llvm-capstone/lldb/source/Core/ArchSpec.cpp
Kate Stone b9c1b51e45 *** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style.  This kind of mass change has
*** two obvious implications:

Firstly, merging this particular commit into a downstream fork may be a huge
effort.  Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit.  The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):

    find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
    find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;

The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.

Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit.  There are alternatives available that will attempt
to look through this change and find the appropriate prior commit.  YMMV.

llvm-svn: 280751
2016-09-06 20:57:50 +00:00

1634 lines
59 KiB
C++

//===-- ArchSpec.cpp --------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ArchSpec.h"
// C Includes
// C++ Includes
#include <cerrno>
#include <cstdio>
#include <string>
// Other libraries and framework includes
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Host.h"
// Project includes
#include "Plugins/Process/Utility/ARMDefines.h"
#include "Plugins/Process/Utility/InstructionUtils.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StringList.h"
#include "lldb/Host/Endian.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/NameMatches.h"
#include "lldb/Utility/SafeMachO.h"
using namespace lldb;
using namespace lldb_private;
static bool cores_match(const ArchSpec::Core core1, const ArchSpec::Core core2,
bool try_inverse, bool enforce_exact_match);
namespace lldb_private {
struct CoreDefinition {
ByteOrder default_byte_order;
uint32_t addr_byte_size;
uint32_t min_opcode_byte_size;
uint32_t max_opcode_byte_size;
llvm::Triple::ArchType machine;
ArchSpec::Core core;
const char *const name;
};
} // namespace lldb_private
// This core information can be looked using the ArchSpec::Core as the index
static const CoreDefinition g_core_definitions[] = {
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_generic,
"arm"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv4,
"armv4"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv4t,
"armv4t"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv5,
"armv5"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv5e,
"armv5e"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv5t,
"armv5t"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv6,
"armv6"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv6m,
"armv6m"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7,
"armv7"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7f,
"armv7f"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7s,
"armv7s"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7k,
"armv7k"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7m,
"armv7m"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_armv7em,
"armv7em"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::arm, ArchSpec::eCore_arm_xscale,
"xscale"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumb,
"thumb"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv4t,
"thumbv4t"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv5,
"thumbv5"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv5e,
"thumbv5e"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv6,
"thumbv6"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv6m,
"thumbv6m"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7,
"thumbv7"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7f,
"thumbv7f"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7s,
"thumbv7s"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7k,
"thumbv7k"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7m,
"thumbv7m"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb, ArchSpec::eCore_thumbv7em,
"thumbv7em"},
{eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64,
ArchSpec::eCore_arm_arm64, "arm64"},
{eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64,
ArchSpec::eCore_arm_armv8, "armv8"},
{eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64,
ArchSpec::eCore_arm_aarch64, "aarch64"},
// mips32, mips32r2, mips32r3, mips32r5, mips32r6
{eByteOrderBig, 4, 2, 4, llvm::Triple::mips, ArchSpec::eCore_mips32,
"mips"},
{eByteOrderBig, 4, 2, 4, llvm::Triple::mips, ArchSpec::eCore_mips32r2,
"mipsr2"},
{eByteOrderBig, 4, 2, 4, llvm::Triple::mips, ArchSpec::eCore_mips32r3,
"mipsr3"},
{eByteOrderBig, 4, 2, 4, llvm::Triple::mips, ArchSpec::eCore_mips32r5,
"mipsr5"},
{eByteOrderBig, 4, 2, 4, llvm::Triple::mips, ArchSpec::eCore_mips32r6,
"mipsr6"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel, ArchSpec::eCore_mips32el,
"mipsel"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel,
ArchSpec::eCore_mips32r2el, "mipsr2el"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel,
ArchSpec::eCore_mips32r3el, "mipsr3el"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel,
ArchSpec::eCore_mips32r5el, "mipsr5el"},
{eByteOrderLittle, 4, 2, 4, llvm::Triple::mipsel,
ArchSpec::eCore_mips32r6el, "mipsr6el"},
// mips64, mips64r2, mips64r3, mips64r5, mips64r6
{eByteOrderBig, 8, 2, 4, llvm::Triple::mips64, ArchSpec::eCore_mips64,
"mips64"},
{eByteOrderBig, 8, 2, 4, llvm::Triple::mips64, ArchSpec::eCore_mips64r2,
"mips64r2"},
{eByteOrderBig, 8, 2, 4, llvm::Triple::mips64, ArchSpec::eCore_mips64r3,
"mips64r3"},
{eByteOrderBig, 8, 2, 4, llvm::Triple::mips64, ArchSpec::eCore_mips64r5,
"mips64r5"},
{eByteOrderBig, 8, 2, 4, llvm::Triple::mips64, ArchSpec::eCore_mips64r6,
"mips64r6"},
{eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el,
ArchSpec::eCore_mips64el, "mips64el"},
{eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el,
ArchSpec::eCore_mips64r2el, "mips64r2el"},
{eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el,
ArchSpec::eCore_mips64r3el, "mips64r3el"},
{eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el,
ArchSpec::eCore_mips64r5el, "mips64r5el"},
{eByteOrderLittle, 8, 2, 4, llvm::Triple::mips64el,
ArchSpec::eCore_mips64r6el, "mips64r6el"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_generic,
"powerpc"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc601,
"ppc601"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc602,
"ppc602"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc603,
"ppc603"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc603e,
"ppc603e"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc603ev,
"ppc603ev"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc604,
"ppc604"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc604e,
"ppc604e"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc620,
"ppc620"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc750,
"ppc750"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc7400,
"ppc7400"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc7450,
"ppc7450"},
{eByteOrderBig, 4, 4, 4, llvm::Triple::ppc, ArchSpec::eCore_ppc_ppc970,
"ppc970"},
{eByteOrderBig, 8, 4, 4, llvm::Triple::ppc64, ArchSpec::eCore_ppc64_generic,
"powerpc64"},
{eByteOrderBig, 8, 4, 4, llvm::Triple::ppc64,
ArchSpec::eCore_ppc64_ppc970_64, "ppc970-64"},
{eByteOrderBig, 8, 2, 6, llvm::Triple::systemz,
ArchSpec::eCore_s390x_generic, "s390x"},
{eByteOrderLittle, 4, 4, 4, llvm::Triple::sparc,
ArchSpec::eCore_sparc_generic, "sparc"},
{eByteOrderLittle, 8, 4, 4, llvm::Triple::sparcv9,
ArchSpec::eCore_sparc9_generic, "sparcv9"},
{eByteOrderLittle, 4, 1, 15, llvm::Triple::x86, ArchSpec::eCore_x86_32_i386,
"i386"},
{eByteOrderLittle, 4, 1, 15, llvm::Triple::x86, ArchSpec::eCore_x86_32_i486,
"i486"},
{eByteOrderLittle, 4, 1, 15, llvm::Triple::x86,
ArchSpec::eCore_x86_32_i486sx, "i486sx"},
{eByteOrderLittle, 4, 1, 15, llvm::Triple::x86, ArchSpec::eCore_x86_32_i686,
"i686"},
{eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64,
ArchSpec::eCore_x86_64_x86_64, "x86_64"},
{eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64,
ArchSpec::eCore_x86_64_x86_64h, "x86_64h"},
{eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon,
ArchSpec::eCore_hexagon_generic, "hexagon"},
{eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon,
ArchSpec::eCore_hexagon_hexagonv4, "hexagonv4"},
{eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon,
ArchSpec::eCore_hexagon_hexagonv5, "hexagonv5"},
{eByteOrderLittle, 4, 4, 4, llvm::Triple::UnknownArch,
ArchSpec::eCore_uknownMach32, "unknown-mach-32"},
{eByteOrderLittle, 8, 4, 4, llvm::Triple::UnknownArch,
ArchSpec::eCore_uknownMach64, "unknown-mach-64"},
{eByteOrderBig, 4, 1, 1, llvm::Triple::kalimba, ArchSpec::eCore_kalimba3,
"kalimba3"},
{eByteOrderLittle, 4, 1, 1, llvm::Triple::kalimba, ArchSpec::eCore_kalimba4,
"kalimba4"},
{eByteOrderLittle, 4, 1, 1, llvm::Triple::kalimba, ArchSpec::eCore_kalimba5,
"kalimba5"}};
// Ensure that we have an entry in the g_core_definitions for each core. If you
// comment out an entry above,
// you will need to comment out the corresponding ArchSpec::Core enumeration.
