llvm-capstone/lldb/source/Core/DataExtractor.cpp
Zachary Turner 01c3243fc1 Remove dependencies from Utility to Core and Target.
With this patch, the only dependency left is from Utility
to Host.  After this is broken, Utility will finally be
standalone.

Differential Revision: https://reviews.llvm.org/D29909

llvm-svn: 295088
2017-02-14 19:06:07 +00:00

2144 lines
72 KiB
C++

//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <sstream>
#include <string>
// Other libraries and framework includes
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "clang/AST/ASTContext.h"
// Project includes
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/UUID.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ExecutionContextScope.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/Endian.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
using namespace lldb;
using namespace lldb_private;
static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return value;
}
static inline uint32_t ReadInt32(const unsigned char *ptr,
offset_t offset = 0) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return value;
}
static inline uint64_t ReadInt64(const unsigned char *ptr,
offset_t offset = 0) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return value;
}
static inline uint16_t ReadInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return value;
}
static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
offset_t offset) {
uint16_t value;
memcpy(&value, ptr + offset, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
offset_t offset) {
uint32_t value;
memcpy(&value, ptr + offset, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
offset_t offset) {
uint64_t value;
memcpy(&value, ptr + offset, 8);
return llvm::ByteSwap_64(value);
}
static inline uint16_t ReadSwapInt16(const void *ptr) {
uint16_t value;
memcpy(&value, ptr, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t ReadSwapInt32(const void *ptr) {
uint32_t value;
memcpy(&value, ptr, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t ReadSwapInt64(const void *ptr) {
uint64_t value;
memcpy(&value, ptr, 8);
return llvm::ByteSwap_64(value);
}
#define NON_PRINTABLE_CHAR '.'
DataExtractor::DataExtractor()
: m_start(nullptr), m_end(nullptr),
m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
m_data_sp(), m_target_byte_size(1) {}
//----------------------------------------------------------------------
// This constructor allows us to use data that is owned by someone else.
// The data must stay around as long as this object is valid.
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const void *data, offset_t length,
ByteOrder endian, uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data))),
m_end(const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(data)) +
length),
m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
}
//----------------------------------------------------------------------
// Make a shared pointer reference to the shared data in "data_sp" and
// set the endian swapping setting to "swap", and the address size to
// "addr_size". The shared data reference will ensure the data lives
// as long as any DataExtractor objects exist that have a reference to
// this data.
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
uint32_t addr_size,
uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(endian),
m_addr_size(addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
SetData(data_sp);
}
//----------------------------------------------------------------------
// Initialize this object with a subset of the data bytes in "data".
// If "data" contains shared data, then a reference to this shared
// data will added and the shared data will stay around as long
// as any object contains a reference to that data. The endian
// swap and address size settings are copied from "data".
//----------------------------------------------------------------------
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
offset_t length, uint32_t target_byte_size /*=1*/)
: m_start(nullptr), m_end(nullptr), m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size), m_data_sp(),
m_target_byte_size(target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
if (data.ValidOffset(offset)) {
offset_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
DataExtractor::DataExtractor(const DataExtractor &rhs)
: m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
m_target_byte_size(rhs.m_target_byte_size) {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
}
//----------------------------------------------------------------------
// Assignment operator
//----------------------------------------------------------------------
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
if (this != &rhs) {
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order = rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
m_data_sp = rhs.m_data_sp;
}
return *this;
}
DataExtractor::~DataExtractor() = default;
//------------------------------------------------------------------
// Clears the object contents back to a default invalid state, and
// release any references to shared data that this object may
// contain.
//------------------------------------------------------------------
void DataExtractor::Clear() {
m_start = nullptr;
m_end = nullptr;
m_byte_order = endian::InlHostByteOrder();
m_addr_size = sizeof(void *);
m_data_sp.reset();
}
//------------------------------------------------------------------
// If this object contains shared data, this function returns the
// offset into that shared data. Else zero is returned.
