llvm-capstone/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
River Riddle b99bd77162 [mlir][Pattern] Refactor the Pattern class into a "metadata only" class
The Pattern class was originally intended to be used for solely matching operations, but that use never materialized. All of the pattern infrastructure uses RewritePattern, and the infrastructure for pure matching(Matchers.h) is implemented inline. This means that this class isn't a useful abstraction at the moment, so this revision refactors it to solely encapsulate the "metadata" of a pattern. The metadata includes the various state describing a pattern; benefit, root operation, etc. The API on PatternApplicator is updated to now operate on `Pattern`s as nothing special from `RewritePattern` is necessary.

This refactoring is also necessary for the upcoming use of PDL patterns alongside C++ rewrite patterns.

Differential Revision: https://reviews.llvm.org/D86258
2020-10-26 18:01:06 -07:00

1647 lines
66 KiB
C++

//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "../PassDetail.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Target/LLVMIR/TypeTranslation.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::vector;
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
Value into, int64_t offset) {
auto vectorType = into.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<InsertOp>(loc, from, into, offset);
return rewriter.create<vector::InsertElementOp>(
loc, vectorType, from, into,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
rewriter.getI64ArrayAttr(pos));
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
int64_t offset) {
auto vectorType = vector.getType().cast<VectorType>();
if (vectorType.getRank() > 1)
return rewriter.create<ExtractOp>(loc, vector, offset);
return rewriter.create<vector::ExtractElementOp>(
loc, vectorType.getElementType(), vector,
rewriter.create<ConstantIndexOp>(loc, offset));
}
// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO: Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
unsigned dropFront = 0,
unsigned dropBack = 0) {
assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
auto range = arrayAttr.getAsRange<IntegerAttr>();
SmallVector<int64_t, 4> res;
res.reserve(arrayAttr.size() - dropFront - dropBack);
for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
it != eit; ++it)
res.push_back((*it).getValue().getSExtValue());
return res;
}
// Helper that returns a vector comparison that constructs a mask:
// mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
//
// NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
// much more compact, IR for this operation, but LLVM eventually
// generates more elaborate instructions for this intrinsic since it
// is very conservative on the boundary conditions.
static Value buildVectorComparison(ConversionPatternRewriter &rewriter,
Operation *op, bool enableIndexOptimizations,
int64_t dim, Value b, Value *off = nullptr) {
auto loc = op->getLoc();
// If we can assume all indices fit in 32-bit, we perform the vector
// comparison in 32-bit to get a higher degree of SIMD parallelism.
// Otherwise we perform the vector comparison using 64-bit indices.
Value indices;
Type idxType;
if (enableIndexOptimizations) {
indices = rewriter.create<ConstantOp>(
loc, rewriter.getI32VectorAttr(
llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))));
idxType = rewriter.getI32Type();
} else {
indices = rewriter.create<ConstantOp>(
loc, rewriter.getI64VectorAttr(
llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))));
idxType = rewriter.getI64Type();
}
// Add in an offset if requested.
if (off) {
Value o = rewriter.create<IndexCastOp>(loc, idxType, *off);
Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
indices = rewriter.create<AddIOp>(loc, ov, indices);
}
// Construct the vector comparison.
Value bound = rewriter.create<IndexCastOp>(loc, idxType, b);
Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds);
}
// Helper that returns data layout alignment of an operation with memref.
template <typename T>
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op,
unsigned &align) {
Type elementTy =
typeConverter.convertType(op.getMemRefType().getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(),
typeConverter.getDataLayout());
return success();
}
// Helper that returns the base address of a memref.
static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc,
Value memref, MemRefType memRefType, Value &base) {
// Inspect stride and offset structure.
//
// TODO: flat memory only for now, generalize
//
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(memRefType, strides, offset);
if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 ||
offset != 0 || memRefType.getMemorySpace() != 0)
return failure();
base = MemRefDescriptor(memref).alignedPtr(rewriter, loc);
return success();
}
// Helper that returns a pointer given a memref base.
static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
Location loc, Value memref,
MemRefType memRefType, Value &ptr) {
Value base;
if (failed(getBase(rewriter, loc, memref, memRefType, base)))
return failure();
auto pType = MemRefDescriptor(memref).getElementPtrType();
ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
return success();
}
// Helper that returns a bit-casted pointer given a memref base.
