract lowering for the Swift calling convention.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/CodeGen/SwiftCallingConv.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using namespace swiftcall;
|
|
|
|
static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
|
|
return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
|
|
}
|
|
|
|
static bool isPowerOf2(unsigned n) {
|
|
return n == (n & -n);
|
|
}
|
|
|
|
/// Given two types with the same size, try to find a common type.
|
|
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
|
|
assert(first != second);
|
|
|
|
// Allow pointers to merge with integers, but prefer the integer type.
|
|
if (first->isIntegerTy()) {
|
|
if (second->isPointerTy()) return first;
|
|
} else if (first->isPointerTy()) {
|
|
if (second->isIntegerTy()) return second;
|
|
if (second->isPointerTy()) return first;
|
|
|
|
// Allow two vectors to be merged (given that they have the same size).
|
|
// This assumes that we never have two different vector register sets.
|
|
} else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
|
|
if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
|
|
if (auto commonTy = getCommonType(firstVecTy->getElementType(),
|
|
secondVecTy->getElementType())) {
|
|
return (commonTy == firstVecTy->getElementType() ? first : second);
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
|
|
return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
|
|
}
|
|
|
|
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
|
|
return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
|
|
}
|
|
|
|
void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
|
|
// Deal with various aggregate types as special cases:
|
|
|
|
// Record types.
|
|
if (auto recType = type->getAs<RecordType>()) {
|
|
addTypedData(recType->getDecl(), begin);
|
|
|
|
// Array types.
|
|
} else if (type->isArrayType()) {
|
|
// Incomplete array types (flexible array members?) don't provide
|
|
// data to lay out, and the other cases shouldn't be possible.
|
|
auto arrayType = CGM.getContext().getAsConstantArrayType(type);
|
|
if (!arrayType) return;
|
|
|
|
QualType eltType = arrayType->getElementType();
|
|
auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
|
|
for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
|
|
addTypedData(eltType, begin + i * eltSize);
|
|
}
|
|
|
|
// Complex types.
|
|
} else if (auto complexType = type->getAs<ComplexType>()) {
|
|
auto eltType = complexType->getElementType();
|
|
auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
|
|
auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
|
|
addTypedData(eltLLVMType, begin, begin + eltSize);
|
|
addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
|
|
|
|
// Member pointer types.
|
|
} else if (type->getAs<MemberPointerType>()) {
|
|
// Just add it all as opaque.
|
|
addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
|
|
|
|
// Everything else is scalar and should not convert as an LLVM aggregate.
|
|
} else {
|
|
// We intentionally convert as !ForMem because we want to preserve
|
|
// that a type was an i1.
|
|
auto llvmType = CGM.getTypes().ConvertType(type);
|
|
addTypedData(llvmType, begin);
|
|
}
|
|
}
|
|
|
|
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
|
|
addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
|
|
}
|
|
|
|
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
|
|
const ASTRecordLayout &layout) {
|
|
// Unions are a special case.
|
|
if (record->isUnion()) {
|
|
for (auto field : record->fields()) {
|
|
if (field->isBitField()) {
|
|
addBitFieldData(field, begin, 0);
|
|
} else {
|
|
addTypedData(field->getType(), begin);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Note that correctness does not rely on us adding things in
|
|
// their actual order of layout; it's just somewhat more efficient
|
|
// for the builder.
|
|
|
|
// With that in mind, add "early" C++ data.
|
|
auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
|
|
if (cxxRecord) {
|
|
// - a v-table pointer, if the class adds its own
|
|
if (layout.hasOwnVFPtr()) {
|
|
addTypedData(CGM.Int8PtrTy, begin);
|
|
}
|
|
|
|
// - non-virtual bases
|
|
for (auto &baseSpecifier : cxxRecord->bases()) {
|
|
if (baseSpecifier.isVirtual()) continue;
|
|
|
|
auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
|
|
addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
|
|
}
|
|
|
|
// - a vbptr if the class adds its own
|
|
if (layout.hasOwnVBPtr()) {
|
|
addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
|
|
}
|
|
}
|
|
|
|
// Add fields.