static_assert(sizeof(g_core_definitions) / sizeof(CoreDefinition) ==
ArchSpec::kNumCores,
"make sure we have one core definition for each core");
struct ArchDefinitionEntry {
ArchSpec::Core core;
uint32_t cpu;
uint32_t sub;
uint32_t cpu_mask;
uint32_t sub_mask;
};
struct ArchDefinition {
ArchitectureType type;
size_t num_entries;
const ArchDefinitionEntry *entries;
const char *name;
};
size_t ArchSpec::AutoComplete(const char *name, StringList &matches) {
if (name && name[0]) {
for (uint32_t i = 0; i < llvm::array_lengthof(g_core_definitions); ++i) {
if (NameMatches(g_core_definitions[i].name, eNameMatchStartsWith, name))
matches.AppendString(g_core_definitions[i].name);
}
} else {
for (uint32_t i = 0; i < llvm::array_lengthof(g_core_definitions); ++i)
matches.AppendString(g_core_definitions[i].name);
}
return matches.GetSize();
}
#define CPU_ANY (UINT32_MAX)
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
#define SUBTYPE_MASK 0x00FFFFFFu
static const ArchDefinitionEntry g_macho_arch_entries[] = {
{ArchSpec::eCore_arm_generic, llvm::MachO::CPU_TYPE_ARM, CPU_ANY,
UINT32_MAX, UINT32_MAX},
{ArchSpec::eCore_arm_generic, llvm::MachO::CPU_TYPE_ARM, 0, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv4, llvm::MachO::CPU_TYPE_ARM, 5, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv4t, llvm::MachO::CPU_TYPE_ARM, 5, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv6, llvm::MachO::CPU_TYPE_ARM, 6, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv6m, llvm::MachO::CPU_TYPE_ARM, 14, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv5, llvm::MachO::CPU_TYPE_ARM, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv5e, llvm::MachO::CPU_TYPE_ARM, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv5t, llvm::MachO::CPU_TYPE_ARM, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_xscale, llvm::MachO::CPU_TYPE_ARM, 8, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7, llvm::MachO::CPU_TYPE_ARM, 9, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7f, llvm::MachO::CPU_TYPE_ARM, 10, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7s, llvm::MachO::CPU_TYPE_ARM, 11, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7k, llvm::MachO::CPU_TYPE_ARM, 12, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7m, llvm::MachO::CPU_TYPE_ARM, 15, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_armv7em, llvm::MachO::CPU_TYPE_ARM, 16, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_arm64, llvm::MachO::CPU_TYPE_ARM64, 1, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_arm64, llvm::MachO::CPU_TYPE_ARM64, 0, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_arm64, llvm::MachO::CPU_TYPE_ARM64, 13, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_arm_arm64, llvm::MachO::CPU_TYPE_ARM64, CPU_ANY,
UINT32_MAX, SUBTYPE_MASK},
{ArchSpec::eCore_thumb, llvm::MachO::CPU_TYPE_ARM, 0, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv4t, llvm::MachO::CPU_TYPE_ARM, 5, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv5, llvm::MachO::CPU_TYPE_ARM, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv5e, llvm::MachO::CPU_TYPE_ARM, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv6, llvm::MachO::CPU_TYPE_ARM, 6, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv6m, llvm::MachO::CPU_TYPE_ARM, 14, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7, llvm::MachO::CPU_TYPE_ARM, 9, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7f, llvm::MachO::CPU_TYPE_ARM, 10, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7s, llvm::MachO::CPU_TYPE_ARM, 11, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7k, llvm::MachO::CPU_TYPE_ARM, 12, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7m, llvm::MachO::CPU_TYPE_ARM, 15, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_thumbv7em, llvm::MachO::CPU_TYPE_ARM, 16, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_generic, llvm::MachO::CPU_TYPE_POWERPC, CPU_ANY,
UINT32_MAX, UINT32_MAX},
{ArchSpec::eCore_ppc_generic, llvm::MachO::CPU_TYPE_POWERPC, 0, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc601, llvm::MachO::CPU_TYPE_POWERPC, 1, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc602, llvm::MachO::CPU_TYPE_POWERPC, 2, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc603, llvm::MachO::CPU_TYPE_POWERPC, 3, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc603e, llvm::MachO::CPU_TYPE_POWERPC, 4, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc603ev, llvm::MachO::CPU_TYPE_POWERPC, 5, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc604, llvm::MachO::CPU_TYPE_POWERPC, 6, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc604e, llvm::MachO::CPU_TYPE_POWERPC, 7, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc620, llvm::MachO::CPU_TYPE_POWERPC, 8, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc750, llvm::MachO::CPU_TYPE_POWERPC, 9, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc7400, llvm::MachO::CPU_TYPE_POWERPC, 10, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc7450, llvm::MachO::CPU_TYPE_POWERPC, 11, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc_ppc970, llvm::MachO::CPU_TYPE_POWERPC, 100, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_ppc64_generic, llvm::MachO::CPU_TYPE_POWERPC64, 0,
UINT32_MAX, SUBTYPE_MASK},
{ArchSpec::eCore_ppc64_ppc970_64, llvm::MachO::CPU_TYPE_POWERPC64, 100,
UINT32_MAX, SUBTYPE_MASK},
{ArchSpec::eCore_x86_32_i386, llvm::MachO::CPU_TYPE_I386, 3, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_x86_32_i486, llvm::MachO::CPU_TYPE_I386, 4, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_x86_32_i486sx, llvm::MachO::CPU_TYPE_I386, 0x84,
UINT32_MAX, SUBTYPE_MASK},
{ArchSpec::eCore_x86_32_i386, llvm::MachO::CPU_TYPE_I386, CPU_ANY,
UINT32_MAX, UINT32_MAX},
{ArchSpec::eCore_x86_64_x86_64, llvm::MachO::CPU_TYPE_X86_64, 3, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_x86_64_x86_64, llvm::MachO::CPU_TYPE_X86_64, 4, UINT32_MAX,
SUBTYPE_MASK},
{ArchSpec::eCore_x86_64_x86_64h, llvm::MachO::CPU_TYPE_X86_64, 8,
UINT32_MAX, SUBTYPE_MASK},
{ArchSpec::eCore_x86_64_x86_64, llvm::MachO::CPU_TYPE_X86_64, CPU_ANY,
UINT32_MAX, UINT32_MAX},
// Catch any unknown mach architectures so we can always use the object and
// symbol mach-o files
{ArchSpec::eCore_uknownMach32, 0, 0, 0xFF000000u, 0x00000000u},
{ArchSpec::eCore_uknownMach64, llvm::MachO::CPU_ARCH_ABI64, 0, 0xFF000000u,
0x00000000u}};
static const ArchDefinition g_macho_arch_def = {
eArchTypeMachO, llvm::array_lengthof(g_macho_arch_entries),
g_macho_arch_entries, "mach-o"};
//===----------------------------------------------------------------------===//
// A table that gets searched linearly for matches. This table is used to
// convert cpu type and subtypes to architecture names, and to convert
// architecture names to cpu types and subtypes. The ordering is important and
// allows the precedence to be set when the table is built.