//------------------------------------------------------------------
size_t DataExtractor::GetSharedDataOffset() const {
if (m_start != nullptr) {
const DataBuffer *data = m_data_sp.get();
if (data != nullptr) {
const uint8_t *data_bytes = data->GetBytes();
if (data_bytes != nullptr) {
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
//----------------------------------------------------------------------
// Set the data with which this object will extract from to data
// starting at BYTES and set the length of the data to LENGTH bytes
// long. The data is externally owned must be around at least as
// long as this object points to the data. No copy of the data is
// made, this object just refers to this data and can extract from
// it. If this object refers to any shared data upon entry, the
// reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
ByteOrder endian) {
m_byte_order = endian;
m_data_sp.reset();
if (bytes == nullptr || length == 0) {
m_start = nullptr;
m_end = nullptr;
} else {
m_start = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(bytes));
m_end = m_start + length;
}
return GetByteSize();
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange in "data"
// starting "data_offset" bytes into "data" and ending "data_length"
// bytes later. If "data_offset" is not a valid offset into "data",
// then this object will contain no bytes. If "data_offset" is
// within "data" yet "data_length" is too large, the length will be
// capped at the number of bytes remaining in "data". If "data"
// contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data"
// doesn't contain a shared pointer to data, then the bytes referred
// to in "data" will need to exist at least as long as this object
// refers to those bytes. The address size and endian swap settings
// are copied from the current values in "data".
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
offset_t data_offset,
offset_t data_length) {
m_addr_size = data.m_addr_size;
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp) {
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset)) {
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData(data.GetDataStart() + data_offset, data_length,
data.GetByteOrder());
}
return 0;
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange of the shared
// data in "data_sp" starting "data_offset" bytes into "data_sp"
// and ending "data_length" bytes later. If "data_offset" is not
// a valid offset into "data_sp", then this object will contain no
// bytes. If "data_offset" is within "data_sp" yet "data_length" is
// too large, the length will be capped at the number of bytes
// remaining in "data_sp". A ref counted pointer to the data in
// "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was
// available starting at "data_offset") to ensure the data stays
// around as long as it is needed. The address size and endian swap
// settings will remain unchanged from their current settings.
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
offset_t data_offset,
offset_t data_length) {
m_start = m_end = nullptr;
if (data_length > 0) {
m_data_sp = data_sp;
if (data_sp) {
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size) {
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were
// available in the shared data
}
}
}
size_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share
// any valid bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
//----------------------------------------------------------------------
// Extract a single unsigned char from the binary data and update
// the offset pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, 1);
if (data)
return *data;
return 0;
}
//----------------------------------------------------------------------
// Extract "count" unsigned chars from the binary data and update the
// offset pointed to by "offset_ptr". The extracted data is copied into
// "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available in
// the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
uint32_t count) const {
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, count);
if (data) {
// Copy the data into the buffer
memcpy(dst, data, count);
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint16_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
uint16_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder())
val = ReadSwapInt16(data);
else
val = ReadInt16(data);
}
return val;
}
uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
uint16_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt16(m_start, *offset_ptr);
else
val = ReadSwapInt16(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
uint32_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt32(m_start, *offset_ptr);
else
val = ReadSwapInt32(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
uint64_t val;
if (m_byte_order == endian::InlHostByteOrder())
val = ReadInt64(m_start, *offset_ptr);
else
val = ReadSwapInt64(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint16_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint16_t) * count;
const uint16_t *src = (const uint16_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint16_t *dst_pos = (uint16_t *)void_dst;
uint16_t *dst_end = dst_pos + count;
const uint16_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt16(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint32_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
uint32_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt32(data);
} else {
memcpy(&val, data, 4);
}
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint32_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-nullptr buffer pointer upon successful extraction of
// all the requested bytes, or nullptr when the data is not available
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint32_t) * count;
const uint32_t *src = (const uint32_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint32_t *dst_pos = (uint32_t *)void_dst;
uint32_t *dst_end = dst_pos + count;
const uint32_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt32(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single uint64_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
uint64_t val = 0;
const uint8_t *data = (const uint8_t *)GetData(offset_ptr, sizeof(val));
if (data) {
if (m_byte_order != endian::InlHostByteOrder()) {
val = ReadSwapInt64(data);
} else {
memcpy(&val, data, 8);
}
}
return val;
}
//----------------------------------------------------------------------
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire
// read succeeds and increment the offset pointed to by offset_ptr, else
// return false and leave the offset pointed to by offset_ptr unchanged.