|
|
for (auto field : record->fields()) {
|
|
auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
|
|
if (field->isBitField()) {
|
|
addBitFieldData(field, begin, fieldOffsetInBits);
|
|
} else {
|
|
addTypedData(field->getType(),
|
|
begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
|
|
}
|
|
}
|
|
|
|
// Add "late" C++ data:
|
|
if (cxxRecord) {
|
|
// - virtual bases
|
|
for (auto &vbaseSpecifier : cxxRecord->vbases()) {
|
|
auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
|
|
addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
|
|
CharUnits recordBegin,
|
|
uint64_t bitfieldBitBegin) {
|
|
assert(bitfield->isBitField());
|
|
auto &ctx = CGM.getContext();
|
|
auto width = bitfield->getBitWidthValue(ctx);
|
|
|
|
// We can ignore zero-width bit-fields.
|
|
if (width == 0) return;
|
|
|
|
// toCharUnitsFromBits rounds down.
|
|
CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
|
|
|
|
// Find the offset of the last byte that is partially occupied by the
|
|
// bit-field; since we otherwise expect exclusive ends, the end is the
|
|
// next byte.
|
|
uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
|
|
CharUnits bitfieldByteEnd =
|
|
ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
|
|
addOpaqueData(recordBegin + bitfieldByteBegin,
|
|
recordBegin + bitfieldByteEnd);
|
|
}
|
|
|
|
void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
|
|
assert(type && "didn't provide type for typed data");
|
|
addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
|
|
}
|
|
|
|
void SwiftAggLowering::addTypedData(llvm::Type *type,
|
|
CharUnits begin, CharUnits end) {
|
|
assert(type && "didn't provide type for typed data");
|
|
assert(getTypeStoreSize(CGM, type) == end - begin);
|
|
|
|
// Legalize vector types.
|
|
if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
|
|
SmallVector<llvm::Type*, 4> componentTys;
|
|
legalizeVectorType(CGM, end - begin, vecTy, componentTys);
|
|
assert(componentTys.size() >= 1);
|
|
|
|
// Walk the initial components.
|
|
for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
|
|
llvm::Type *componentTy = componentTys[i];
|
|
auto componentSize = getTypeStoreSize(CGM, componentTy);
|
|
assert(componentSize < end - begin);
|
|
addLegalTypedData(componentTy, begin, begin + componentSize);
|
|
begin += componentSize;
|
|
}
|
|
|
|
return addLegalTypedData(componentTys.back(), begin, end);
|
|
}
|
|
|
|
// Legalize integer types.
|
|
if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
|
|
if (!isLegalIntegerType(CGM, intTy))
|
|
return addOpaqueData(begin, end);
|
|
}
|
|
|
|
// All other types should be legal.
|
|
return addLegalTypedData(type, begin, end);
|
|
}
|
|
|
|
void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
|
|
CharUnits begin, CharUnits end) {
|
|
// Require the type to be naturally aligned.
|
|
if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
|
|
|
|
// Try splitting vector types.
|
|
if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
|
|
auto split = splitLegalVectorType(CGM, end - begin, vecTy);
|
|
auto eltTy = split.first;
|
|
auto numElts = split.second;
|
|
|
|
auto eltSize = (end - begin) / numElts;
|
|
assert(eltSize == getTypeStoreSize(CGM, eltTy));
|
|
for (size_t i = 0, e = numElts; i != e; ++i) {
|
|
addLegalTypedData(eltTy, begin, begin + eltSize);
|
|
begin += eltSize;
|
|
}
|
|
assert(begin == end);
|
|
return;
|
|
}
|
|
|
|
return addOpaqueData(begin, end);
|
|
}
|
|
|
|
addEntry(type, begin, end);
|
|
}
|
|
|
|
void SwiftAggLowering::addEntry(llvm::Type *type,
|
|
CharUnits begin, CharUnits end) {
|
|
assert((!type ||
|
|
(!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
|
|
"cannot add aggregate-typed data");
|
|
assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
|
|
|
|
// Fast path: we can just add entries to the end.
|
|
if (Entries.empty() || Entries.back().End <= begin) {
|
|
Entries.push_back({begin, end, type});
|
|
return;
|
|
}
|
|
|
|
// Find the first existing entry that ends after the start of the new data.
|
|
// TODO: do a binary search if Entries is big enough for it to matter.