static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
Location loc, Value memref,
MemRefType memRefType, Type type, Value &ptr) {
Value base;
if (failed(getBase(rewriter, loc, memref, memRefType, base)))
return failure();
auto pType = type.template cast<LLVM::LLVMType>().getPointerTo();
base = rewriter.create<LLVM::BitcastOp>(loc, pType, base);
ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
return success();
}
// Helper that returns vector of pointers given a memref base and an index
// vector.
static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
Location loc, Value memref, Value indices,
MemRefType memRefType, VectorType vType,
Type iType, Value &ptrs) {
Value base;
if (failed(getBase(rewriter, loc, memref, memRefType, base)))
return failure();
auto pType = MemRefDescriptor(memref).getElementPtrType();
auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0));
ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices);
return success();
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferReadOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
VectorType fillType = xferOp.getVectorType();
Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);
Type vecTy = typeConverter.convertType(xferOp.getVectorType());
if (!vecTy)
return failure();
unsigned align;
if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
xferOp, vecTy, dataPtr, mask, ValueRange{fill},
rewriter.getI32IntegerAttr(align));
return success();
}
static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp,
ArrayRef<Value> operands, Value dataPtr) {
unsigned align;
if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
align);
return success();
}
static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
TransferWriteOp xferOp, ArrayRef<Value> operands,
Value dataPtr, Value mask) {
unsigned align;
if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
return failure();
auto adaptor = TransferWriteOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
xferOp, adaptor.vector(), dataPtr, mask,
rewriter.getI32IntegerAttr(align));
return success();
}
static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
ArrayRef<Value> operands) {
return TransferReadOpAdaptor(operands);
}
static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
ArrayRef<Value> operands) {
return TransferWriteOpAdaptor(operands);
}
namespace {
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorMatmulOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto matmulOp = cast<vector::MatmulOp>(op);
auto adaptor = vector::MatmulOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(),
adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(),
matmulOp.rhs_columns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorFlatTransposeOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto transOp = cast<vector::FlatTransposeOp>(op);
auto adaptor = vector::FlatTransposeOpAdaptor(operands);
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter.convertType(transOp.res().getType()),
adaptor.matrix(), transOp.rows(), transOp.columns());
return success();
}
};
/// Conversion pattern for a vector.maskedload.
class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorMaskedLoadOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto load = cast<vector::MaskedLoadOp>(op);
auto adaptor = vector::MaskedLoadOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(typeConverter, load, align)))
return failure();
auto vtype = typeConverter.convertType(load.getResultVectorType());
Value ptr;
if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(),
vtype, ptr)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.maskedstore.
class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorMaskedStoreOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto store = cast<vector::MaskedStoreOp>(op);
auto adaptor = vector::MaskedStoreOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(typeConverter, store, align)))
return failure();
auto vtype = typeConverter.convertType(store.getValueVectorType());
Value ptr;
if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(),
vtype, ptr)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
store, adaptor.value(), ptr, adaptor.mask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorGatherOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto gather = cast<vector::GatherOp>(op);
auto adaptor = vector::GatherOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(typeConverter, gather, align)))
return failure();
// Get index ptrs.
VectorType vType = gather.getResultVectorType();
Type iType = gather.getIndicesVectorType().getElementType();
Value ptrs;
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
gather.getMemRefType(), vType, iType, ptrs)))
return failure();
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter.convertType(vType), ptrs, adaptor.mask(),
adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorScatterOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto scatter = cast<vector::ScatterOp>(op);
auto adaptor = vector::ScatterOpAdaptor(operands);
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(typeConverter, scatter, align)))
return failure();
// Get index ptrs.
