mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-12 19:01:55 +00:00
520d9169e6
llvm-svn: 289084
652 lines
22 KiB
C++
652 lines
22 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "EhFrame.h"
|
|
#include "LinkerScript.h"
|
|
#include "Strings.h"
|
|
#include "SymbolTable.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Threads.h"
|
|
#include "lld/Support/Memory.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type,
|
|
uint64_t Flags)
|
|
: Name(Name) {
|
|
this->Type = Type;
|
|
this->Flags = Flags;
|
|
this->Addralign = 1;
|
|
}
|
|
|
|
uint32_t OutputSectionBase::getPhdrFlags() const {
|
|
uint32_t Ret = PF_R;
|
|
if (Flags & SHF_WRITE)
|
|
Ret |= PF_W;
|
|
if (Flags & SHF_EXECINSTR)
|
|
Ret |= PF_X;
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) {
|
|
Shdr->sh_entsize = Entsize;
|
|
Shdr->sh_addralign = Addralign;
|
|
Shdr->sh_type = Type;
|
|
Shdr->sh_offset = Offset;
|
|
Shdr->sh_flags = Flags;
|
|
Shdr->sh_info = Info;
|
|
Shdr->sh_link = Link;
|
|
Shdr->sh_addr = Addr;
|
|
Shdr->sh_size = Size;
|
|
Shdr->sh_name = ShName;
|
|
}
|
|
|
|
template <class ELFT> static uint64_t getEntsize(uint32_t Type) {
|
|
switch (Type) {
|
|
case SHT_RELA:
|
|
return sizeof(typename ELFT::Rela);
|
|
case SHT_REL:
|
|
return sizeof(typename ELFT::Rel);
|
|
case SHT_MIPS_REGINFO:
|
|
return sizeof(Elf_Mips_RegInfo<ELFT>);
|
|
case SHT_MIPS_OPTIONS:
|
|
return sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
|
|
case SHT_MIPS_ABIFLAGS:
|
|
return sizeof(Elf_Mips_ABIFlags<ELFT>);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
|
|
: OutputSectionBase(Name, Type, Flags) {
|
|
this->Entsize = getEntsize<ELFT>(Type);
|
|
}
|
|
|
|
template <typename ELFT>
|
|
static bool compareByFilePosition(InputSection<ELFT> *A,
|
|
InputSection<ELFT> *B) {
|
|
// Synthetic doesn't have link order dependecy, stable_sort will keep it last
|
|
if (A->kind() == InputSectionData::Synthetic ||
|
|
B->kind() == InputSectionData::Synthetic)
|
|
return false;
|
|
auto *LA = cast<InputSection<ELFT>>(A->getLinkOrderDep());
|
|
auto *LB = cast<InputSection<ELFT>>(B->getLinkOrderDep());
|
|
OutputSectionBase *AOut = LA->OutSec;
|
|
OutputSectionBase *BOut = LB->OutSec;
|
|
if (AOut != BOut)
|
|
return AOut->SectionIndex < BOut->SectionIndex;
|
|
return LA->OutSecOff < LB->OutSecOff;
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::finalize() {
|
|
if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
|
|
std::sort(Sections.begin(), Sections.end(), compareByFilePosition<ELFT>);
|
|
Size = 0;
|
|
assignOffsets();
|
|
|
|
// We must preserve the link order dependency of sections with the
|
|
// SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
|
|
// need to translate the InputSection sh_link to the OutputSection sh_link,
|
|
// all InputSections in the OutputSection have the same dependency.
|
|
if (auto *D = this->Sections.front()->getLinkOrderDep())
|
|
this->Link = D->OutSec->SectionIndex;
|
|
}
|
|
|
|
uint32_t Type = this->Type;
|
|
if (!Config->Relocatable || (Type != SHT_RELA && Type != SHT_REL))
|
|
return;
|
|
|
|
this->Link = In<ELFT>::SymTab->OutSec->SectionIndex;
|
|
// sh_info for SHT_REL[A] sections should contain the section header index of
|
|
// the section to which the relocation applies.
|
|
InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
|
|
this->Info = S->OutSec->SectionIndex;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
assert(C->Live);
|
|
auto *S = cast<InputSection<ELFT>>(C);
|
|
Sections.push_back(S);
|
|
S->OutSec = this;
|
|
this->updateAlignment(S->Alignment);
|
|
// Keep sh_entsize value of the input section to be able to perform merging
|
|
// later during a final linking using the generated relocatable object.
