Kate Stone b9c1b51e45 *** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style.  This kind of mass change has
*** two obvious implications:

Firstly, merging this particular commit into a downstream fork may be a huge
effort.  Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit.  The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):

    find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
    find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;

The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.

Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit.  There are alternatives available that will attempt
to look through this change and find the appropriate prior commit.  YMMV.

llvm-svn: 280751
2016-09-06 20:57:50 +00:00

127 lines
4.7 KiB
Python
Executable File

#!/usr/bin/python
#----------------------------------------------------------------------
# Be sure to add the python path that points to the LLDB shared library.
# On MacOSX csh, tcsh:
# setenv PYTHONPATH /Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Python
# On MacOSX sh, bash:
# export PYTHONPATH=/Developer/Library/PrivateFrameworks/LLDB.framework/Resources/Python
#----------------------------------------------------------------------
import lldb
import os
import sys
def disassemble_instructions(insts):
for i in insts:
print i
def usage():
print "Usage: disasm.py [-n name] executable-image"
print " By default, it breaks at and disassembles the 'main' function."
sys.exit(0)
if len(sys.argv) == 2:
fname = 'main'
exe = sys.argv[1]
elif len(sys.argv) == 4:
if sys.argv[1] != '-n':
usage()
else:
fname = sys.argv[2]
exe = sys.argv[3]
else:
usage()
# Create a new debugger instance
debugger = lldb.SBDebugger.Create()
# When we step or continue, don't return from the function until the process
# stops. We do this by setting the async mode to false.
debugger.SetAsync(False)
# Create a target from a file and arch
print "Creating a target for '%s'" % exe
target = debugger.CreateTargetWithFileAndArch(exe, lldb.LLDB_ARCH_DEFAULT)
if target:
# If the target is valid set a breakpoint at main
main_bp = target.BreakpointCreateByName(
fname, target.GetExecutable().GetFilename())
print main_bp
# Launch the process. Since we specified synchronous mode, we won't return
# from this function until we hit the breakpoint at main
process = target.LaunchSimple(None, None, os.getcwd())
# Make sure the launch went ok
if process:
# Print some simple process info
state = process.GetState()
print process
if state == lldb.eStateStopped:
# Get the first thread
thread = process.GetThreadAtIndex(0)
if thread:
# Print some simple thread info
print thread
# Get the first frame
frame = thread.GetFrameAtIndex(0)
if frame:
# Print some simple frame info
print frame
function = frame.GetFunction()
# See if we have debug info (a function)
if function:
# We do have a function, print some info for the
# function
print function
# Now get all instructions for this function and print
# them
insts = function.GetInstructions(target)
disassemble_instructions(insts)
else:
# See if we have a symbol in the symbol table for where
# we stopped
symbol = frame.GetSymbol()
if symbol:
# We do have a symbol, print some info for the
# symbol
print symbol
# Now get all instructions for this symbol and
# print them
insts = symbol.GetInstructions(target)
disassemble_instructions(insts)
registerList = frame.GetRegisters()
print "Frame registers (size of register set = %d):" % registerList.GetSize()
for value in registerList:
# print value
print "%s (number of children = %d):" % (value.GetName(), value.GetNumChildren())
for child in value:
print "Name: ", child.GetName(), " Value: ", child.GetValue()
print "Hit the breakpoint at main, enter to continue and wait for program to exit or 'Ctrl-D'/'quit' to terminate the program"
next = sys.stdin.readline()
if not next or next.rstrip('\n') == 'quit':
print "Terminating the inferior process..."
process.Kill()
else:
# Now continue to the program exit
process.Continue()
# When we return from the above function we will hopefully be at the
# program exit. Print out some process info
print process
elif state == lldb.eStateExited:
print "Didn't hit the breakpoint at main, program has exited..."
else:
print "Unexpected process state: %s, killing process..." % debugger.StateAsCString(state)
process.Kill()
lldb.SBDebugger.Terminate()