llvm with tablegen backend for capstone disassembler
Go to file
Martin Storsjö aeb4907ed6 [libcxxabi] Use the right calling convention for exception destructors on i386 Windows
On Windows on i386, C++ member functions use a different calling
convention (`__thiscall`) than the default one for regular functions
(`__cdecl`). (On Windows on architectures other than i386, both calling
convention attributes are no-ops.)

This matches how libstdc++ declares these types.

This fixes the std/thread/futures/futures.{shared,unique}_future/dtor.pass.cpp
tests on i386 mingw.

Differential Revision: https://reviews.llvm.org/D124990
2022-05-05 23:21:18 +03:00
.github Disable Mailgun click tracking 2022-02-24 19:03:43 +03:00
bolt [BOLT] Report per-section hotness in bolt-heatmap. 2022-05-05 11:37:46 -07:00
clang [clang][ASTImporter][NFC]: Move clang::ImportError into own header. 2022-05-06 00:14:32 +05:30
clang-tools-extra [clangd] Fix inlayhints crash, don't assume functions have FunctionTypeLocs 2022-05-05 18:51:36 +02:00
cmake [doc] [cmake] Fix a typo in examples for the cmake directory docs. NFC. 2022-04-22 17:28:24 +03:00
compiler-rt sanitizer_common: Define FP_XSTATE_MAGIC1 for old glibc 2022-05-05 11:05:27 +01:00
cross-project-tests Speculatively fix build bots 2022-04-20 11:48:06 -04:00
flang [flang][driver] Add missing parentheses in an assert 2022-05-05 18:02:30 +00:00
libc [libc] add printf writer 2022-05-03 10:15:04 -07:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libcxx] [test] Fix max_size.pass.cpp for other Windows architectures 2022-05-05 23:21:18 +03:00
libcxxabi [libcxxabi] Use the right calling convention for exception destructors on i386 Windows 2022-05-05 23:21:18 +03:00
libunwind [libunwind] Silence warnings about unused variables. NFC. 2022-05-04 22:55:02 +03:00
lld [lld/mac] Support writing zippered dylibs and bundles 2022-05-04 19:23:35 -04:00
lldb Fix debugserver translation check 2022-05-05 11:31:23 -07:00
llvm [SelectionDAGISel] Add back a comment to MergeInputChains handling. NFC 2022-05-05 12:59:21 -07:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir [mlir][nvvm] Fix support for tf32 data type in mma.sync 2022-05-05 11:02:03 -06:00
openmp [OpenMP] libomp: Add itt notifications to sync dependent tasks. 2022-05-05 11:30:59 -05:00
polly [Polly] Fix test after D119669. 2022-05-01 13:32:42 -05:00
pstl Bump the trunk major version to 15 2022-02-01 23:54:52 -08:00
runtimes [runtimes] [CMake] Rename a cmake variable missed in b3df14b6c9 2022-04-25 11:22:38 +03:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [bazel] Fix the build after 2c33266084 2022-05-03 23:04:10 +02:00
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.