VectorType vType = scatter.getValueVectorType();
Type iType = scatter.getIndicesVectorType().getElementType();
Value ptrs;
if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
scatter.getMemRefType(), vType, iType, ptrs)))
return failure();
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.value(), ptrs, adaptor.mask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExpandLoadOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto expand = cast<vector::ExpandLoadOp>(op);
auto adaptor = vector::ExpandLoadOpAdaptor(operands);
Value ptr;
if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(),
ptr)))
return failure();
auto vType = expand.getResultVectorType();
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
op, typeConverter.convertType(vType), ptr, adaptor.mask(),
adaptor.pass_thru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorCompressStoreOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto compress = cast<vector::CompressStoreOp>(op);
auto adaptor = vector::CompressStoreOpAdaptor(operands);
Value ptr;
if (failed(getBasePtr(rewriter, loc, adaptor.base(),
compress.getMemRefType(), ptr)))
return failure();
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
op, adaptor.value(), ptr, adaptor.mask());
return success();
}
};
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorReductionOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter,
bool reassociateFPRed)
: ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
typeConverter),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto reductionOp = cast<vector::ReductionOp>(op);
auto kind = reductionOp.kind();
Type eltType = reductionOp.dest().getType();
Type llvmType = typeConverter.convertType(eltType);
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
if (kind == "add")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(
op, llvmType, operands[0]);
else if (kind == "mul")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(
op, llvmType, operands[0]);
else if (kind == "min" &&
(eltType.isIndex() || eltType.isUnsignedInteger()))
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
op, llvmType, operands[0]);
else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
op, llvmType, operands[0]);
else if (kind == "max" &&
(eltType.isIndex() || eltType.isUnsignedInteger()))
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
op, llvmType, operands[0]);
else if (kind == "and")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(
op, llvmType, operands[0]);
else if (kind == "or")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(
op, llvmType, operands[0]);
else if (kind == "xor")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(
op, llvmType, operands[0]);
else
return failure();
return success();
} else if (eltType.isa<FloatType>()) {
// Floating-point reductions: add/mul/min/max
if (kind == "add") {
// Optional accumulator (or zero).
Value acc = operands.size() > 1 ? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getZeroAttr(eltType));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
op, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "mul") {
// Optional accumulator (or one).
Value acc = operands.size() > 1
? operands[1]
: rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmType,
rewriter.getFloatAttr(eltType, 1.0));
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
op, llvmType, acc, operands[0],
rewriter.getBoolAttr(reassociateFPReductions));
} else if (kind == "min")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(
op, llvmType, operands[0]);
else if (kind == "max")
rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(
op, llvmType, operands[0]);
else
return failure();
return success();
}
return failure();
}
private:
const bool reassociateFPReductions;
};
/// Conversion pattern for a vector.create_mask (1-D only).
class VectorCreateMaskOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorCreateMaskOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter,
bool enableIndexOpt)
: ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context,
typeConverter),
enableIndexOptimizations(enableIndexOpt) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = op->getResult(0).getType().cast<VectorType>();
int64_t rank = dstType.getRank();
if (rank == 1) {
rewriter.replaceOp(
op, buildVectorComparison(rewriter, op, enableIndexOptimizations,
dstType.getDimSize(0), operands[0]));
return success();
}
return failure();
}
private:
const bool enableIndexOptimizations;
};
class VectorShuffleOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorShuffleOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ShuffleOpAdaptor(operands);
auto shuffleOp = cast<vector::ShuffleOp>(op);
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getVectorType();
Type llvmType = typeConverter.convertType(vectorType);
auto maskArrayAttr = shuffleOp.mask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
assert(v1Type.getRank() == rank);
assert(v2Type.getRank() == rank);
int64_t v1Dim = v1Type.getDimSize(0);
// For rank 1, where both operands have *exactly* the same vector type,
// there is direct shuffle support in LLVM. Use it!
if (rank == 1 && v1Type == v2Type) {
Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
rewriter.replaceOp(op, shuffle);
return success();
}
// For all other cases, insert the individual values individually.
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (auto en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = en.value().cast<IntegerAttr>().getInt();
Value value = adaptor.v1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.v2();
}
Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
rank, extPos);
insert = insertOne(rewriter, typeConverter, loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(op, insert);
return success();
}
};
class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::ExtractElementOpAdaptor(operands);
auto extractEltOp = cast<vector::ExtractElementOp>(op);
auto vectorType = extractEltOp.getVectorType();
auto llvmType = typeConverter.convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
op, llvmType, adaptor.vector(), adaptor.position());
return success();
}
};
class VectorExtractOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorExtractOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ExtractOpAdaptor(operands);
auto extractOp = cast<vector::ExtractOp>(op);
auto vectorType = extractOp.getVectorType();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter.convertType(resultType);
auto positionArrayAttr = extractOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(op, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
auto oneDVectorType = reducedVectorTypeBack(vectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(op, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
/// -> !llvm<"<8 x float>">
/// ```
class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
public:
explicit VectorFMAOp1DConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::FMAOpAdaptor(operands);
vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() != 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(),
adaptor.rhs(), adaptor.acc());
return success();
}
};
class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
context, typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto adaptor = vector::InsertElementOpAdaptor(operands);
auto insertEltOp = cast<vector::InsertElementOp>(op);
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter.convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
return success();
}
};
class VectorInsertOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorInsertOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::InsertOpAdaptor(operands);
auto insertOp = cast<vector::InsertOp>(op);
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter.convertType(destVectorType);
auto positionArrayAttr = insertOp.position();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// One-shot insertion of a vector into an array (only requires insertvalue).