|
|
size_t index = Entries.size() - 1;
|
|
while (index != 0) {
|
|
if (Entries[index - 1].End <= begin) break;
|
|
--index;
|
|
}
|
|
|
|
// The entry ends after the start of the new data.
|
|
// If the entry starts after the end of the new data, there's no conflict.
|
|
if (Entries[index].Begin >= end) {
|
|
// This insertion is potentially O(n), but the way we generally build
|
|
// these layouts makes that unlikely to matter: we'd need a union of
|
|
// several very large types.
|
|
Entries.insert(Entries.begin() + index, {begin, end, type});
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the ranges overlap. The new range might also overlap
|
|
// with later ranges.
|
|
restartAfterSplit:
|
|
|
|
// Simplest case: an exact overlap.
|
|
if (Entries[index].Begin == begin && Entries[index].End == end) {
|
|
// If the types match exactly, great.
|
|
if (Entries[index].Type == type) return;
|
|
|
|
// If either type is opaque, make the entry opaque and return.
|
|
if (Entries[index].Type == nullptr) {
|
|
return;
|
|
} else if (type == nullptr) {
|
|
Entries[index].Type = nullptr;
|
|
return;
|
|
}
|
|
|
|
// If they disagree in an ABI-agnostic way, just resolve the conflict
|
|
// arbitrarily.
|
|
if (auto entryType = getCommonType(Entries[index].Type, type)) {
|
|
Entries[index].Type = entryType;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, make the entry opaque.
|
|
Entries[index].Type = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Okay, we have an overlapping conflict of some sort.
|
|
|
|
// If we have a vector type, split it.
|
|
if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
|
|
auto eltTy = vecTy->getElementType();
|
|
CharUnits eltSize = (end - begin) / vecTy->getNumElements();
|
|
assert(eltSize == getTypeStoreSize(CGM, eltTy));
|
|
for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
|
|
addEntry(eltTy, begin, begin + eltSize);
|
|
begin += eltSize;
|
|
}
|
|
assert(begin == end);
|
|
return;
|
|
}
|
|
|
|
// If the entry is a vector type, split it and try again.
|
|
if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
|
|
splitVectorEntry(index);
|
|
goto restartAfterSplit;
|
|
}
|
|
|
|
// Okay, we have no choice but to make the existing entry opaque.
|
|
|
|
Entries[index].Type = nullptr;
|
|
|
|
// Stretch the start of the entry to the beginning of the range.
|
|
if (begin < Entries[index].Begin) {
|
|
Entries[index].Begin = begin;
|
|
assert(index == 0 || begin >= Entries[index - 1].End);
|
|
}
|
|
|
|
// Stretch the end of the entry to the end of the range; but if we run
|
|
// into the start of the next entry, just leave the range there and repeat.
|
|
while (end > Entries[index].End) {
|
|
assert(Entries[index].Type == nullptr);
|
|
|
|
// If the range doesn't overlap the next entry, we're done.
|
|
if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
|
|
Entries[index].End = end;
|
|
break;
|
|
}
|
|
|
|
// Otherwise, stretch to the start of the next entry.
|
|
Entries[index].End = Entries[index + 1].Begin;
|
|
|
|
// Continue with the next entry.
|
|
index++;
|
|
|
|
// This entry needs to be made opaque if it is not already.
|
|
if (Entries[index].Type == nullptr)
|
|
continue;
|
|
|
|
// Split vector entries unless we completely subsume them.
|
|
if (Entries[index].Type->isVectorTy() &&
|
|
end < Entries[index].End) {
|
|
splitVectorEntry(index);
|
|
}
|
|
|
|
// Make the entry opaque.
|
|
Entries[index].Type = nullptr;
|
|
}
|
|
}
|
|
|
|
/// Replace the entry of vector type at offset 'index' with a sequence
|
|
/// of its component vectors.
|
|
void SwiftAggLowering::splitVectorEntry(unsigned index) {
|
|
auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
|
|
auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
|
|
|
|
auto eltTy = split.first;
|
|
CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
|
|
auto numElts = split.second;
|
|
Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
|
|
|
|
CharUnits begin = Entries[index].Begin;
|
|
for (unsigned i = 0; i != numElts; ++i) {
|
|
Entries[index].Type = eltTy;
|
|
Entries[index].Begin = begin;
|
|
Entries[index].End = begin + eltSize;
|
|
begin += eltSize;
|
|
}
|
|
}
|
|
|
|
/// Given a power-of-two unit size, return the offset of the aligned unit
|
|
/// of that size which contains the given offset.