//----------------------------------------------------------------------
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
uint32_t count) const {
const size_t src_size = sizeof(uint64_t) * count;
const uint64_t *src = (const uint64_t *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
uint64_t *dst_pos = (uint64_t *)void_dst;
uint64_t *dst_end = dst_pos + count;
const uint64_t *src_pos = src;
while (dst_pos < dst_end) {
*dst_pos = ReadSwapInt64(src_pos);
++dst_pos;
++src_pos;
}
} else {
memcpy(void_dst, src, src_size);
}
// Return a non-nullptr pointer to the converted data as an indicator of
// success
return void_dst;
}
return nullptr;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value between 1 and 4 since the return value is only 32 bits
// wide. Any "byte_size" values less than 1 or greater than 4 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
size_t byte_size) const {
switch (byte_size) {
case 1:
return GetU8(offset_ptr);
break;
case 2:
return GetU16(offset_ptr);
break;
case 4:
return GetU32(offset_ptr);
break;
default:
assert(false && "GetMaxU32 unhandled case!");
break;
}
return 0;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value >= 1 and <= 8 since the return value is only 64 bits
// wide. Any "byte_size" values less than 1 or greater than 8 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr, size_t size) const {
switch (size) {
case 1:
return GetU8(offset_ptr);
break;
case 2:
return GetU16(offset_ptr);
break;
case 4:
return GetU32(offset_ptr);
break;
case 8:
return GetU64(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
size_t size) const {
switch (size) {
case 1:
return GetU8_unchecked(offset_ptr);
break;
case 2:
return GetU16_unchecked(offset_ptr);
break;
case 4:
return GetU32_unchecked(offset_ptr);
break;
case 8:
return GetU64_unchecked(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t size) const {
switch (size) {
case 1:
return (int8_t)GetU8(offset_ptr);
break;
case 2:
return (int16_t)GetU16(offset_ptr);
break;
case 4:
return (int32_t)GetU32(offset_ptr);
break;
case 8:
return (int64_t)GetU64(offset_ptr);
break;
default:
assert(false && "GetMax64 unhandled case!");
break;
}
return 0;
}
uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
uint64_t uval64 = GetMaxU64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
uval64 >>= lsbcount;
uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
return uval64;
uval64 &= bitfield_mask;
}
return uval64;
}
int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset) const {
int64_t sval64 = GetMaxS64(offset_ptr, size);
if (bitfield_bit_size > 0) {
int32_t lsbcount = bitfield_bit_offset;
if (m_byte_order == eByteOrderBig)
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
if (lsbcount > 0)
sval64 >>= lsbcount;
uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float DataExtractor::GetFloat(offset_t *offset_ptr) const {
typedef float float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
double DataExtractor::GetDouble(offset_t *offset_ptr) const {
typedef double float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData(offset_ptr, src_size);
if (src) {
if (m_byte_order != endian::InlHostByteOrder()) {
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i = 0; i < sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
} else {
val = *src;
}
}
return val;
}
long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
long double val = 0.0;
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
*offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
endian::InlHostByteOrder());
#else
*offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
sizeof(val), endian::InlHostByteOrder());
#endif
return val;
}
//------------------------------------------------------------------
// Extract a single address from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted address
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64(offset_ptr, m_addr_size);
}
uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64_unchecked(offset_ptr, m_addr_size);
}
//------------------------------------------------------------------
// Extract a single pointer from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted pointer
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t DataExtractor::GetPointer(offset_t *offset_ptr) const {
#ifdef LLDB_CONFIGURATION_DEBUG
assert(m_addr_size == 4 || m_addr_size == 8);
#endif
return GetMaxU64(offset_ptr, m_addr_size);
}
//----------------------------------------------------------------------
// GetDwarfEHPtr
//
// Used for calls when the value type is specified by a DWARF EH Frame
// pointer encoding.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetGNUEHPointer(
offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr,
lldb::addr_t text_addr,
lldb::addr_t data_addr) //, BSDRelocs *data_relocs) const
{
if (eh_ptr_enc == DW_EH_PE_omit)
return ULLONG_MAX; // Value isn't in the buffer...