if (sourceType.isa<VectorType>()) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, llvmResultType, adaptor.dest(), adaptor.source(),
positionArrayAttr);
rewriter.replaceOp(op, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
auto *context = op->getContext();
Value extracted = adaptor.dest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = positionAttrs.back().cast<IntegerAttr>();
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter.convertType(oneDVectorType), extracted,
adaptor.source(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
adaptor.dest(), inserted,
nMinusOnePositionAttrs);
}
rewriter.replaceOp(op, inserted);
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
auto loc = op.getLoc();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff == 0)
return failure();
int64_t rankRest = dstType.getRank() - rankDiff;
// Extract / insert the subvector of matching rank and InsertStridedSlice
// on it.
Value extracted =
rewriter.create<ExtractOp>(loc, op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
// A different pattern will kick in for InsertStridedSlice with matching
// ranks.
auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
loc, op.source(), extracted,
getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
getI64SubArray(op.strides(), /*dropFront=*/0));
rewriter.replaceOpWithNewOp<InsertOp>(
op, stridedSliceInnerOp.getResult(), op.dest(),
getI64SubArray(op.offsets(), /*dropFront=*/0,
/*dropFront=*/rankRest));
return success();
}
};
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
// 1. the proper subvector is extracted from the destination vector
// 2. a new InsertStridedSlice op is created to insert the source in the
// destination subvector
// 3. the destination subvector is inserted back in the proper place
// 4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
: public OpRewritePattern<InsertStridedSliceOp> {
public:
VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx)
: OpRewritePattern<InsertStridedSliceOp>(ctx) {
// This pattern creates recursive InsertStridedSliceOp, but the recursion is
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto srcType = op.getSourceVectorType();
auto dstType = op.getDestVectorType();
if (op.offsets().getValue().empty())
return failure();
int64_t rankDiff = dstType.getRank() - srcType.getRank();
assert(rankDiff >= 0);
if (rankDiff != 0)
return failure();
if (srcType == dstType) {
rewriter.replaceOp(op, op.source());
return success();
}
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = srcType.getShape().front();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
Value res = op.dest();
// For each slice of the source vector along the most major dimension.
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
// 1. extract the proper subvector (or element) from source
Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
if (extractedSource.getType().isa<VectorType>()) {
// 2. If we have a vector, extract the proper subvector from destination
// Otherwise we are at the element level and no need to recurse.
Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
// 3. Reduce the problem to lowering a new InsertStridedSlice op with
// smaller rank.
extractedSource = rewriter.create<InsertStridedSliceOp>(
loc, extractedSource, extractedDest,
getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
}
// 4. Insert the extractedSource into the res vector.
res = insertOne(rewriter, loc, extractedSource, res, off);
}
rewriter.replaceOp(op, res);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static llvm::Optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(memRefType, strides, offset)))
return None;
if (!strides.empty() && strides.back() != 1)
return None;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getAffineMaps().empty() ||
memRefType.getAffineMaps().front().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamicStrideOrOffset(strides[index]) ||
ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
return None;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return None;
}
return strides;
}
class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
typeConverter) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand().getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult().getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
operands[0].getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return failure();
MemRefDescriptor sourceMemRef(operands[0]);
auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, [](int64_t stride) {
return ShapedType::isDynamicStrideOrOffset(stride);
}))
return failure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementPtrType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(op, {desc});
return success();
}
};
/// Conversion pattern that converts a 1-D vector transfer read/write op in a
/// sequence of:
/// 1. Get the source/dst address as an LLVM vector pointer.
/// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
/// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
/// 4. Create a mask where offsetVector is compared against memref upper bound.
/// 5. Rewrite op as a masked read or write.
template <typename ConcreteOp>
class VectorTransferConversion : public ConvertToLLVMPattern {
public:
explicit VectorTransferConversion(MLIRContext *context,
LLVMTypeConverter &typeConv,
bool enableIndexOpt)
: ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv),
enableIndexOptimizations(enableIndexOpt) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto xferOp = cast<ConcreteOp>(op);
auto adaptor = getTransferOpAdapter(xferOp, operands);
if (xferOp.getVectorType().getRank() > 1 ||
llvm::size(xferOp.indices()) == 0)
return failure();
if (xferOp.permutation_map() !=
AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
xferOp.getVectorType().getRank(),
op->getContext()))
return failure();
// Only contiguous source tensors supported atm.