|
|
if (Config->Relocatable && (S->Flags & SHF_MERGE))
|
|
this->Entsize = S->Entsize;
|
|
}
|
|
|
|
// This function is called after we sort input sections
|
|
// and scan relocations to setup sections' offsets.
|
|
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
|
|
uintX_t Off = this->Size;
|
|
for (InputSection<ELFT> *S : Sections) {
|
|
Off = alignTo(Off, S->Alignment);
|
|
S->OutSecOff = Off;
|
|
Off += S->getSize();
|
|
}
|
|
this->Size = Off;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::sort(
|
|
std::function<unsigned(InputSection<ELFT> *S)> Order) {
|
|
typedef std::pair<unsigned, InputSection<ELFT> *> Pair;
|
|
auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
|
|
|
|
std::vector<Pair> V;
|
|
for (InputSection<ELFT> *S : Sections)
|
|
V.push_back({Order(S), S});
|
|
std::stable_sort(V.begin(), V.end(), Comp);
|
|
Sections.clear();
|
|
for (Pair &P : V)
|
|
Sections.push_back(P.second);
|
|
}
|
|
|
|
// Sorts input sections by section name suffixes, so that .foo.N comes
|
|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
|
|
// We want to keep the original order if the priorities are the same
|
|
// because the compiler keeps the original initialization order in a
|
|
// translation unit and we need to respect that.
|
|
// For more detail, read the section of the GCC's manual about init_priority.
|
|
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
|
|
// Sort sections by priority.
|
|
sort([](InputSection<ELFT> *S) { return getPriority(S->Name); });
|
|
}
|
|
|
|
// Returns true if S matches /Filename.?\.o$/.
|
|
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
|
|
if (!S.endswith(".o"))
|
|
return false;
|
|
S = S.drop_back(2);
|
|
if (S.endswith(Filename))
|
|
return true;
|
|
return !S.empty() && S.drop_back().endswith(Filename);
|
|
}
|
|
|
|
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
|
|
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
|
|
|
|
// .ctors and .dtors are sorted by this priority from highest to lowest.
|
|
//
|
|
// 1. The section was contained in crtbegin (crtbegin contains
|
|
// some sentinel value in its .ctors and .dtors so that the runtime
|
|
// can find the beginning of the sections.)
|
|
//
|
|
// 2. The section has an optional priority value in the form of ".ctors.N"
|
|
// or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
|
|
// they are compared as string rather than number.
|
|
//
|
|
// 3. The section is just ".ctors" or ".dtors".
|
|
//
|
|
// 4. The section was contained in crtend, which contains an end marker.
|
|
//
|
|
// In an ideal world, we don't need this function because .init_array and
|
|
// .ctors are duplicate features (and .init_array is newer.) However, there
|
|
// are too many real-world use cases of .ctors, so we had no choice to
|
|
// support that with this rather ad-hoc semantics.
|
|
template <class ELFT>
|
|
static bool compCtors(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
bool BeginA = isCrtbegin(A->getFile()->getName());
|
|
bool BeginB = isCrtbegin(B->getFile()->getName());
|
|
if (BeginA != BeginB)
|
|
return BeginA;
|
|
bool EndA = isCrtend(A->getFile()->getName());
|
|
bool EndB = isCrtend(B->getFile()->getName());
|
|
if (EndA != EndB)
|
|
return EndB;
|
|
StringRef X = A->Name;
|
|
StringRef Y = B->Name;
|
|
assert(X.startswith(".ctors") || X.startswith(".dtors"));
|
|
assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
|
|
X = X.substr(6);
|
|
Y = Y.substr(6);
|
|
if (X.empty() && Y.empty())
|
|
return false;
|
|
return X < Y;
|
|
}
|
|
|
|
// Sorts input sections by the special rules for .ctors and .dtors.
|
|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
|
|
// Read the comment above.
|
|
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
|
|
std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
|
|
}
|
|
|
|
// Fill [Buf, Buf + Size) with Filler. Filler is written in big
|
|
// endian order. This is used for linker script "=fillexp" command.