|
|
///
|
|
/// In other words, round down to the nearest multiple of the unit size.
|
|
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
|
|
assert(isPowerOf2(unitSize.getQuantity()));
|
|
auto unitMask = ~(unitSize.getQuantity() - 1);
|
|
return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
|
|
}
|
|
|
|
static bool areBytesInSameUnit(CharUnits first, CharUnits second,
|
|
CharUnits chunkSize) {
|
|
return getOffsetAtStartOfUnit(first, chunkSize)
|
|
== getOffsetAtStartOfUnit(second, chunkSize);
|
|
}
|
|
|
|
static bool isMergeableEntryType(llvm::Type *type) {
|
|
// Opaquely-typed memory is always mergeable.
|
|
if (type == nullptr) return true;
|
|
|
|
// Pointers and integers are always mergeable. In theory we should not
|
|
// merge pointers, but (1) it doesn't currently matter in practice because
|
|
// the chunk size is never greater than the size of a pointer and (2)
|
|
// Swift IRGen uses integer types for a lot of things that are "really"
|
|
// just storing pointers (like Optional<SomePointer>). If we ever have a
|
|
// target that would otherwise combine pointers, we should put some effort
|
|
// into fixing those cases in Swift IRGen and then call out pointer types
|
|
// here.
|
|
|
|
// Floating-point and vector types should never be merged.
|
|
// Most such types are too large and highly-aligned to ever trigger merging
|
|
// in practice, but it's important for the rule to cover at least 'half'
|
|
// and 'float', as well as things like small vectors of 'i1' or 'i8'.
|
|
return (!type->isFloatingPointTy() && !type->isVectorTy());
|
|
}
|
|
|
|
bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
|
|
const StorageEntry &second,
|
|
CharUnits chunkSize) {
|
|
// Only merge entries that overlap the same chunk. We test this first
|
|
// despite being a bit more expensive because this is the condition that
|
|
// tends to prevent merging.
|
|
if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
|
|
chunkSize))
|
|
return false;
|
|
|
|
return (isMergeableEntryType(first.Type) &&
|
|
isMergeableEntryType(second.Type));
|
|
}
|
|
|
|
void SwiftAggLowering::finish() {
|
|
if (Entries.empty()) {
|
|
Finished = true;
|
|
return;
|
|
}
|
|
|
|
// We logically split the layout down into a series of chunks of this size,
|
|
// which is generally the size of a pointer.
|
|
const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
|
|
|
|
// First pass: if two entries should be merged, make them both opaque
|
|
// and stretch one to meet the next.
|
|
// Also, remember if there are any opaque entries.
|
|
bool hasOpaqueEntries = (Entries[0].Type == nullptr);
|
|
for (size_t i = 1, e = Entries.size(); i != e; ++i) {
|
|
if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
|
|
Entries[i - 1].Type = nullptr;
|
|
Entries[i].Type = nullptr;
|
|
Entries[i - 1].End = Entries[i].Begin;
|
|
hasOpaqueEntries = true;
|
|
|
|
} else if (Entries[i].Type == nullptr) {
|
|
hasOpaqueEntries = true;
|
|
}
|
|
}
|
|
|
|
// The rest of the algorithm leaves non-opaque entries alone, so if we
|
|
// have no opaque entries, we're done.
|
|
if (!hasOpaqueEntries) {
|
|
Finished = true;
|
|
return;
|
|
}
|
|
|
|
// Okay, move the entries to a temporary and rebuild Entries.
|
|
auto orig = std::move(Entries);
|
|
assert(Entries.empty());
|
|
|
|
for (size_t i = 0, e = orig.size(); i != e; ++i) {
|
|
// Just copy over non-opaque entries.
|
|
if (orig[i].Type != nullptr) {
|
|
Entries.push_back(orig[i]);
|
|
continue;
|
|
}
|
|
|
|
// Scan forward to determine the full extent of the next opaque range.
|
|
// We know from the first pass that only contiguous ranges will overlap
|
|
// the same aligned chunk.