static const ArchDefinitionEntry g_elf_arch_entries[] = {
{ArchSpec::eCore_sparc_generic, llvm::ELF::EM_SPARC, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // Sparc
{ArchSpec::eCore_x86_32_i386, llvm::ELF::EM_386, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // Intel 80386
{ArchSpec::eCore_x86_32_i486, llvm::ELF::EM_IAMCU, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // Intel MCU // FIXME: is this correct?
{ArchSpec::eCore_ppc_generic, llvm::ELF::EM_PPC, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // PowerPC
{ArchSpec::eCore_ppc64_generic, llvm::ELF::EM_PPC64, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // PowerPC64
{ArchSpec::eCore_arm_generic, llvm::ELF::EM_ARM, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // ARM
{ArchSpec::eCore_arm_aarch64, llvm::ELF::EM_AARCH64, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // ARM64
{ArchSpec::eCore_s390x_generic, llvm::ELF::EM_S390, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // SystemZ
{ArchSpec::eCore_sparc9_generic, llvm::ELF::EM_SPARCV9,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // SPARC V9
{ArchSpec::eCore_x86_64_x86_64, llvm::ELF::EM_X86_64, LLDB_INVALID_CPUTYPE,
0xFFFFFFFFu, 0xFFFFFFFFu}, // AMD64
{ArchSpec::eCore_mips32, llvm::ELF::EM_MIPS, ArchSpec::eMIPSSubType_mips32,
0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32
{ArchSpec::eCore_mips32r2, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips32r2, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32r2
{ArchSpec::eCore_mips32r6, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips32r6, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32r6
{ArchSpec::eCore_mips32el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips32el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32el
{ArchSpec::eCore_mips32r2el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips32r2el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32r2el
{ArchSpec::eCore_mips32r6el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips32r6el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips32r6el
{ArchSpec::eCore_mips64, llvm::ELF::EM_MIPS, ArchSpec::eMIPSSubType_mips64,
0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64
{ArchSpec::eCore_mips64r2, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips64r2, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64r2
{ArchSpec::eCore_mips64r6, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips64r6, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64r6
{ArchSpec::eCore_mips64el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips64el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64el
{ArchSpec::eCore_mips64r2el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips64r2el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64r2el
{ArchSpec::eCore_mips64r6el, llvm::ELF::EM_MIPS,
ArchSpec::eMIPSSubType_mips64r6el, 0xFFFFFFFFu, 0xFFFFFFFFu}, // mips64r6el
{ArchSpec::eCore_hexagon_generic, llvm::ELF::EM_HEXAGON,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // HEXAGON
{ArchSpec::eCore_kalimba3, llvm::ELF::EM_CSR_KALIMBA,
llvm::Triple::KalimbaSubArch_v3, 0xFFFFFFFFu, 0xFFFFFFFFu}, // KALIMBA
{ArchSpec::eCore_kalimba4, llvm::ELF::EM_CSR_KALIMBA,
llvm::Triple::KalimbaSubArch_v4, 0xFFFFFFFFu, 0xFFFFFFFFu}, // KALIMBA
{ArchSpec::eCore_kalimba5, llvm::ELF::EM_CSR_KALIMBA,
llvm::Triple::KalimbaSubArch_v5, 0xFFFFFFFFu, 0xFFFFFFFFu} // KALIMBA
};
static const ArchDefinition g_elf_arch_def = {
eArchTypeELF, llvm::array_lengthof(g_elf_arch_entries), g_elf_arch_entries,
"elf",
};
static const ArchDefinitionEntry g_coff_arch_entries[] = {
{ArchSpec::eCore_x86_32_i386, llvm::COFF::IMAGE_FILE_MACHINE_I386,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // Intel 80x86
{ArchSpec::eCore_ppc_generic, llvm::COFF::IMAGE_FILE_MACHINE_POWERPC,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // PowerPC
{ArchSpec::eCore_ppc_generic, llvm::COFF::IMAGE_FILE_MACHINE_POWERPCFP,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // PowerPC (with FPU)
{ArchSpec::eCore_arm_generic, llvm::COFF::IMAGE_FILE_MACHINE_ARM,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // ARM
{ArchSpec::eCore_arm_armv7, llvm::COFF::IMAGE_FILE_MACHINE_ARMNT,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // ARMv7
{ArchSpec::eCore_thumb, llvm::COFF::IMAGE_FILE_MACHINE_THUMB,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu}, // ARMv7
{ArchSpec::eCore_x86_64_x86_64, llvm::COFF::IMAGE_FILE_MACHINE_AMD64,
LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu} // AMD64
};
static const ArchDefinition g_coff_arch_def = {
eArchTypeCOFF, llvm::array_lengthof(g_coff_arch_entries),
g_coff_arch_entries, "pe-coff",
};
//===----------------------------------------------------------------------===//
// Table of all ArchDefinitions
static const ArchDefinition *g_arch_definitions[] = {
&g_macho_arch_def, &g_elf_arch_def, &g_coff_arch_def};
static const size_t k_num_arch_definitions =
llvm::array_lengthof(g_arch_definitions);
//===----------------------------------------------------------------------===//
// Static helper functions.