|
|
void fill(uint8_t *Buf, size_t Size, uint32_t Filler) {
|
|
uint8_t V[4];
|
|
write32be(V, Filler);
|
|
size_t I = 0;
|
|
for (; I + 4 < Size; I += 4)
|
|
memcpy(Buf + I, V, 4);
|
|
memcpy(Buf + I, V, Size - I);
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Loc = Buf;
|
|
if (uint32_t Filler = Script<ELFT>::X->getFiller(this->Name))
|
|
fill(Buf, this->Size, Filler);
|
|
|
|
auto Fn = [=](InputSection<ELFT> *IS) { IS->writeTo(Buf); };
|
|
forEach(Sections.begin(), Sections.end(), Fn);
|
|
|
|
// Linker scripts may have BYTE()-family commands with which you
|
|
// can write arbitrary bytes to the output. Process them if any.
|
|
Script<ELFT>::X->writeDataBytes(this->Name, Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhOutputSection<ELFT>::EhOutputSection()
|
|
: OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}
|
|
|
|
// Search for an existing CIE record or create a new one.
|
|
// CIE records from input object files are uniquified by their contents
|
|
// and where their relocations point to.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece,
|
|
ArrayRef<RelTy> Rels) {
|
|
auto *Sec = cast<EhInputSection<ELFT>>(Piece.ID);
|
|
const endianness E = ELFT::TargetEndianness;
|
|
if (read32<E>(Piece.data().data() + 4) != 0)
|
|
fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame");
|
|
|
|
SymbolBody *Personality = nullptr;
|
|
unsigned FirstRelI = Piece.FirstRelocation;
|
|
if (FirstRelI != (unsigned)-1)
|
|
Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]);
|
|
|
|
// Search for an existing CIE by CIE contents/relocation target pair.
|
|
CieRecord *Cie = &CieMap[{Piece.data(), Personality}];
|
|
|
|
// If not found, create a new one.
|
|
if (Cie->Piece == nullptr) {
|
|
Cie->Piece = &Piece;
|
|
Cies.push_back(Cie);
|
|
}
|
|
return Cie;
|
|
}
|
|
|
|
// There is one FDE per function. Returns true if a given FDE
|
|
// points to a live function.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece,
|
|
ArrayRef<RelTy> Rels) {
|
|
auto *Sec = cast<EhInputSection<ELFT>>(Piece.ID);
|
|
unsigned FirstRelI = Piece.FirstRelocation;
|
|
if (FirstRelI == (unsigned)-1)
|
|
fatal(toString(Sec) + ": FDE doesn't reference another section");
|
|
const RelTy &Rel = Rels[FirstRelI];
|
|
SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel);
|
|
auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
|
|
if (!D || !D->Section)
|
|
return false;
|
|
InputSectionBase<ELFT> *Target = D->Section->Repl;
|
|
return Target && Target->Live;
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. In general, there
|
|
// is one CIE record per input object file which is followed by
|
|
// a list of FDEs. This function searches an existing CIE or create a new
|
|
// one and associates FDEs to the CIE.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
DenseMap<size_t, CieRecord *> OffsetToCie;
|
|
for (EhSectionPiece &Piece : Sec->Pieces) {
|
|
// The empty record is the end marker.
|
|
if (Piece.size() == 4)
|
|
return;
|
|
|
|
size_t Offset = Piece.InputOff;
|
|
uint32_t ID = read32<E>(Piece.data().data() + 4);
|
|
if (ID == 0) {
|
|
OffsetToCie[Offset] = addCie(Piece, Rels);
|
|
continue;
|
|
}
|
|
|
|
uint32_t CieOffset = Offset + 4 - ID;
|
|
CieRecord *Cie = OffsetToCie[CieOffset];
|
|
if (!Cie)
|
|
fatal(toString(Sec) + ": invalid CIE reference");
|
|
|
|
if (!isFdeLive(Piece, Rels))
|
|
continue;
|
|
Cie->FdePieces.push_back(&Piece);
|
|
NumFdes++;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhOutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
auto *Sec = cast<EhInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
Sections.push_back(Sec);
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. This function
|
|
// splits it into pieces so that we can call
|
|
// SplitInputSection::getSectionPiece on the section.
|
|
Sec->split();
|
|
if (Sec->Pieces.empty())
|
|
return;
|
|
|
|
if (Sec->NumRelocations) {
|
|
if (Sec->AreRelocsRela)
|
|
addSectionAux(Sec, Sec->relas());
|
|
else
|
|
addSectionAux(Sec, Sec->rels());
|
|
return;
|
|
}
|
|
addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
|
|
memcpy(Buf, D.data(), D.size());
|
|
|
|
// Fix the size field. -4 since size does not include the size field itself.
