mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-16 05:10:32 +00:00

There's an early-exit case for regalloc when we don't even get a chance to ask for an advisor (priority or eviction), and switch the context. Then, when we want to log the reward for that function (==the one with the early exit case), we hit the error case where the function's name doesn't match the last-seen context. There are a few possible fixes, one would be to just switch context when output-ing the reward, which would be correct. This patch opts for the alternative where we check any loging happened in the first place - just to re-validate that no function would have been regaloc-ed without first log-ing its reward. Differential Revision: https://reviews.llvm.org/D143359
358 lines
13 KiB
C++
358 lines
13 KiB
C++
//===- MLRegAllocPriorityAdvisor.cpp - ML priority advisor-----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the ML priority advisor and reward injection pass
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AllocationOrder.h"
|
|
#include "RegAllocGreedy.h"
|
|
#include "RegAllocPriorityAdvisor.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/InteractiveModelRunner.h"
|
|
#include "llvm/Analysis/MLModelRunner.h"
|
|
#include "llvm/Analysis/ReleaseModeModelRunner.h"
|
|
#include "llvm/Analysis/TensorSpec.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveRegMatrix.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#if defined(LLVM_HAVE_TFLITE)
|
|
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
|
|
#include "llvm/Analysis/NoInferenceModelRunner.h"
|
|
#include "llvm/Analysis/Utils/TrainingLogger.h"
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<std::string> InteractiveChannelBaseName(
|
|
"regalloc-priority-interactive-channel-base", cl::Hidden,
|
|
cl::desc(
|
|
"Base file path for the interactive mode. The incoming filename should "
|
|
"have the name <regalloc-priority-interactive-channel-base>.in, while "
|
|
"the outgoing name should be "
|
|
"<regalloc-priority-interactive-channel-base>.out"));
|
|
|
|
using CompiledModelType = NoopSavedModelImpl;
|
|
|
|
// Options that only make sense in development mode
|
|
#ifdef LLVM_HAVE_TFLITE
|
|
#include "RegAllocScore.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
|
|
static cl::opt<std::string> TrainingLog(
|
|
"regalloc-priority-training-log", cl::Hidden,
|
|
cl::desc("Training log for the register allocator priority model"));
|
|
|
|
static cl::opt<std::string> ModelUnderTraining(
|
|
"regalloc-priority-model", cl::Hidden,
|
|
cl::desc("The model being trained for register allocation priority"));
|
|
|
|
#endif // #ifdef LLVM_HAVE_TFLITE
|
|
|
|
namespace llvm {
|
|
|
|
static const std::vector<int64_t> PerLiveRangeShape{1};
|
|
|
|
#define RA_PRIORITY_FEATURES_LIST(M) \
|
|
M(int64_t, li_size, PerLiveRangeShape, "size") \
|
|
M(int64_t, stage, PerLiveRangeShape, "stage") \
|
|
M(float, weight, PerLiveRangeShape, "weight")
|
|
|
|
#define DecisionName "priority"
|
|
static const TensorSpec DecisionSpec =
|
|
TensorSpec::createSpec<float>(DecisionName, {1});
|
|
|
|
|
|
// Named features index.
|
|
enum FeatureIDs {
|
|
#define _FEATURE_IDX(_, name, __, ___) name,
|
|
RA_PRIORITY_FEATURES_LIST(_FEATURE_IDX)
|
|
#undef _FEATURE_IDX
|
|
FeatureCount
|
|
};
|
|
|
|
class MLPriorityAdvisor : public RegAllocPriorityAdvisor {
|
|
public:
|
|
MLPriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
|
|
SlotIndexes *const Indexes, MLModelRunner *Runner);
|
|
|
|
protected:
|
|
const RegAllocPriorityAdvisor &getDefaultAdvisor() const {
|
|
return static_cast<const RegAllocPriorityAdvisor &>(DefaultAdvisor);
|
|
}
|
|
|
|
// The assumption is that if the Runner could not be constructed, we emit-ed
|
|
// error, and we shouldn't be asking for it here.
|
|
const MLModelRunner &getRunner() const { return *Runner; }
|
|
float getPriorityImpl(const LiveInterval &LI) const;
|
|
unsigned getPriority(const LiveInterval &LI) const override;
|
|
|
|
private:
|
|
const DefaultPriorityAdvisor DefaultAdvisor;
|
|
MLModelRunner *const Runner;
|
|
};
|
|
|
|
#define _DECL_FEATURES(type, name, shape, _) \
|
|
TensorSpec::createSpec<type>(#name, shape),
|
|
|
|
static const std::vector<TensorSpec> InputFeatures{
|
|
{RA_PRIORITY_FEATURES_LIST(_DECL_FEATURES)},
|
|
};
|
|
#undef _DECL_FEATURES
|
|
|
|
// ===================================
|
|
// Release (AOT) - specifics
|
|
// ===================================
|
|
class ReleaseModePriorityAdvisorAnalysis final
|
|
: public RegAllocPriorityAdvisorAnalysis {
|
|
public:
|
|
ReleaseModePriorityAdvisorAnalysis()
|
|
: RegAllocPriorityAdvisorAnalysis(AdvisorMode::Release) {}
|
|
// support for isa<> and dyn_cast.