uint64_t baseAddress = 0;
uint64_t addressValue = 0;
const uint32_t addr_size = GetAddressByteSize();
#ifdef LLDB_CONFIGURATION_DEBUG
assert(addr_size == 4 || addr_size == 8);
#endif
bool signExtendValue = false;
// Decode the base part or adjust our offset
switch (eh_ptr_enc & 0x70) {
case DW_EH_PE_pcrel:
signExtendValue = true;
baseAddress = *offset_ptr;
if (pc_rel_addr != LLDB_INVALID_ADDRESS)
baseAddress += pc_rel_addr;
// else
// Log::GlobalWarning ("PC relative pointer encoding found with
// invalid pc relative address.");
break;
case DW_EH_PE_textrel:
signExtendValue = true;
if (text_addr != LLDB_INVALID_ADDRESS)
baseAddress = text_addr;
// else
// Log::GlobalWarning ("text relative pointer encoding being
// decoded with invalid text section address, setting base address
// to zero.");
break;
case DW_EH_PE_datarel:
signExtendValue = true;
if (data_addr != LLDB_INVALID_ADDRESS)
baseAddress = data_addr;
// else
// Log::GlobalWarning ("data relative pointer encoding being
// decoded with invalid data section address, setting base address
// to zero.");
break;
case DW_EH_PE_funcrel:
signExtendValue = true;
break;
case DW_EH_PE_aligned: {
// SetPointerSize should be called prior to extracting these so the
// pointer size is cached
assert(addr_size != 0);
if (addr_size) {
// Align to a address size boundary first
uint32_t alignOffset = *offset_ptr % addr_size;
if (alignOffset)
offset_ptr += addr_size - alignOffset;
}
} break;
default:
break;
}
// Decode the value part
switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
case DW_EH_PE_absptr: {
addressValue = GetAddress(offset_ptr);
// if (data_relocs)
// addressValue = data_relocs->Relocate(*offset_ptr -
// addr_size, *this, addressValue);
} break;
case DW_EH_PE_uleb128:
addressValue = GetULEB128(offset_ptr);
break;
case DW_EH_PE_udata2:
addressValue = GetU16(offset_ptr);
break;
case DW_EH_PE_udata4:
addressValue = GetU32(offset_ptr);
break;
case DW_EH_PE_udata8:
addressValue = GetU64(offset_ptr);
break;
case DW_EH_PE_sleb128:
addressValue = GetSLEB128(offset_ptr);
break;
case DW_EH_PE_sdata2:
addressValue = (int16_t)GetU16(offset_ptr);
break;
case DW_EH_PE_sdata4:
addressValue = (int32_t)GetU32(offset_ptr);
break;
case DW_EH_PE_sdata8:
addressValue = (int64_t)GetU64(offset_ptr);
break;
default:
// Unhandled encoding type
assert(eh_ptr_enc);
break;
}
// Since we promote everything to 64 bit, we may need to sign extend
if (signExtendValue && addr_size < sizeof(baseAddress)) {
uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
if (sign_bit & addressValue) {
uint64_t mask = ~sign_bit + 1;
addressValue |= mask;
}
}
return baseAddress + addressValue;
}
size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
ByteOrder dst_byte_order, void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
if (dst_byte_order != GetByteOrder()) {
// Validate that only a word- or register-sized dst is byte swapped
assert(length == 1 || length == 2 || length == 4 || length == 8 ||
length == 10 || length == 16 || length == 32);
for (uint32_t i = 0; i < length; ++i)
((uint8_t *)dst)[i] = src[length - i - 1];
} else
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data as it exists in target memory
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
void *dst) const {
const uint8_t *src = PeekData(offset, length);
if (src) {
::memcpy(dst, src, length);
return length;
}
return 0;
}
// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
void *dst_void_ptr, offset_t dst_len,
ByteOrder dst_byte_order) const {
// Validate the source info
if (!ValidOffsetForDataOfSize(src_offset, src_len))
assert(ValidOffsetForDataOfSize(src_offset, src_len));
assert(src_len > 0);
assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
// Validate the destination info
assert(dst_void_ptr != nullptr);
assert(dst_len > 0);
assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
// Validate that only a word- or register-sized dst is byte swapped
assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
dst_len == 32);
// Must have valid byte orders set in this object and for destination
if (!(dst_byte_order == eByteOrderBig ||
dst_byte_order == eByteOrderLittle) ||
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
return 0;
uint8_t *dst = (uint8_t *)dst_void_ptr;
const uint8_t *src = (const uint8_t *)PeekData(src_offset, src_len);
if (src) {
if (dst_len >= src_len) {
// We are copying the entire value from src into dst.