// Get the architecture definition for a given object type.
static const ArchDefinition *FindArchDefinition(ArchitectureType arch_type) {
for (unsigned int i = 0; i < k_num_arch_definitions; ++i) {
const ArchDefinition *def = g_arch_definitions[i];
if (def->type == arch_type)
return def;
}
return nullptr;
}
// Get an architecture definition by name.
static const CoreDefinition *FindCoreDefinition(llvm::StringRef name) {
for (unsigned int i = 0; i < llvm::array_lengthof(g_core_definitions); ++i) {
if (name.equals_lower(g_core_definitions[i].name))
return &g_core_definitions[i];
}
return nullptr;
}
static inline const CoreDefinition *FindCoreDefinition(ArchSpec::Core core) {
if (core >= 0 && core < llvm::array_lengthof(g_core_definitions))
return &g_core_definitions[core];
return nullptr;
}
// Get a definition entry by cpu type and subtype.
static const ArchDefinitionEntry *
FindArchDefinitionEntry(const ArchDefinition *def, uint32_t cpu, uint32_t sub) {
if (def == nullptr)
return nullptr;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i) {
if (entries[i].cpu == (cpu & entries[i].cpu_mask))
if (entries[i].sub == (sub & entries[i].sub_mask))
return &entries[i];
}
return nullptr;
}
static const ArchDefinitionEntry *
FindArchDefinitionEntry(const ArchDefinition *def, ArchSpec::Core core) {
if (def == nullptr)
return nullptr;
const ArchDefinitionEntry *entries = def->entries;
for (size_t i = 0; i < def->num_entries; ++i) {
if (entries[i].core == core)
return &entries[i];
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Constructors and destructors.
ArchSpec::ArchSpec()
: m_triple(), m_core(kCore_invalid), m_byte_order(eByteOrderInvalid),
m_flags(0), m_distribution_id() {}
ArchSpec::ArchSpec(const char *triple_cstr, Platform *platform)
: m_triple(), m_core(kCore_invalid), m_byte_order(eByteOrderInvalid),
m_flags(0), m_distribution_id() {
if (triple_cstr)
SetTriple(triple_cstr, platform);
}
ArchSpec::ArchSpec(const char *triple_cstr)
: m_triple(), m_core(kCore_invalid), m_byte_order(eByteOrderInvalid),
m_flags(0), m_distribution_id() {
if (triple_cstr)
SetTriple(triple_cstr);
}
ArchSpec::ArchSpec(const llvm::Triple &triple)
: m_triple(), m_core(kCore_invalid), m_byte_order(eByteOrderInvalid),
m_flags(0), m_distribution_id() {
SetTriple(triple);
}
ArchSpec::ArchSpec(ArchitectureType arch_type, uint32_t cpu, uint32_t subtype)
: m_triple(), m_core(kCore_invalid), m_byte_order(eByteOrderInvalid),
m_flags(0), m_distribution_id() {
SetArchitecture(arch_type, cpu, subtype);
}
ArchSpec::~ArchSpec() = default;
//===----------------------------------------------------------------------===//
// Assignment and initialization.
const ArchSpec &ArchSpec::operator=(const ArchSpec &rhs) {
if (this != &rhs) {
m_triple = rhs.m_triple;
m_core = rhs.m_core;
m_byte_order = rhs.m_byte_order;
m_distribution_id = rhs.m_distribution_id;
m_flags = rhs.m_flags;
}
return *this;
}
void ArchSpec::Clear() {
m_triple = llvm::Triple();
m_core = kCore_invalid;
m_byte_order = eByteOrderInvalid;
m_distribution_id.Clear();
m_flags = 0;
}
//===----------------------------------------------------------------------===//
// Predicates.
const char *ArchSpec::GetArchitectureName() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def)
return core_def->name;
return "unknown";
}
bool ArchSpec::IsMIPS() const {
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::mips || machine == llvm::Triple::mipsel ||
machine == llvm::Triple::mips64 || machine == llvm::Triple::mips64el)
return true;
return false;
}
std::string ArchSpec::GetClangTargetCPU() {
std::string cpu;
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::mips || machine == llvm::Triple::mipsel ||
machine == llvm::Triple::mips64 || machine == llvm::Triple::mips64el) {
switch (m_core) {
case ArchSpec::eCore_mips32:
case ArchSpec::eCore_mips32el:
cpu = "mips32";
break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r2el:
cpu = "mips32r2";
break;
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r3el:
cpu = "mips32r3";
break;
case ArchSpec::eCore_mips32r5:
case ArchSpec::eCore_mips32r5el:
cpu = "mips32r5";
break;
case ArchSpec::eCore_mips32r6:
case ArchSpec::eCore_mips32r6el:
cpu = "mips32r6";
break;
case ArchSpec::eCore_mips64:
case ArchSpec::eCore_mips64el:
cpu = "mips64";
break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r2el:
cpu = "mips64r2";
break;
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r3el:
cpu = "mips64r3";
break;
case ArchSpec::eCore_mips64r5:
case ArchSpec::eCore_mips64r5el:
cpu = "mips64r5";
break;
case ArchSpec::eCore_mips64r6:
case ArchSpec::eCore_mips64r6el:
cpu = "mips64r6";
break;
default:
break;
}
}
return cpu;
}
uint32_t ArchSpec::GetMachOCPUType() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def) {
const ArchDefinitionEntry *arch_def =
FindArchDefinitionEntry(&g_macho_arch_def, core_def->core);
if (arch_def) {
return arch_def->cpu;
}
}
return LLDB_INVALID_CPUTYPE;
}
uint32_t ArchSpec::GetMachOCPUSubType() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def) {
const ArchDefinitionEntry *arch_def =
FindArchDefinitionEntry(&g_macho_arch_def, core_def->core);
if (arch_def) {
return arch_def->sub;
}
}
return LLDB_INVALID_CPUTYPE;
}
uint32_t ArchSpec::GetDataByteSize() const {
switch (m_core) {
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 4;
default:
return 1;
}
return 1;
}
uint32_t ArchSpec::GetCodeByteSize() const {
switch (m_core) {
case eCore_kalimba3:
return 4;
case eCore_kalimba4:
return 1;
case eCore_kalimba5:
return 1;
default:
return 1;
}
return 1;
}
llvm::Triple::ArchType ArchSpec::GetMachine() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def)
return core_def->machine;
return llvm::Triple::UnknownArch;
}
const ConstString &ArchSpec::GetDistributionId() const {
return m_distribution_id;
}
void ArchSpec::SetDistributionId(const char *distribution_id) {
m_distribution_id.SetCString(distribution_id);
}
uint32_t ArchSpec::GetAddressByteSize() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def) {
if (core_def->machine == llvm::Triple::mips64 ||
core_def->machine == llvm::Triple::mips64el) {
// For N32/O32 applications Address size is 4 bytes.