|
|
static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
|
|
return R->getAdvisorMode() == AdvisorMode::Release;
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<SlotIndexes>();
|
|
RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
|
|
}
|
|
|
|
std::unique_ptr<RegAllocPriorityAdvisor>
|
|
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
|
|
if (!Runner) {
|
|
if (InteractiveChannelBaseName.empty())
|
|
Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
|
|
MF.getFunction().getContext(), InputFeatures, DecisionName);
|
|
else
|
|
Runner = std::make_unique<InteractiveModelRunner>(
|
|
MF.getFunction().getContext(), InputFeatures, DecisionSpec,
|
|
InteractiveChannelBaseName + ".out",
|
|
InteractiveChannelBaseName + ".in");
|
|
}
|
|
return std::make_unique<MLPriorityAdvisor>(
|
|
MF, RA, &getAnalysis<SlotIndexes>(), Runner.get());
|
|
}
|
|
std::unique_ptr<MLModelRunner> Runner;
|
|
};
|
|
|
|
// ===================================
|
|
// Development mode-specifics
|
|
// ===================================
|
|
//
|
|
// Features we log
|
|
#ifdef LLVM_HAVE_TFLITE
|
|
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
|
|
|
|
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
|
|
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
|
|
|
|
static const std::vector<TensorSpec> TrainingInputFeatures{
|
|
{RA_PRIORITY_FEATURES_LIST(_DECL_TRAIN_FEATURES)
|
|
TensorSpec::createSpec<float>("action_discount", {1}),
|
|
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
|
|
TensorSpec::createSpec<float>("action_reward", {1})}};
|
|
#undef _DECL_TRAIN_FEATURES
|
|
|
|
class DevelopmentModePriorityAdvisor : public MLPriorityAdvisor {
|
|
public:
|
|
DevelopmentModePriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
|
|
SlotIndexes *const Indexes,
|
|
MLModelRunner *Runner, Logger *Log)
|
|
: MLPriorityAdvisor(MF, RA, Indexes, Runner), Log(Log) {}
|
|
|
|
private:
|
|
unsigned getPriority(const LiveInterval &LI) const override;
|
|
Logger *const Log;
|
|
};
|
|
|
|
class DevelopmentModePriorityAdvisorAnalysis final
|
|
: public RegAllocPriorityAdvisorAnalysis {
|
|
public:
|
|
DevelopmentModePriorityAdvisorAnalysis()
|
|
: RegAllocPriorityAdvisorAnalysis(AdvisorMode::Development) {}
|
|
// support for isa<> and dyn_cast.
|
|
static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
|
|
return R->getAdvisorMode() == AdvisorMode::Development;
|
|
}
|
|
|
|
void logRewardIfNeeded(const MachineFunction &MF,
|
|
llvm::function_ref<float()> GetReward) override {
|
|
if (!Log || !Log->hasAnyObservationForContext(MF.getName()))
|
|
return;
|
|
// The function pass manager would run all the function passes for a
|
|
// function, so we assume the last context belongs to this function. If
|
|
// this invariant ever changes, we can implement at that time switching
|
|
// contexts. At this point, it'd be an error
|
|
if (Log->currentContext() != MF.getName()) {
|
|
MF.getFunction().getContext().emitError(
|
|
"The training log context shouldn't have had changed.");
|
|
}
|
|
if (Log->hasObservationInProgress())
|
|
Log->logReward<float>(GetReward());
|
|
}
|
|
|
|
private:
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<SlotIndexes>();
|
|
RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
|
|
}
|
|
|
|
// Save all the logs (when requested).
|
|
bool doInitialization(Module &M) override {
|
|
LLVMContext &Ctx = M.getContext();
|
|
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
|
|
Ctx.emitError("Regalloc development mode should be requested with at "
|
|
"least logging enabled and/or a training model");
|
|
return false;
|
|
}
|
|
if (ModelUnderTraining.empty())
|
|
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
|
|
else
|
|
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
|
|
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
|
|
if (!Runner) {
|
|
Ctx.emitError("Regalloc: could not set up the model runner");
|
|
return false;
|
|
}
|
|
if (TrainingLog.empty())
|
|
return false;
|
|
std::error_code EC;
|
|
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
|
|
if (EC) {
|
|
M.getContext().emitError(EC.message() + ":" + TrainingLog);
|
|
return false;
|
|
}
|
|
std::vector<TensorSpec> LFS = InputFeatures;
|
|
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
|
|
append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
|
|
// We always log the output; in particular, if we're not evaluating, we
|
|
// don't have an output spec json file. That's why we handle the
|
|
// 'normal' output separately.