// Calculate how many, if any, zeroes we need for the most
// significant bytes if "dst_len" is greater than "src_len"...
const size_t num_zeroes = dst_len - src_len;
if (dst_byte_order == eByteOrderBig) {
// Big endian, so we lead with zeroes...
if (num_zeroes > 0)
::memset(dst, 0, num_zeroes);
// Then either copy or swap the rest
if (m_byte_order == eByteOrderBig) {
::memcpy(dst + num_zeroes, src, src_len);
} else {
for (uint32_t i = 0; i < src_len; ++i)
dst[i + num_zeroes] = src[src_len - 1 - i];
}
} else {
// Little endian destination, so we lead the value bytes
if (m_byte_order == eByteOrderBig) {
for (uint32_t i = 0; i < src_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
::memcpy(dst, src, src_len);
}
// And zero the rest...
if (num_zeroes > 0)
::memset(dst + src_len, 0, num_zeroes);
}
return src_len;
} else {
// We are only copying some of the value from src into dst..
if (dst_byte_order == eByteOrderBig) {
// Big endian dst
if (m_byte_order == eByteOrderBig) {
// Big endian dst, with big endian src
::memcpy(dst, src + (src_len - dst_len), dst_len);
} else {
// Big endian dst, with little endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[dst_len - 1 - i];
}
} else {
// Little endian dst
if (m_byte_order == eByteOrderBig) {
// Little endian dst, with big endian src
for (uint32_t i = 0; i < dst_len; ++i)
dst[i] = src[src_len - 1 - i];
} else {
// Little endian dst, with big endian src
::memcpy(dst, src, dst_len);
}
}
return dst_len;
}
}
return 0;
}
//----------------------------------------------------------------------
// Extracts a variable length NULL terminated C string from
// the data at the offset pointed to by "offset_ptr". The
// "offset_ptr" will be updated with the offset of the byte that
// follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// "length" is non-zero and there aren't enough available
// bytes, nullptr will be returned and "offset_ptr" will not be
// updated.
//----------------------------------------------------------------------
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
const char *cstr = (const char *)PeekData(*offset_ptr, 1);
if (cstr) {
const char *cstr_end = cstr;
const char *end = (const char *)m_end;
while (cstr_end < end && *cstr_end)
++cstr_end;
// Now we are either at the end of the data or we point to the
// NULL C string terminator with cstr_end...
if (*cstr_end == '\0') {
// Advance the offset with one extra byte for the NULL terminator
*offset_ptr += (cstr_end - cstr + 1);
return cstr;
}
// We reached the end of the data without finding a NULL C string
// terminator. Fall through and return nullptr otherwise anyone that
// would have used the result as a C string can wander into
// unknown memory...
}
return nullptr;
}
//----------------------------------------------------------------------
// Extracts a NULL terminated C string from the fixed length field of
// length "len" at the offset pointed to by "offset_ptr".
// The "offset_ptr" will be updated with the offset of the byte that
// follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// the offset plus the length of the field is out of bounds, or if the
// field does not contain a NULL terminator byte, nullptr will be returned
// and "offset_ptr" will not be updated.
//----------------------------------------------------------------------
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
const char *cstr = (const char *)PeekData(*offset_ptr, len);
if (cstr != nullptr) {
if (memchr(cstr, '\0', len) == nullptr) {
return nullptr;
}
*offset_ptr += len;
return cstr;
}
return nullptr;
}
//------------------------------------------------------------------
// Peeks at a string in the contained data. No verification is done
// to make sure the entire string lies within the bounds of this
// object's data, only "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in
// this object's data, else nullptr is returned.