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::finalize() {
|
|
if (this->Size)
|
|
return; // Already finalized.
|
|
|
|
size_t Off = 0;
|
|
for (CieRecord *Cie : Cies) {
|
|
Cie->Piece->OutputOff = Off;
|
|
Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));
|
|
|
|
for (EhSectionPiece *Fde : Cie->FdePieces) {
|
|
Fde->OutputOff = Off;
|
|
Off += alignTo(Fde->size(), sizeof(uintX_t));
|
|
}
|
|
}
|
|
this->Size = Off;
|
|
}
|
|
|
|
template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
switch (Size) {
|
|
case DW_EH_PE_udata2:
|
|
return read16<E>(Buf);
|
|
case DW_EH_PE_udata4:
|
|
return read32<E>(Buf);
|
|
case DW_EH_PE_udata8:
|
|
return read64<E>(Buf);
|
|
case DW_EH_PE_absptr:
|
|
if (ELFT::Is64Bits)
|
|
return read64<E>(Buf);
|
|
return read32<E>(Buf);
|
|
}
|
|
fatal("unknown FDE size encoding");
|
|
}
|
|
|
|
// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
|
|
// We need it to create .eh_frame_hdr section.
|
|
template <class ELFT>
|
|
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
|
|
uint8_t Enc) {
|
|
// The starting address to which this FDE applies is
|
|
// stored at FDE + 8 byte.
|
|
size_t Off = FdeOff + 8;
|
|
uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
|
|
if ((Enc & 0x70) == DW_EH_PE_absptr)
|
|
return Addr;
|
|
if ((Enc & 0x70) == DW_EH_PE_pcrel)
|
|
return Addr + this->Addr + Off;
|
|
fatal("unknown FDE size relative encoding");
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
for (CieRecord *Cie : Cies) {
|
|
size_t CieOffset = Cie->Piece->OutputOff;
|
|
writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());
|
|
|
|
for (EhSectionPiece *Fde : Cie->FdePieces) {
|
|
size_t Off = Fde->OutputOff;
|
|
writeCieFde<ELFT>(Buf + Off, Fde->data());
|
|
|
|
// FDE's second word should have the offset to an associated CIE.
|
|
// Write it.
|
|
write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
|
|
}
|
|
}
|
|
|
|
for (EhInputSection<ELFT> *S : Sections)
|
|
S->relocate(Buf, nullptr);
|
|
|
|
// Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
|
|
// to get a FDE from an address to which FDE is applied. So here
|
|
// we obtain two addresses and pass them to EhFrameHdr object.
|
|
if (In<ELFT>::EhFrameHdr) {
|
|
for (CieRecord *Cie : Cies) {
|
|
uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece);
|
|
for (SectionPiece *Fde : Cie->FdePieces) {
|
|
uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
|
|
uintX_t FdeVA = this->Addr + Fde->OutputOff;
|
|
In<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags, uintX_t Alignment)
|
|
: OutputSectionBase(Name, Type, Flags),
|
|
Builder(StringTableBuilder::RAW, Alignment) {}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Builder.write(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MergeOutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
auto *Sec = cast<MergeInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
this->Entsize = Sec->Entsize;
|
|
Sections.push_back(Sec);
|
|
}
|
|
|
|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
|
|
return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2;
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalizeTailMerge() {
|
|
// Add all string pieces to the string table builder to create section
|
|
// contents.
|
|
for (MergeInputSection<ELFT> *Sec : Sections)
|
|
for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
|
|
if (Sec->Pieces[I].Live)
|
|
Builder.add(Sec->getData(I));
|
|
|
|
// Fix the string table content. After this, the contents will never change.
|
|
Builder.finalize();
|
|
this->Size = Builder.getSize();
|
|
|
|
// finalize() fixed tail-optimized strings, so we can now get
|
|
// offsets of strings. Get an offset for each string and save it
|
|
// to a corresponding StringPiece for easy access.
|
|
for (MergeInputSection<ELFT> *Sec : Sections)
|
|
for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
|
|
if (Sec->Pieces[I].Live)
|
|
Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I));
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalizeNoTailMerge() {
|
|
// Add all string pieces to the string table builder to create section
|
|
// contents. Because we are not tail-optimizing, offsets of strings are
|
|
// fixed when they are added to the builder (string table builder contains
|
|
// a hash table from strings to offsets).