if (m_flags & (eMIPSABI_N32 | eMIPSABI_O32))
return 4;
}
return core_def->addr_byte_size;
}
return 0;
}
ByteOrder ArchSpec::GetDefaultEndian() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def)
return core_def->default_byte_order;
return eByteOrderInvalid;
}
bool ArchSpec::CharIsSignedByDefault() const {
switch (m_triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return m_triple.isOSDarwin() || m_triple.isOSWindows();
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
return m_triple.isOSDarwin();
case llvm::Triple::ppc64le:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
lldb::ByteOrder ArchSpec::GetByteOrder() const {
if (m_byte_order == eByteOrderInvalid)
return GetDefaultEndian();
return m_byte_order;
}
//===----------------------------------------------------------------------===//
// Mutators.
bool ArchSpec::SetTriple(const llvm::Triple &triple) {
m_triple = triple;
llvm::StringRef arch_name(m_triple.getArchName());
const CoreDefinition *core_def = FindCoreDefinition(arch_name);
if (core_def) {
m_core = core_def->core;
// Set the byte order to the default byte order for an architecture.
// This can be modified if needed for cases when cores handle both
// big and little endian
m_byte_order = core_def->default_byte_order;
} else {
Clear();
}
return IsValid();
}
static bool ParseMachCPUDashSubtypeTriple(const char *triple_cstr,
ArchSpec &arch) {
// Accept "12-10" or "12.10" as cpu type/subtype
if (isdigit(triple_cstr[0])) {
char *end = nullptr;
errno = 0;
uint32_t cpu = (uint32_t)::strtoul(triple_cstr, &end, 0);
if (errno == 0 && cpu != 0 && end && ((*end == '-') || (*end == '.'))) {
errno = 0;
uint32_t sub = (uint32_t)::strtoul(end + 1, &end, 0);
if (errno == 0 && end &&
((*end == '-') || (*end == '.') || (*end == '\0'))) {
if (arch.SetArchitecture(eArchTypeMachO, cpu, sub)) {
if (*end == '-') {
llvm::StringRef vendor_os(end + 1);
size_t dash_pos = vendor_os.find('-');
if (dash_pos != llvm::StringRef::npos) {
llvm::StringRef vendor_str(vendor_os.substr(0, dash_pos));
arch.GetTriple().setVendorName(vendor_str);
const size_t vendor_start_pos = dash_pos + 1;
dash_pos = vendor_os.find('-', vendor_start_pos);
if (dash_pos == llvm::StringRef::npos) {
if (vendor_start_pos < vendor_os.size())
arch.GetTriple().setOSName(
vendor_os.substr(vendor_start_pos));
} else {
arch.GetTriple().setOSName(vendor_os.substr(
vendor_start_pos, dash_pos - vendor_start_pos));
}
}
}
return true;
}
}
}
}
return false;
}
bool ArchSpec::SetTriple(const char *triple_cstr) {
if (triple_cstr && triple_cstr[0]) {
if (ParseMachCPUDashSubtypeTriple(triple_cstr, *this))
return true;
llvm::StringRef triple_stref(triple_cstr);
if (triple_stref.startswith(LLDB_ARCH_DEFAULT)) {
// Special case for the current host default architectures...
if (triple_stref.equals(LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
else if (triple_stref.equals(LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
else if (triple_stref.equals(LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
} else {
std::string normalized_triple_sstr(llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
SetTriple(llvm::Triple(triple_stref));
}
} else
Clear();
return IsValid();
}
bool ArchSpec::SetTriple(const char *triple_cstr, Platform *platform) {
if (triple_cstr && triple_cstr[0]) {
if (ParseMachCPUDashSubtypeTriple(triple_cstr, *this))
return true;
llvm::StringRef triple_stref(triple_cstr);
if (triple_stref.startswith(LLDB_ARCH_DEFAULT)) {
// Special case for the current host default architectures...
if (triple_stref.equals(LLDB_ARCH_DEFAULT_32BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind32);
else if (triple_stref.equals(LLDB_ARCH_DEFAULT_64BIT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKind64);
else if (triple_stref.equals(LLDB_ARCH_DEFAULT))
*this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault);
} else {
ArchSpec raw_arch(triple_cstr);
std::string normalized_triple_sstr(llvm::Triple::normalize(triple_stref));
triple_stref = normalized_triple_sstr;
llvm::Triple normalized_triple(triple_stref);
const bool os_specified = normalized_triple.getOSName().size() > 0;
const bool vendor_specified =
normalized_triple.getVendorName().size() > 0;
const bool env_specified =
normalized_triple.getEnvironmentName().size() > 0;
// If we got an arch only, then default the vendor, os, environment
// to match the platform if one is supplied
if (!(os_specified || vendor_specified || env_specified)) {
if (platform) {
// If we were given a platform, use the platform's system
// architecture. If this is not available (might not be
// connected) use the first supported architecture.
ArchSpec compatible_arch;
if (platform->IsCompatibleArchitecture(raw_arch, false,
&compatible_arch)) {
if (compatible_arch.IsValid()) {
const llvm::Triple &compatible_triple =
compatible_arch.GetTriple();
if (!vendor_specified)
normalized_triple.setVendor(compatible_triple.getVendor());
if (!os_specified)
normalized_triple.setOS(compatible_triple.getOS());
if (!env_specified &&
compatible_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(
compatible_triple.getEnvironment());
}
} else {
*this = raw_arch;
return IsValid();
}
} else {
// No platform specified, fall back to the host system for
// the default vendor, os, and environment.
llvm::Triple host_triple(llvm::sys::getDefaultTargetTriple());
if (!vendor_specified)
normalized_triple.setVendor(host_triple.getVendor());
if (!vendor_specified)
normalized_triple.setOS(host_triple.getOS());
if (!env_specified && host_triple.getEnvironmentName().size())
normalized_triple.setEnvironment(host_triple.getEnvironment());
}
}
SetTriple(normalized_triple);
}
} else
Clear();
return IsValid();
}
void ArchSpec::MergeFrom(const ArchSpec &other) {
if (TripleVendorIsUnspecifiedUnknown() &&
!other.TripleVendorIsUnspecifiedUnknown())
GetTriple().setVendor(other.GetTriple().getVendor());
if (TripleOSIsUnspecifiedUnknown() && !other.TripleOSIsUnspecifiedUnknown())
GetTriple().setOS(other.GetTriple().getOS());
if (GetTriple().getArch() == llvm::Triple::UnknownArch)
GetTriple().setArch(other.GetTriple().getArch());
if (GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment &&
!TripleVendorWasSpecified()) {
if (other.TripleVendorWasSpecified())
GetTriple().setEnvironment(other.GetTriple().getEnvironment());
}
// If this and other are both arm ArchSpecs and this ArchSpec is a generic
// "some kind of arm"
// spec but the other ArchSpec is a specific arm core, adopt the specific arm
// core.