auto strides = computeContiguousStrides(xferOp.getMemRefType());
if (!strides)
return failure();
auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
Location loc = op->getLoc();
MemRefType memRefType = xferOp.getMemRefType();
if (auto memrefVectorElementType =
memRefType.getElementType().dyn_cast<VectorType>()) {
// Memref has vector element type.
if (memrefVectorElementType.getElementType() !=
xferOp.getVectorType().getElementType())
return failure();
#ifndef NDEBUG
// Check that memref vector type is a suffix of 'vectorType.
unsigned memrefVecEltRank = memrefVectorElementType.getRank();
unsigned resultVecRank = xferOp.getVectorType().getRank();
assert(memrefVecEltRank <= resultVecRank);
// TODO: Move this to isSuffix in Vector/Utils.h.
unsigned rankOffset = resultVecRank - memrefVecEltRank;
auto memrefVecEltShape = memrefVectorElementType.getShape();
auto resultVecShape = xferOp.getVectorType().getShape();
for (unsigned i = 0; i < memrefVecEltRank; ++i)
assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
"memref vector element shape should match suffix of vector "
"result shape.");
#endif // ifndef NDEBUG
}
// 1. Get the source/dst address as an LLVM vector pointer.
// The vector pointer would always be on address space 0, therefore
// addrspacecast shall be used when source/dst memrefs are not on
// address space 0.
// TODO: support alignment when possible.
Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(),
adaptor.indices(), rewriter);
auto vecTy =
toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>();
Value vectorDataPtr;
if (memRefType.getMemorySpace() == 0)
vectorDataPtr =
rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr);
else
vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc, vecTy.getPointerTo(), dataPtr);
if (!xferOp.isMaskedDim(0))
return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc,
xferOp, operands, vectorDataPtr);
// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
// 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
// 4. Let dim the memref dimension, compute the vector comparison mask:
// [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
//
// TODO: when the leaf transfer rank is k > 1, we need the last `k`
// dimensions here.
unsigned vecWidth = vecTy.getVectorNumElements();
unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
Value off = xferOp.indices()[lastIndex];
Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex);
Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations,
vecWidth, dim, &off);
// 5. Rewrite as a masked read / write.
return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp,
operands, vectorDataPtr, mask);
}
private:
const bool enableIndexOptimizations;
};
class VectorPrintOpConversion : public ConvertToLLVMPattern {
public:
explicit VectorPrintOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
typeConverter) {}
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto printOp = cast<vector::PrintOp>(op);
auto adaptor = vector::PrintOpAdaptor(operands);
Type printType = printOp.getPrintType();
if (typeConverter.convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
Operation *printer;
if (eltType.isF32()) {
printer = getPrintFloat(op);
} else if (eltType.isF64()) {
printer = getPrintDouble(op);
} else if (eltType.isIndex()) {
printer = getPrintU64(op);
} else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer = getPrintU64(op);
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer = getPrintI64(op);
} else {
return failure();
}
}
} else {
return failure();
}
// Unroll vector into elementary print calls.
int64_t rank = vectorType ? vectorType.getRank() : 0;
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank,
conversion);
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
rewriter.eraseOp(op);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64
// clang-format on
};
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, VectorType vectorType, Operation *printer,
int64_t rank, PrintConversion conversion) const {
Location loc = op->getLoc();
if (rank == 0) {
switch (conversion) {
case PrintConversion::ZeroExt64:
value = rewriter.create<ZeroExtendIOp>(
loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext()));
break;
case PrintConversion::SignExt64:
value = rewriter.create<SignExtendIOp>(
loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext()));
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = typeConverter.convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value nestedVal =
extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, TypeRange(),
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, StringRef name,
ArrayRef<LLVM::LLVMType> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMType::getFunctionTy(
LLVM::LLVMType::getVoidTy(op->getContext()), params,
/*isVarArg=*/false));
}
// Helpers for method names.
Operation *getPrintI64(Operation *op) const {
return getPrint(op, "printI64",
LLVM::LLVMType::getInt64Ty(op->getContext()));
}
Operation *getPrintU64(Operation *op) const {
return getPrint(op, "printU64",
LLVM::LLVMType::getInt64Ty(op->getContext()));
}
Operation *getPrintFloat(Operation *op) const {
return getPrint(op, "printF32",
LLVM::LLVMType::getFloatTy(op->getContext()));
}
Operation *getPrintDouble(Operation *op) const {
return getPrint(op, "printF64",
LLVM::LLVMType::getDoubleTy(op->getContext()));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, "printOpen", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, "printClose", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, "printComma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, "printNewline", {});
}
};
/// Progressive lowering of ExtractStridedSliceOp to either:
/// 1. express single offset extract as a direct shuffle.