//------------------------------------------------------------------
const char *DataExtractor::PeekCStr(offset_t offset) const {
return (const char *)PeekData(offset, 1);
}
//----------------------------------------------------------------------
// Extracts an unsigned LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
uint64_t result = *src++;
if (result >= 0x80) {
result &= 0x7f;
int shift = 7;
while (src < end) {
uint8_t byte = *src++;
result |= (uint64_t)(byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
}
*offset_ptr = src - m_start;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Extracts an signed LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
int64_t result = 0;
int shift = 0;
int size = sizeof(int64_t) * 8;
uint8_t byte = 0;
int bytecount = 0;
while (src < end) {
bytecount++;
byte = *src++;
result |= (int64_t)(byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= -(1 << shift);
*offset_ptr += bytecount;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Skips a ULEB128 number (signed or unsigned) from this object's
// data starting at the offset pointed to by "offset_ptr". The
// offset pointed to by "offset_ptr" will be updated with the offset
// of the byte following the last extracted byte.
//
// Returns the number of bytes consumed during the extraction.
//----------------------------------------------------------------------
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
uint32_t bytes_consumed = 0;
const uint8_t *src = (const uint8_t *)PeekData(*offset_ptr, 1);
if (src == nullptr)
return 0;
const uint8_t *end = m_end;
if (src < end) {
const uint8_t *src_pos = src;
while ((src_pos < end) && (*src_pos++ & 0x80))
++bytes_consumed;
*offset_ptr += src_pos - src;
}
return bytes_consumed;
}
static bool GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr,
lldb::offset_t byte_size, llvm::APInt &result) {
llvm::SmallVector<uint64_t, 2> uint64_array;
lldb::offset_t bytes_left = byte_size;
uint64_t u64;
const lldb::ByteOrder byte_order = data.GetByteOrder();
if (byte_order == lldb::eByteOrderLittle) {
while (bytes_left > 0) {
if (bytes_left >= 8) {
u64 = data.GetU64(offset_ptr);
bytes_left -= 8;
} else {
u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
} else if (byte_order == lldb::eByteOrderBig) {
lldb::offset_t be_offset = *offset_ptr + byte_size;
lldb::offset_t temp_offset;
while (bytes_left > 0) {
if (bytes_left >= 8) {
be_offset -= 8;
temp_offset = be_offset;
u64 = data.GetU64(&temp_offset);
bytes_left -= 8;
} else {
be_offset -= bytes_left;
temp_offset = be_offset;
u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
*offset_ptr += byte_size;
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
}
return false;
}
static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data,
lldb::offset_t offset, lldb::offset_t byte_size,
bool is_signed, unsigned radix) {
llvm::APInt apint;
if (GetAPInt(data, &offset, byte_size, apint)) {
std::string apint_str(apint.toString(radix, is_signed));
switch (radix) {
case 2:
s->Write("0b", 2);
break;
case 8:
s->Write("0", 1);
break;
case 10:
break;
}
s->Write(apint_str.c_str(), apint_str.size());
}
return offset;
}
static float half2float(uint16_t half) {
union {
float f;
uint32_t u;
} u;
int32_t v = (int16_t)half;
if (0 == (v & 0x7c00)) {
u.u = v & 0x80007FFFU;
return u.f * ldexpf(1, 125);
}
v <<= 13;
u.u = v | 0x70000000U;
return u.f * ldexpf(1, -112);
}
lldb::offset_t DataExtractor::Dump(
Stream *s, offset_t start_offset, lldb::Format item_format,
size_t item_byte_size, size_t item_count, size_t num_per_line,
uint64_t base_addr,
uint32_t item_bit_size, // If zero, this is not a bitfield value, if
// non-zero, the value is a bitfield
uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
// shift amount to apply to a bitfield
ExecutionContextScope *exe_scope) const {
if (s == nullptr)
return start_offset;
if (item_format == eFormatPointer) {
if (item_byte_size != 4 && item_byte_size != 8)
item_byte_size = s->GetAddressByteSize();
}
offset_t offset = start_offset;
if (item_format == eFormatInstruction) {
TargetSP target_sp;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp) {
DisassemblerSP disassembler_sp(Disassembler::FindPlugin(
target_sp->GetArchitecture(), nullptr, nullptr));
if (disassembler_sp) {
lldb::addr_t addr = base_addr + start_offset;
lldb_private::Address so_addr;
bool data_from_file = true;