if (GetTriple().getArch() == llvm::Triple::arm &&
other.GetTriple().getArch() == llvm::Triple::arm &&
IsCompatibleMatch(other) && GetCore() == ArchSpec::eCore_arm_generic &&
other.GetCore() != ArchSpec::eCore_arm_generic) {
m_core = other.GetCore();
CoreUpdated(true);
}
}
bool ArchSpec::SetArchitecture(ArchitectureType arch_type, uint32_t cpu,
uint32_t sub, uint32_t os) {
m_core = kCore_invalid;
bool update_triple = true;
const ArchDefinition *arch_def = FindArchDefinition(arch_type);
if (arch_def) {
const ArchDefinitionEntry *arch_def_entry =
FindArchDefinitionEntry(arch_def, cpu, sub);
if (arch_def_entry) {
const CoreDefinition *core_def = FindCoreDefinition(arch_def_entry->core);
if (core_def) {
m_core = core_def->core;
update_triple = false;
// Always use the architecture name because it might be more descriptive
// than the architecture enum ("armv7" -> llvm::Triple::arm).
m_triple.setArchName(llvm::StringRef(core_def->name));
if (arch_type == eArchTypeMachO) {
m_triple.setVendor(llvm::Triple::Apple);
// Don't set the OS. It could be simulator, macosx, ios, watchos,
// tvos. We could
// get close with the cpu type - but we can't get it right all of the
// time. Better
// to leave this unset so other sections of code will set it when they
// have more
// information.
// NB: don't call m_triple.setOS (llvm::Triple::UnknownOS). That sets
// the OSName to
// "unknown" and the ArchSpec::TripleVendorWasSpecified() method says
// that any
// OSName setting means it was specified.
} else if (arch_type == eArchTypeELF) {
switch (os) {
case llvm::ELF::ELFOSABI_AIX:
m_triple.setOS(llvm::Triple::OSType::AIX);
break;
case llvm::ELF::ELFOSABI_FREEBSD:
m_triple.setOS(llvm::Triple::OSType::FreeBSD);
break;
case llvm::ELF::ELFOSABI_GNU:
m_triple.setOS(llvm::Triple::OSType::Linux);
break;
case llvm::ELF::ELFOSABI_NETBSD:
m_triple.setOS(llvm::Triple::OSType::NetBSD);
break;
case llvm::ELF::ELFOSABI_OPENBSD:
m_triple.setOS(llvm::Triple::OSType::OpenBSD);
break;
case llvm::ELF::ELFOSABI_SOLARIS:
m_triple.setOS(llvm::Triple::OSType::Solaris);
break;
}
} else {
m_triple.setVendor(llvm::Triple::UnknownVendor);
m_triple.setOS(llvm::Triple::UnknownOS);
}
// Fall back onto setting the machine type if the arch by name failed...
if (m_triple.getArch() == llvm::Triple::UnknownArch)
m_triple.setArch(core_def->machine);
}
}
}
CoreUpdated(update_triple);
return IsValid();
}
uint32_t ArchSpec::GetMinimumOpcodeByteSize() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def)
return core_def->min_opcode_byte_size;
return 0;
}
uint32_t ArchSpec::GetMaximumOpcodeByteSize() const {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def)
return core_def->max_opcode_byte_size;
return 0;
}
bool ArchSpec::IsExactMatch(const ArchSpec &rhs) const {
return IsEqualTo(rhs, true);
}
bool ArchSpec::IsCompatibleMatch(const ArchSpec &rhs) const {
return IsEqualTo(rhs, false);
}
static bool isCompatibleEnvironment(llvm::Triple::EnvironmentType lhs,
llvm::Triple::EnvironmentType rhs) {
if (lhs == rhs)
return true;
// If any of the environment is unknown then they are compatible
if (lhs == llvm::Triple::UnknownEnvironment ||
rhs == llvm::Triple::UnknownEnvironment)
return true;
// If one of the environment is Android and the other one is EABI then they
// are considered to
// be compatible. This is required as a workaround for shared libraries
// compiled for Android
// without the NOTE section indicating that they are using the Android ABI.
if ((lhs == llvm::Triple::Android && rhs == llvm::Triple::EABI) ||
(rhs == llvm::Triple::Android && lhs == llvm::Triple::EABI) ||
(lhs == llvm::Triple::GNUEABI && rhs == llvm::Triple::EABI) ||
(rhs == llvm::Triple::GNUEABI && lhs == llvm::Triple::EABI) ||
(lhs == llvm::Triple::GNUEABIHF && rhs == llvm::Triple::EABIHF) ||
(rhs == llvm::Triple::GNUEABIHF && lhs == llvm::Triple::EABIHF))
return true;
return false;
}
bool ArchSpec::IsEqualTo(const ArchSpec &rhs, bool exact_match) const {
// explicitly ignoring m_distribution_id in this method.
if (GetByteOrder() != rhs.GetByteOrder())
return false;
const ArchSpec::Core lhs_core = GetCore();
const ArchSpec::Core rhs_core = rhs.GetCore();
const bool core_match = cores_match(lhs_core, rhs_core, true, exact_match);
if (core_match) {
const llvm::Triple &lhs_triple = GetTriple();
const llvm::Triple &rhs_triple = rhs.GetTriple();
const llvm::Triple::VendorType lhs_triple_vendor = lhs_triple.getVendor();
const llvm::Triple::VendorType rhs_triple_vendor = rhs_triple.getVendor();
if (lhs_triple_vendor != rhs_triple_vendor) {
const bool rhs_vendor_specified = rhs.TripleVendorWasSpecified();
const bool lhs_vendor_specified = TripleVendorWasSpecified();
// Both architectures had the vendor specified, so if they aren't
// equal then we return false
if (rhs_vendor_specified && lhs_vendor_specified)
return false;
// Only fail if both vendor types are not unknown
if (lhs_triple_vendor != llvm::Triple::UnknownVendor &&
rhs_triple_vendor != llvm::Triple::UnknownVendor)
return false;
}
const llvm::Triple::OSType lhs_triple_os = lhs_triple.getOS();
const llvm::Triple::OSType rhs_triple_os = rhs_triple.getOS();
if (lhs_triple_os != rhs_triple_os) {
const bool rhs_os_specified = rhs.TripleOSWasSpecified();
const bool lhs_os_specified = TripleOSWasSpecified();
// Both architectures had the OS specified, so if they aren't
// equal then we return false
if (rhs_os_specified && lhs_os_specified)
return false;
// Only fail if both os types are not unknown
if (lhs_triple_os != llvm::Triple::UnknownOS &&
rhs_triple_os != llvm::Triple::UnknownOS)
return false;
}
const llvm::Triple::EnvironmentType lhs_triple_env =
lhs_triple.getEnvironment();
const llvm::Triple::EnvironmentType rhs_triple_env =
rhs_triple.getEnvironment();
if (!isCompatibleEnvironment(lhs_triple_env, rhs_triple_env))
return false;
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Helper methods.