|
|
auto begin = orig[i].Begin;
|
|
auto end = orig[i].End;
|
|
while (i + 1 != e &&
|
|
orig[i + 1].Type == nullptr &&
|
|
end == orig[i + 1].Begin) {
|
|
end = orig[i + 1].End;
|
|
i++;
|
|
}
|
|
|
|
// Add an entry per intersected chunk.
|
|
do {
|
|
// Find the smallest aligned storage unit in the maximal aligned
|
|
// storage unit containing 'begin' that contains all the bytes in
|
|
// the intersection between the range and this chunk.
|
|
CharUnits localBegin = begin;
|
|
CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
|
|
CharUnits chunkEnd = chunkBegin + chunkSize;
|
|
CharUnits localEnd = std::min(end, chunkEnd);
|
|
|
|
// Just do a simple loop over ever-increasing unit sizes.
|
|
CharUnits unitSize = CharUnits::One();
|
|
CharUnits unitBegin, unitEnd;
|
|
for (; ; unitSize *= 2) {
|
|
assert(unitSize <= chunkSize);
|
|
unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
|
|
unitEnd = unitBegin + unitSize;
|
|
if (unitEnd >= localEnd) break;
|
|
}
|
|
|
|
// Add an entry for this unit.
|
|
auto entryTy =
|
|
llvm::IntegerType::get(CGM.getLLVMContext(),
|
|
CGM.getContext().toBits(unitSize));
|
|
Entries.push_back({unitBegin, unitEnd, entryTy});
|
|
|
|
// The next chunk starts where this chunk left off.
|
|
begin = localEnd;
|
|
} while (begin != end);
|
|
}
|
|
|
|
// Okay, finally finished.
|
|
Finished = true;
|
|
}
|
|
|
|
void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
|
|
assert(Finished && "haven't yet finished lowering");
|
|
|
|
for (auto &entry : Entries) {
|
|
callback(entry.Begin, entry.End, entry.Type);
|
|
}
|
|
}
|
|
|
|
std::pair<llvm::StructType*, llvm::Type*>
|
|
SwiftAggLowering::getCoerceAndExpandTypes() const {
|
|
assert(Finished && "haven't yet finished lowering");
|
|
|
|
auto &ctx = CGM.getLLVMContext();
|
|
|
|
if (Entries.empty()) {
|
|
auto type = llvm::StructType::get(ctx);
|
|
return { type, type };
|
|
}
|
|
|
|
SmallVector<llvm::Type*, 8> elts;
|
|
CharUnits lastEnd = CharUnits::Zero();
|
|
bool hasPadding = false;
|
|
bool packed = false;
|
|
for (auto &entry : Entries) {
|
|
if (entry.Begin != lastEnd) {
|
|
auto paddingSize = entry.Begin - lastEnd;
|
|
assert(!paddingSize.isNegative());
|
|
|
|
auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
|
|
paddingSize.getQuantity());
|
|
elts.push_back(padding);
|
|
hasPadding = true;
|
|
}
|
|
|
|
if (!packed && !entry.Begin.isMultipleOf(
|
|
CharUnits::fromQuantity(
|
|
CGM.getDataLayout().getABITypeAlignment(entry.Type))))
|
|
packed = true;
|
|
|
|
elts.push_back(entry.Type);
|
|
|
|
lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
|
|
assert(entry.End <= lastEnd);
|
|
}
|
|
|
|
// We don't need to adjust 'packed' to deal with possible tail padding
|
|
// because we never do that kind of access through the coercion type.
|
|
auto coercionType = llvm::StructType::get(ctx, elts, packed);
|
|
|
|
llvm::Type *unpaddedType = coercionType;
|
|
if (hasPadding) {
|
|
elts.clear();
|
|
for (auto &entry : Entries) {
|
|
elts.push_back(entry.Type);
|
|
}
|
|
if (elts.size() == 1) {
|
|
unpaddedType = elts[0];
|
|
} else {
|
|
unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
|
|
}
|
|
} else if (Entries.size() == 1) {
|
|
unpaddedType = Entries[0].Type;
|
|
}
|
|
|
|
return { coercionType, unpaddedType };
|
|
}
|
|
|
|
bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
|
|
assert(Finished && "haven't yet finished lowering");
|
|
|
|
// Empty types don't need to be passed indirectly.