|
|
LFS.push_back(DecisionSpec);
|
|
|
|
Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
|
|
/*IncludeReward*/ true);
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<RegAllocPriorityAdvisor>
|
|
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
|
|
if (!Runner)
|
|
return nullptr;
|
|
if (Log) {
|
|
Log->switchContext(MF.getName());
|
|
}
|
|
|
|
return std::make_unique<DevelopmentModePriorityAdvisor>(
|
|
MF, RA, &getAnalysis<SlotIndexes>(), Runner.get(), Log.get());
|
|
}
|
|
|
|
std::unique_ptr<MLModelRunner> Runner;
|
|
std::unique_ptr<Logger> Log;
|
|
};
|
|
#endif //#ifdef LLVM_HAVE_TFLITE
|
|
|
|
} // namespace llvm
|
|
|
|
RegAllocPriorityAdvisorAnalysis *llvm::createReleaseModePriorityAdvisor() {
|
|
return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() ||
|
|
!InteractiveChannelBaseName.empty()
|
|
? new ReleaseModePriorityAdvisorAnalysis()
|
|
: nullptr;
|
|
}
|
|
|
|
MLPriorityAdvisor::MLPriorityAdvisor(const MachineFunction &MF,
|
|
const RAGreedy &RA,
|
|
SlotIndexes *const Indexes,
|
|
MLModelRunner *Runner)
|
|
: RegAllocPriorityAdvisor(MF, RA, Indexes), DefaultAdvisor(MF, RA, Indexes),
|
|
Runner(std::move(Runner)) {
|
|
assert(this->Runner);
|
|
Runner->switchContext(MF.getName());
|
|
}
|
|
|
|
float MLPriorityAdvisor::getPriorityImpl(const LiveInterval &LI) const {
|
|
const unsigned Size = LI.getSize();
|
|
LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
|
|
|
|
*Runner->getTensor<int64_t>(0) = static_cast<int64_t>(Size);
|
|
*Runner->getTensor<int64_t>(1) = static_cast<int64_t>(Stage);
|
|
*Runner->getTensor<float>(2) = static_cast<float>(LI.weight());
|
|
|
|
return Runner->evaluate<float>();
|
|
}
|
|
|
|
unsigned MLPriorityAdvisor::getPriority(const LiveInterval &LI) const {
|
|
return static_cast<unsigned>(getPriorityImpl(LI));
|
|
}
|
|
|
|
#ifdef LLVM_HAVE_TFLITE
|
|
RegAllocPriorityAdvisorAnalysis *llvm::createDevelopmentModePriorityAdvisor() {
|
|
return new DevelopmentModePriorityAdvisorAnalysis();
|
|
}
|
|
|
|
unsigned
|
|
DevelopmentModePriorityAdvisor::getPriority(const LiveInterval &LI) const {
|
|
double Prio = 0;
|
|
|
|
if (isa<ModelUnderTrainingRunner>(getRunner())) {
|
|
Prio = MLPriorityAdvisor::getPriorityImpl(LI);
|
|
} else {
|
|
Prio = getDefaultAdvisor().getPriority(LI);
|
|
}
|
|
|
|
if (TrainingLog.empty())
|
|
return Prio;
|
|
|
|
// TODO(mtrofin): when we support optional rewards, this can go away. In the
|
|
// meantime, we log the "pretend" reward (0) for the previous observation
|
|
// before starting a new one.
|
|
if (Log->hasObservationInProgress())
|
|
Log->logReward<float>(0.0);
|
|
|
|
Log->startObservation();
|
|
size_t CurrentFeature = 0;
|
|
for (; CurrentFeature < InputFeatures.size(); ++CurrentFeature) {
|
|
Log->logTensorValue(CurrentFeature,
|
|
reinterpret_cast<const char *>(
|
|
getRunner().getTensorUntyped(CurrentFeature)));
|
|
}
|
|
|
|
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) {
|
|
for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
|
|
++I, ++CurrentFeature)
|
|
Log->logTensorValue(
|
|
CurrentFeature,
|
|
reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
|
|
}
|
|
|
|
float Ret = static_cast<float>(Prio);
|
|
Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
|
|
Log->endObservation();
|
|
|
|
return static_cast<unsigned>(Prio);
|
|
}
|
|
|
|
#endif // #ifdef LLVM_HAVE_TFLITE
|