|
|
for (MergeInputSection<ELFT> *Sec : Sections)
|
|
for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
|
|
if (Sec->Pieces[I].Live)
|
|
Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I));
|
|
|
|
Builder.finalizeInOrder();
|
|
this->Size = Builder.getSize();
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
|
|
if (shouldTailMerge())
|
|
finalizeTailMerge();
|
|
else
|
|
finalizeNoTailMerge();
|
|
}
|
|
|
|
template <class ELFT>
|
|
static typename ELFT::uint getOutFlags(InputSectionBase<ELFT> *S) {
|
|
return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
typedef typename ELFT::uint uintX_t;
|
|
uintX_t Flags = getOutFlags(C);
|
|
|
|
// For SHF_MERGE we create different output sections for each alignment.
|
|
// This makes each output section simple and keeps a single level mapping from
|
|
// input to output.
|
|
// In case of relocatable object generation we do not try to perform merging
|
|
// and treat SHF_MERGE sections as regular ones, but also create different
|
|
// output sections for them to allow merging at final linking stage.
|
|
uintX_t Alignment = 0;
|
|
if (isa<MergeInputSection<ELFT>>(C) ||
|
|
(Config->Relocatable && (C->Flags & SHF_MERGE)))
|
|
Alignment = std::max<uintX_t>(C->Alignment, C->Entsize);
|
|
|
|
return SectionKey<ELFT::Is64Bits>{OutsecName, C->Type, Flags, Alignment};
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::pair<OutputSectionBase *, bool>
|
|
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
|
|
return create(Key, C);
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::pair<OutputSectionBase *, bool>
|
|
OutputSectionFactory<ELFT>::create(const SectionKey<ELFT::Is64Bits> &Key,
|
|
InputSectionBase<ELFT> *C) {
|
|
uintX_t Flags = getOutFlags(C);
|
|
OutputSectionBase *&Sec = Map[Key];
|
|
if (Sec) {
|
|
Sec->Flags |= Flags;
|
|
return {Sec, false};
|
|
}
|
|
|
|
uint32_t Type = C->Type;
|
|
switch (C->kind()) {
|
|
case InputSectionBase<ELFT>::Regular:
|
|
case InputSectionBase<ELFT>::Synthetic:
|
|
Sec = make<OutputSection<ELFT>>(Key.Name, Type, Flags);
|
|
break;
|
|
case InputSectionBase<ELFT>::EHFrame:
|
|
return {Out<ELFT>::EhFrame, false};
|
|
case InputSectionBase<ELFT>::Merge:
|
|
Sec = make<MergeOutputSection<ELFT>>(Key.Name, Type, Flags, Key.Alignment);
|
|
break;
|
|
}
|
|
return {Sec, true};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
|
|
0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
unsigned
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
|
|
return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
|
|
const Key &RHS) {
|
|
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
|
|
LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
|
|
LHS.Alignment == RHS.Alignment;
|
|
}
|
|
|
|
namespace llvm {
|
|
template struct DenseMapInfo<SectionKey<true>>;
|
|
template struct DenseMapInfo<SectionKey<false>>;
|
|
}
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
|
|
template void OutputSectionBase::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
|
|
|
|
template class OutputSection<ELF32LE>;
|
|
template class OutputSection<ELF32BE>;
|
|
template class OutputSection<ELF64LE>;
|
|
template class OutputSection<ELF64BE>;
|
|
|
|
template class EhOutputSection<ELF32LE>;
|
|
template class EhOutputSection<ELF32BE>;
|
|
template class EhOutputSection<ELF64LE>;
|
|
template class EhOutputSection<ELF64BE>;
|
|
|
|
template class MergeOutputSection<ELF32LE>;
|
|
template class MergeOutputSection<ELF32BE>;
|
|
template class MergeOutputSection<ELF64LE>;
|
|
template class MergeOutputSection<ELF64BE>;
|
|
|
|
template class OutputSectionFactory<ELF32LE>;
|
|
template class OutputSectionFactory<ELF32BE>;
|
|
template class OutputSectionFactory<ELF64LE>;
|
|
template class OutputSectionFactory<ELF64BE>;
|
|
}
|
|
}
|