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
data_from_file = false;
} else {
if (target_sp->GetSectionLoadList().IsEmpty() ||
!target_sp->GetImages().ResolveFileAddress(addr, so_addr))
so_addr.SetRawAddress(addr);
}
size_t bytes_consumed = disassembler_sp->DecodeInstructions(
so_addr, *this, start_offset, item_count, false, data_from_file);
if (bytes_consumed) {
offset += bytes_consumed;
const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
const bool show_bytes = true;
ExecutionContext exe_ctx;
exe_scope->CalculateExecutionContext(exe_ctx);
disassembler_sp->GetInstructionList().Dump(s, show_address,
show_bytes, &exe_ctx);
}
}
} else
s->Printf("invalid target");
return offset;
}
if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
item_byte_size > 8)
item_format = eFormatHex;
lldb::offset_t line_start_offset = start_offset;
for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count) {
if ((count % num_per_line) == 0) {
if (count > 0) {
if (item_format == eFormatBytesWithASCII &&
offset > line_start_offset) {
s->Printf("%*s",
static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
Dump(s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0,
0);
}
s->EOL();
}
if (base_addr != LLDB_INVALID_ADDRESS)
s->Printf("0x%8.8" PRIx64 ": ",
(uint64_t)(base_addr +
(offset - start_offset) / m_target_byte_size));
line_start_offset = offset;
} else if (item_format != eFormatChar &&
item_format != eFormatCharPrintable &&
item_format != eFormatCharArray && count > 0) {
s->PutChar(' ');
}
switch (item_format) {
case eFormatBoolean:
if (item_byte_size <= 8)
s->Printf("%s", GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset)
? "true"
: "false");
else {
s->Printf("error: unsupported byte size (%" PRIu64
") for boolean format",
(uint64_t)item_byte_size);
return offset;
}
break;
case eFormatBinary:
if (item_byte_size <= 8) {
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
// Avoid std::bitset<64>::to_string() since it is missing in
// earlier C++ libraries
std::string binary_value(64, '0');
std::bitset<64> bits(uval64);
for (uint32_t i = 0; i < 64; ++i)
if (bits[i])
binary_value[64 - 1 - i] = '1';
if (item_bit_size > 0)
s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
else if (item_byte_size > 0 && item_byte_size <= 8)
s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
} else {
const bool is_signed = false;
const unsigned radix = 2;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatBytes:
case eFormatBytesWithASCII:
for (uint32_t i = 0; i < item_byte_size; ++i) {
s->Printf("%2.2x", GetU8(&offset));
}
// Put an extra space between the groups of bytes if more than one
// is being dumped in a group (item_byte_size is more than 1).
if (item_byte_size > 1)
s->PutChar(' ');
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray: {
// If we are only printing one character surround it with single
// quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
if (isprint(ch))
s->Printf("%c", (char)ch);
else if (item_format != eFormatCharPrintable) {
switch (ch) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
case '\0':
s->Printf("\\0");
break;
default:
if (item_byte_size == 1)
s->Printf("\\x%2.2x", (uint8_t)ch);
else
s->Printf("%" PRIu64, ch);
break;
}
} else {
s->PutChar(NON_PRINTABLE_CHAR);
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
} break;
case eFormatEnum: // Print enum value as a signed integer when we don't get
// the enum type
case eFormatDecimal:
if (item_byte_size <= 8)
s->Printf("%" PRId64,
GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = true;
const unsigned radix = 10;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatUnsigned:
if (item_byte_size <= 8)
s->Printf("%" PRIu64,
GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 10;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOctal:
if (item_byte_size <= 8)
s->Printf("0%" PRIo64,
GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
else {
const bool is_signed = false;
const unsigned radix = 8;
offset = DumpAPInt(s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOSType: {
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size,
item_bit_size, item_bit_offset);
s->PutChar('\'');
for (uint32_t i = 0; i < item_byte_size; ++i) {
uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
if (isprint(ch))
s->Printf("%c", ch);
else {
switch (ch) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
case '\0':
s->Printf("\\0");