void ArchSpec::CoreUpdated(bool update_triple) {
const CoreDefinition *core_def = FindCoreDefinition(m_core);
if (core_def) {
if (update_triple)
m_triple = llvm::Triple(core_def->name, "unknown", "unknown");
m_byte_order = core_def->default_byte_order;
} else {
if (update_triple)
m_triple = llvm::Triple();
m_byte_order = eByteOrderInvalid;
}
}
//===----------------------------------------------------------------------===//
// Operators.
static bool cores_match(const ArchSpec::Core core1, const ArchSpec::Core core2,
bool try_inverse, bool enforce_exact_match) {
if (core1 == core2)
return true;
switch (core1) {
case ArchSpec::kCore_any:
return true;
case ArchSpec::eCore_arm_generic:
if (enforce_exact_match)
break;
LLVM_FALLTHROUGH;
case ArchSpec::kCore_arm_any:
if (core2 >= ArchSpec::kCore_arm_first && core2 <= ArchSpec::kCore_arm_last)
return true;
if (core2 >= ArchSpec::kCore_thumb_first &&
core2 <= ArchSpec::kCore_thumb_last)
return true;
if (core2 == ArchSpec::kCore_arm_any)
return true;
break;
case ArchSpec::kCore_x86_32_any:
if ((core2 >= ArchSpec::kCore_x86_32_first &&
core2 <= ArchSpec::kCore_x86_32_last) ||
(core2 == ArchSpec::kCore_x86_32_any))
return true;
break;
case ArchSpec::kCore_x86_64_any:
if ((core2 >= ArchSpec::kCore_x86_64_first &&
core2 <= ArchSpec::kCore_x86_64_last) ||
(core2 == ArchSpec::kCore_x86_64_any))
return true;
break;
case ArchSpec::kCore_ppc_any:
if ((core2 >= ArchSpec::kCore_ppc_first &&
core2 <= ArchSpec::kCore_ppc_last) ||
(core2 == ArchSpec::kCore_ppc_any))
return true;
break;
case ArchSpec::kCore_ppc64_any:
if ((core2 >= ArchSpec::kCore_ppc64_first &&
core2 <= ArchSpec::kCore_ppc64_last) ||
(core2 == ArchSpec::kCore_ppc64_any))
return true;
break;
case ArchSpec::eCore_arm_armv6m:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_generic)
return true;
try_inverse = false;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
}
break;
case ArchSpec::kCore_hexagon_any:
if ((core2 >= ArchSpec::kCore_hexagon_first &&
core2 <= ArchSpec::kCore_hexagon_last) ||
(core2 == ArchSpec::kCore_hexagon_any))
return true;
break;
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7em:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7m)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = true;
}
break;
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M#Silicon_customization
// Cortex-M0 - ARMv6-M - armv6m
// Cortex-M3 - ARMv7-M - armv7m
// Cortex-M4 - ARMv7E-M - armv7em
case ArchSpec::eCore_arm_armv7m:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv6m)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
if (core2 == ArchSpec::eCore_arm_armv7em)
return true;
try_inverse = true;
}
break;
case ArchSpec::eCore_arm_armv7f:
case ArchSpec::eCore_arm_armv7k:
case ArchSpec::eCore_arm_armv7s:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_generic)
return true;
if (core2 == ArchSpec::eCore_arm_armv7)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_x86_64_x86_64h:
if (!enforce_exact_match) {
try_inverse = false;
if (core2 == ArchSpec::eCore_x86_64_x86_64)
return true;
}
break;
case ArchSpec::eCore_arm_armv8:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_aarch64:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_arm64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_arm_arm64:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_arm_aarch64)
return true;
if (core2 == ArchSpec::eCore_arm_armv8)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32_first &&
core2 <= ArchSpec::kCore_mips32_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32el:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32el_first &&
core2 <= ArchSpec::kCore_mips32el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32_first &&
core2 <= ArchSpec::kCore_mips32_last)
return true;
if (core2 >= ArchSpec::kCore_mips64_first &&
core2 <= ArchSpec::kCore_mips64_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64el:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32el_first &&
core2 <= ArchSpec::kCore_mips32el_last)
return true;
if (core2 >= ArchSpec::kCore_mips64el_first &&
core2 <= ArchSpec::kCore_mips64el_last)
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2:
case ArchSpec::eCore_mips64r3:
case ArchSpec::eCore_mips64r5:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips64r2el:
case ArchSpec::eCore_mips64r3el:
case ArchSpec::eCore_mips64r5el:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= (core1 - 10))
return true;
if (core2 >= ArchSpec::kCore_mips64el_first && core2 <= (core1 - 1))
return true;
try_inverse = false;
}
break;
case ArchSpec::eCore_mips32r2:
case ArchSpec::eCore_mips32r3:
case ArchSpec::eCore_mips32r5:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r2el:
case ArchSpec::eCore_mips32r3el:
case ArchSpec::eCore_mips32r5el:
if (!enforce_exact_match) {
if (core2 >= ArchSpec::kCore_mips32el_first && core2 <= core1)
return true;
}
break;
case ArchSpec::eCore_mips32r6:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
}
break;
case ArchSpec::eCore_mips32r6el:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_mips32el ||
core2 == ArchSpec::eCore_mips32r6el)
return true;
}
break;
case ArchSpec::eCore_mips64r6:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_mips32 || core2 == ArchSpec::eCore_mips32r6)
return true;
if (core2 == ArchSpec::eCore_mips64 || core2 == ArchSpec::eCore_mips64r6)
return true;
}
break;
case ArchSpec::eCore_mips64r6el:
if (!enforce_exact_match) {
if (core2 == ArchSpec::eCore_mips32el ||
core2 == ArchSpec::eCore_mips32r6el)
return true;
if (core2 == ArchSpec::eCore_mips64el ||
core2 == ArchSpec::eCore_mips64r6el)
return true;
}
break;
default:
break;
}
if (try_inverse)
return cores_match(core2, core1, false, enforce_exact_match);
return false;
}
bool lldb_private::operator<(const ArchSpec &lhs, const ArchSpec &rhs) {
const ArchSpec::Core lhs_core = lhs.GetCore();
const ArchSpec::Core rhs_core = rhs.GetCore();
return lhs_core < rhs_core;
}
static void StopInfoOverrideCallbackTypeARM(lldb_private::Thread &thread) {
// We need to check if we are stopped in Thumb mode in a IT instruction
// and detect if the condition doesn't pass. If this is the case it means
// we won't actually execute this instruction. If this happens we need to
// clear the stop reason to no thread plans think we are stopped for a
// reason and the plans should keep going.