/// 2. extract + lower rank strided_slice + insert for the n-D case.
class VectorExtractStridedSliceOpConversion
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
VectorExtractStridedSliceOpConversion(MLIRContext *ctx)
: OpRewritePattern<ExtractStridedSliceOp>(ctx) {
// This pattern creates recursive ExtractStridedSliceOp, but the recursion
// is bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getResult().getType().cast<VectorType>();
assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
int64_t offset =
op.offsets().getValue().front().cast<IntegerAttr>().getInt();
int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
int64_t stride =
op.strides().getValue().front().cast<IntegerAttr>().getInt();
auto loc = op.getLoc();
auto elemType = dstType.getElementType();
assert(elemType.isSignlessIntOrIndexOrFloat());
// Single offset can be more efficiently shuffled.
if (op.offsets().getValue().size() == 1) {
SmallVector<int64_t, 4> offsets;
offsets.reserve(size);
for (int64_t off = offset, e = offset + size * stride; off < e;
off += stride)
offsets.push_back(off);
rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
op.vector(),
rewriter.getI64ArrayAttr(offsets));
return success();
}
// Extract/insert on a lower ranked extract strided slice op.
Value zero = rewriter.create<ConstantOp>(loc, elemType,
rewriter.getZeroAttr(elemType));
Value res = rewriter.create<SplatOp>(loc, dstType, zero);
for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
off += stride, ++idx) {
Value one = extractOne(rewriter, loc, op.vector(), off);
Value extracted = rewriter.create<ExtractStridedSliceOp>(
loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
getI64SubArray(op.sizes(), /* dropFront=*/1),
getI64SubArray(op.strides(), /* dropFront=*/1));
res = insertOne(rewriter, loc, extracted, res, idx);
}
rewriter.replaceOp(op, res);
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
bool reassociateFPReductions, bool enableIndexOptimizations) {
MLIRContext *ctx = converter.getDialect()->getContext();
// clang-format off
patterns.insert<VectorFMAOpNDRewritePattern,
VectorInsertStridedSliceOpDifferentRankRewritePattern,
VectorInsertStridedSliceOpSameRankRewritePattern,
VectorExtractStridedSliceOpConversion>(ctx);
patterns.insert<VectorReductionOpConversion>(
ctx, converter, reassociateFPReductions);
patterns.insert<VectorCreateMaskOpConversion,
VectorTransferConversion<TransferReadOp>,
VectorTransferConversion<TransferWriteOp>>(
ctx, converter, enableIndexOptimizations);
patterns
.insert<VectorShuffleOpConversion,
VectorExtractElementOpConversion,
VectorExtractOpConversion,
VectorFMAOp1DConversion,
VectorInsertElementOpConversion,
VectorInsertOpConversion,
VectorPrintOpConversion,
VectorTypeCastOpConversion,
VectorMaskedLoadOpConversion,
VectorMaskedStoreOpConversion,
VectorGatherOpConversion,
VectorScatterOpConversion,
VectorExpandLoadOpConversion,
VectorCompressStoreOpConversion>(ctx, converter);
// clang-format on
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.insert<VectorMatmulOpConversion>(ctx, converter);
patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter);
}
namespace {
struct LowerVectorToLLVMPass
: public ConvertVectorToLLVMBase<LowerVectorToLLVMPass> {
LowerVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
this->reassociateFPReductions = options.reassociateFPReductions;
this->enableIndexOptimizations = options.enableIndexOptimizations;
}
void runOnOperation() override;
};
} // namespace
void LowerVectorToLLVMPass::runOnOperation() {
// Perform progressive lowering of operations on slices and
// all contraction operations. Also applies folding and DCE.
{
OwningRewritePatternList patterns;
populateVectorToVectorCanonicalizationPatterns(patterns, &getContext());
populateVectorSlicesLoweringPatterns(patterns, &getContext());
populateVectorContractLoweringPatterns(patterns, &getContext());
applyPatternsAndFoldGreedily(getOperation(), patterns);
}
// Convert to the LLVM IR dialect.
LLVMTypeConverter converter(&getContext());
OwningRewritePatternList patterns;
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(
converter, patterns, reassociateFPReductions, enableIndexOptimizations);
populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
return std::make_unique<LowerVectorToLLVMPass>(options);
}