|
|
if (Entries.empty()) return false;
|
|
|
|
// Avoid copying the array of types when there's just a single element.
|
|
if (Entries.size() == 1) {
|
|
return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
|
|
Entries.back().Type,
|
|
asReturnValue);
|
|
}
|
|
|
|
SmallVector<llvm::Type*, 8> componentTys;
|
|
componentTys.reserve(Entries.size());
|
|
for (auto &entry : Entries) {
|
|
componentTys.push_back(entry.Type);
|
|
}
|
|
return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
|
|
asReturnValue);
|
|
}
|
|
|
|
bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
|
|
ArrayRef<llvm::Type*> componentTys,
|
|
bool asReturnValue) {
|
|
return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
|
|
asReturnValue);
|
|
}
|
|
|
|
CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
|
|
// Currently always the size of an ordinary pointer.
|
|
return CGM.getContext().toCharUnitsFromBits(
|
|
CGM.getContext().getTargetInfo().getPointerWidth(0));
|
|
}
|
|
|
|
CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
|
|
// For Swift's purposes, this is always just the store size of the type
|
|
// rounded up to a power of 2.
|
|
auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
|
|
if (!isPowerOf2(size)) {
|
|
size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
|
|
}
|
|
assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
|
|
return CharUnits::fromQuantity(size);
|
|
}
|
|
|
|
bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
|
|
llvm::IntegerType *intTy) {
|
|
auto size = intTy->getBitWidth();
|
|
switch (size) {
|
|
case 1:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
// Just assume that the above are always legal.
|
|
return true;
|
|
|
|
case 128:
|
|
return CGM.getContext().getTargetInfo().hasInt128Type();
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
llvm::VectorType *vectorTy) {
|
|
return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
|
|
vectorTy->getNumElements());
|
|
}
|
|
|
|
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
llvm::Type *eltTy, unsigned numElts) {
|
|
assert(numElts > 1 && "illegal vector length");
|
|
return getSwiftABIInfo(CGM)
|
|
.isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
|
|
}
|
|
|
|
std::pair<llvm::Type*, unsigned>
|
|
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
llvm::VectorType *vectorTy) {
|
|
auto numElts = vectorTy->getNumElements();
|
|
auto eltTy = vectorTy->getElementType();
|
|
|
|
// Try to split the vector type in half.
|
|
if (numElts >= 4 && isPowerOf2(numElts)) {
|
|
if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
|
|
return {llvm::VectorType::get(eltTy, numElts / 2), 2};
|
|
}
|
|
|
|
return {eltTy, numElts};
|
|
}
|
|
|
|
void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
|
|
llvm::VectorType *origVectorTy,
|
|
llvm::SmallVectorImpl<llvm::Type*> &components) {
|
|
// If it's already a legal vector type, use it.
|
|
if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
|
|
components.push_back(origVectorTy);
|
|
return;
|
|
}
|
|
|
|
// Try to split the vector into legal subvectors.
|
|
auto numElts = origVectorTy->getNumElements();
|
|
auto eltTy = origVectorTy->getElementType();
|
|
assert(numElts != 1);
|
|
|
|
// The largest size that we're still considering making subvectors of.
|
|
// Always a power of 2.
|
|
unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
|
|
unsigned candidateNumElts = 1U << logCandidateNumElts;
|
|
assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
|
|
|
|
// Minor optimization: don't check the legality of this exact size twice.
|
|
if (candidateNumElts == numElts) {
|
|
logCandidateNumElts--;
|
|
candidateNumElts >>= 1;
|
|
}
|
|
|
|
CharUnits eltSize = (origVectorSize / numElts);
|
|
CharUnits candidateSize = eltSize * candidateNumElts;
|
|
|
|
// The sensibility of this algorithm relies on the fact that we never
|
|
// have a legal non-power-of-2 vector size without having the power of 2
|
|
// also be legal.
|
|
while (logCandidateNumElts > 0) {
|
|
assert(candidateNumElts == 1U << logCandidateNumElts);
|
|
assert(candidateNumElts <= numElts);
|
|
assert(candidateSize == eltSize * candidateNumElts);
|
|
|
|
// Skip illegal vector sizes.