//
// We do this because when single stepping many ARM processes, debuggers
// often use the BVR/BCR registers that says "stop when the PC is not
// equal to its current value". This method of stepping means we can end
// up stopping on instructions inside an if/then block that wouldn't get
// executed. By fixing this we can stop the debugger from seeming like
// you stepped through both the "if" _and_ the "else" clause when source
// level stepping because the debugger stops regardless due to the BVR/BCR
// triggering a stop.
//
// It also means we can set breakpoints on instructions inside an an
// if/then block and correctly skip them if we use the BKPT instruction.
// The ARM and Thumb BKPT instructions are unconditional even when executed
// in a Thumb IT block.
//
// If your debugger inserts software traps in ARM/Thumb code, it will
// need to use 16 and 32 bit instruction for 16 and 32 bit thumb
// instructions respectively. If your debugger inserts a 16 bit thumb
// trap on top of a 32 bit thumb instruction for an opcode that is inside
// an if/then, it will change the it/then to conditionally execute your
// 16 bit trap and then cause your program to crash if it executes the
// trailing 16 bits (the second half of the 32 bit thumb instruction you
// partially overwrote).
RegisterContextSP reg_ctx_sp(thread.GetRegisterContext());
if (reg_ctx_sp) {
const uint32_t cpsr = reg_ctx_sp->GetFlags(0);
if (cpsr != 0) {
// Read the J and T bits to get the ISETSTATE
const uint32_t J = Bit32(cpsr, 24);
const uint32_t T = Bit32(cpsr, 5);
const uint32_t ISETSTATE = J << 1 | T;
if (ISETSTATE == 0) {
// NOTE: I am pretty sure we want to enable the code below
// that detects when we stop on an instruction in ARM mode
// that is conditional and the condition doesn't pass. This
// can happen if you set a breakpoint on an instruction that
// is conditional. We currently will _always_ stop on the
// instruction which is bad. You can also run into this while
// single stepping and you could appear to run code in the "if"
// and in the "else" clause because it would stop at all of the
// conditional instructions in both.
// In such cases, we really don't want to stop at this location.
// I will check with the lldb-dev list first before I enable this.
#if 0
// ARM mode: check for condition on intsruction
const addr_t pc = reg_ctx_sp->GetPC();
Error error;
// If we fail to read the opcode we will get UINT64_MAX as the
// result in "opcode" which we can use to detect if we read a
// valid opcode.
const uint64_t opcode = thread.GetProcess()->ReadUnsignedIntegerFromMemory(pc, 4, UINT64_MAX, error);
if (opcode <= UINT32_MAX)
{
const uint32_t condition = Bits32((uint32_t)opcode, 31, 28);
if (!ARMConditionPassed(condition, cpsr))
{
// We ARE stopped on an ARM instruction whose condition doesn't
// pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo (StopInfoSP());
}
}
#endif
} else if (ISETSTATE == 1) {
// Thumb mode
const uint32_t ITSTATE =
Bits32(cpsr, 15, 10) << 2 | Bits32(cpsr, 26, 25);
if (ITSTATE != 0) {
const uint32_t condition = Bits32(ITSTATE, 7, 4);
if (!ARMConditionPassed(condition, cpsr)) {
// We ARE stopped in a Thumb IT instruction on an instruction whose
// condition doesn't pass so this instruction won't get executed.
// Regardless of why it stopped, we need to clear the stop info
thread.SetStopInfo(StopInfoSP());
}
}
}
}
}
}
ArchSpec::StopInfoOverrideCallbackType
ArchSpec::GetStopInfoOverrideCallback() const {
const llvm::Triple::ArchType machine = GetMachine();
if (machine == llvm::Triple::arm)
return StopInfoOverrideCallbackTypeARM;
return nullptr;
}
bool ArchSpec::IsFullySpecifiedTriple() const {
const auto &user_specified_triple = GetTriple();
bool user_triple_fully_specified = false;
if ((user_specified_triple.getOS() != llvm::Triple::UnknownOS) ||
TripleOSWasSpecified()) {
if ((user_specified_triple.getVendor() != llvm::Triple::UnknownVendor) ||
TripleVendorWasSpecified()) {
const unsigned unspecified = 0;
if (user_specified_triple.getOSMajorVersion() != unspecified) {
user_triple_fully_specified = true;
}
}
}
return user_triple_fully_specified;
}
void ArchSpec::PiecewiseTripleCompare(
const ArchSpec &other, bool &arch_different, bool &vendor_different,
bool &os_different, bool &os_version_different, bool &env_different) {
const llvm::Triple &me(GetTriple());
const llvm::Triple &them(other.GetTriple());
arch_different = (me.getArch() != them.getArch());
vendor_different = (me.getVendor() != them.getVendor());
os_different = (me.getOS() != them.getOS());
os_version_different = (me.getOSMajorVersion() != them.getOSMajorVersion());
env_different = (me.getEnvironment() != them.getEnvironment());
}
bool ArchSpec::IsAlwaysThumbInstructions() const {
std::string Error;
if (GetTriple().getArch() == llvm::Triple::arm ||
GetTriple().getArch() == llvm::Triple::thumb) {
// v. https://en.wikipedia.org/wiki/ARM_Cortex-M
//
// Cortex-M0 through Cortex-M7 are ARM processor cores which can only
// execute thumb instructions. We map the cores to arch names like this:
//
// Cortex-M0, Cortex-M0+, Cortex-M1: armv6m
// Cortex-M3: armv7m
// Cortex-M4, Cortex-M7: armv7em
if (GetCore() == ArchSpec::Core::eCore_arm_armv7m ||
GetCore() == ArchSpec::Core::eCore_arm_armv7em ||
GetCore() == ArchSpec::Core::eCore_arm_armv6m) {
return true;
}
}
return false;
}
void ArchSpec::DumpTriple(Stream &s) const {
const llvm::Triple &triple = GetTriple();
llvm::StringRef arch_str = triple.getArchName();
llvm::StringRef vendor_str = triple.getVendorName();
llvm::StringRef os_str = triple.getOSName();
llvm::StringRef environ_str = triple.getEnvironmentName();
s.Printf("%s-%s-%s", arch_str.empty() ? "*" : arch_str.str().c_str(),
vendor_str.empty() ? "*" : vendor_str.str().c_str(),
os_str.empty() ? "*" : os_str.str().c_str());
if (!environ_str.empty())
s.Printf("-%s", environ_str.str().c_str());
}