|
|
if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
|
|
logCandidateNumElts--;
|
|
candidateNumElts /= 2;
|
|
candidateSize /= 2;
|
|
continue;
|
|
}
|
|
|
|
// Add the right number of vectors of this size.
|
|
auto numVecs = numElts >> logCandidateNumElts;
|
|
components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
|
|
numElts -= (numVecs << logCandidateNumElts);
|
|
|
|
if (numElts == 0) return;
|
|
|
|
// It's possible that the number of elements remaining will be legal.
|
|
// This can happen with e.g. <7 x float> when <3 x float> is legal.
|
|
// This only needs to be separately checked if it's not a power of 2.
|
|
if (numElts > 2 && !isPowerOf2(numElts) &&
|
|
isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
|
|
components.push_back(llvm::VectorType::get(eltTy, numElts));
|
|
return;
|
|
}
|
|
|
|
// Bring vecSize down to something no larger than numElts.
|
|
do {
|
|
logCandidateNumElts--;
|
|
candidateNumElts /= 2;
|
|
candidateSize /= 2;
|
|
} while (candidateNumElts > numElts);
|
|
}
|
|
|
|
// Otherwise, just append a bunch of individual elements.
|
|
components.append(numElts, eltTy);
|
|
}
|
|
|
|
bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
|
|
const RecordDecl *record) {
|
|
// FIXME: should we not rely on the standard computation in Sema, just in
|
|
// case we want to diverge from the platform ABI (e.g. on targets where
|
|
// that uses the MSVC rule)?
|
|
return !record->canPassInRegisters();
|
|
}
|
|
|
|
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
|
|
bool forReturn,
|
|
CharUnits alignmentForIndirect) {
|
|
if (lowering.empty()) {
|
|
return ABIArgInfo::getIgnore();
|
|
} else if (lowering.shouldPassIndirectly(forReturn)) {
|
|
return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
|
|
} else {
|
|
auto types = lowering.getCoerceAndExpandTypes();
|
|
return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
|
|
}
|
|
}
|
|
|
|
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
|
|
bool forReturn) {
|
|
if (auto recordType = dyn_cast<RecordType>(type)) {
|
|
auto record = recordType->getDecl();
|
|
auto &layout = CGM.getContext().getASTRecordLayout(record);
|
|
|
|
if (mustPassRecordIndirectly(CGM, record))
|
|
return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
|
|
|
|
SwiftAggLowering lowering(CGM);
|
|
lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
|
|
lowering.finish();
|
|
|
|
return classifyExpandedType(lowering, forReturn, layout.getAlignment());
|
|
}
|
|
|
|
// Just assume that all of our target ABIs can support returning at least
|
|
// two integer or floating-point values.
|
|
if (isa<ComplexType>(type)) {
|
|
return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
|
|
}
|
|
|
|
// Vector types may need to be legalized.
|
|
if (isa<VectorType>(type)) {
|
|
SwiftAggLowering lowering(CGM);
|
|
lowering.addTypedData(type, CharUnits::Zero());
|
|
lowering.finish();
|
|
|
|
CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
|
|
return classifyExpandedType(lowering, forReturn, alignment);
|
|
}
|
|
|
|
// Member pointer types need to be expanded, but it's a simple form of
|
|
// expansion that 'Direct' can handle. Note that CanBeFlattened should be
|
|
// true for this to work.
|
|
|
|
// 'void' needs to be ignored.
|
|
if (type->isVoidType()) {
|
|
return ABIArgInfo::getIgnore();
|
|
}
|
|
|
|
// Everything else can be passed directly.
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
|
|
return classifyType(CGM, type, /*forReturn*/ true);
|
|
}
|
|
|
|
ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
|
|
CanQualType type) {
|
|
return classifyType(CGM, type, /*forReturn*/ false);
|
|
}
|
|
|
|
void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
|
|
auto &retInfo = FI.getReturnInfo();
|
|
retInfo = classifyReturnType(CGM, FI.getReturnType());
|
|
|
|
for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
|
|
auto &argInfo = FI.arg_begin()[i];
|
|
argInfo.info = classifyArgumentType(CGM, argInfo.type);
|
|
}
|
|
}
|
|
|
|
// Is swifterror lowered to a register by the target ABI.
|
|
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
|
|
return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
|
|
}
|