break;
default:
s->Printf("\\x%2.2x", ch);
break;
}
}
}
s->PutChar('\'');
} break;
case eFormatCString: {
const char *cstr = GetCStr(&offset);
if (!cstr) {
s->Printf("NULL");
offset = LLDB_INVALID_OFFSET;
} else {
s->PutChar('\"');
while (const char c = *cstr) {
if (isprint(c)) {
s->PutChar(c);
} else {
switch (c) {
case '\033':
s->Printf("\\e");
break;
case '\a':
s->Printf("\\a");
break;
case '\b':
s->Printf("\\b");
break;
case '\f':
s->Printf("\\f");
break;
case '\n':
s->Printf("\\n");
break;
case '\r':
s->Printf("\\r");
break;
case '\t':
s->Printf("\\t");
break;
case '\v':
s->Printf("\\v");
break;
default:
s->Printf("\\x%2.2x", c);
break;
}
}
++cstr;
}
s->PutChar('\"');
}
} break;
case eFormatPointer:
s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset),
sizeof(addr_t));
break;
case eFormatComplexInteger: {
size_t complex_int_byte_size = item_byte_size / 2;
if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
s->Printf("%" PRIu64,
GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
s->Printf(" + %" PRIu64 "i",
GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex integer format",
(uint64_t)item_byte_size);
return offset;
}
} break;
case eFormatComplex:
if (sizeof(float) * 2 == item_byte_size) {
float f32_1 = GetFloat(&offset);
float f32_2 = GetFloat(&offset);
s->Printf("%g + %gi", f32_1, f32_2);
break;
} else if (sizeof(double) * 2 == item_byte_size) {
double d64_1 = GetDouble(&offset);
double d64_2 = GetDouble(&offset);
s->Printf("%lg + %lgi", d64_1, d64_2);
break;
} else if (sizeof(long double) * 2 == item_byte_size) {
long double ld64_1 = GetLongDouble(&offset);
long double ld64_2 = GetLongDouble(&offset);
s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for complex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
default:
case eFormatDefault:
case eFormatHex:
case eFormatHexUppercase: {
bool wantsuppercase = (item_format == eFormatHexUppercase);
switch (item_byte_size) {
case 1:
case 2:
case 4:
case 8:
s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
(int)(2 * item_byte_size), (int)(2 * item_byte_size),
GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset));
break;
default: {
assert(item_bit_size == 0 && item_bit_offset == 0);
const uint8_t *bytes =
(const uint8_t *)GetData(&offset, item_byte_size);
if (bytes) {
s->PutCString("0x");
uint32_t idx;
if (m_byte_order == eByteOrderBig) {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
} else {
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
bytes[item_byte_size - 1 - idx]);
}
}
} break;
}
} break;
case eFormatFloat: {
TargetSP target_sp;
bool used_apfloat = false;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp) {
ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
if (clang_ast) {
clang::ASTContext *ast = clang_ast->getASTContext();
if (ast) {
llvm::SmallVector<char, 256> sv;
// Show full precision when printing float values
const unsigned format_precision = 0;
const unsigned format_max_padding = 100;
size_t item_bit_size = item_byte_size * 8;
if (item_bit_size == ast->getTypeSize(ast->FloatTy)) {
llvm::APInt apint(item_bit_size,
this->GetMaxU64(&offset, item_byte_size));
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
} else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) {
llvm::APInt apint;
if (GetAPInt(*this, &offset, item_byte_size, apint)) {
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
} else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) {
const auto &semantics =
ast->getFloatTypeSemantics(ast->LongDoubleTy);
const auto byte_size =
(llvm::APFloat::getSizeInBits(semantics) + 7) / 8;
llvm::APInt apint;
if (GetAPInt(*this, &offset, byte_size, apint)) {
llvm::APFloat apfloat(semantics, apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
} else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) {
llvm::APInt apint(item_bit_size, this->GetU16(&offset));
llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy),
apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
if (!sv.empty()) {
s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
used_apfloat = true;
}
}
}
}
if (!used_apfloat) {
std::ostringstream ss;
if (item_byte_size == sizeof(float) || item_byte_size == 2) {
float f;
if (item_byte_size == 2) {
uint16_t half = this->GetU16(&offset);
f = half2float(half);
} else {
f = GetFloat(&offset);
}
ss.precision(std::numeric_limits<float>::digits10);
ss << f;
} else if (item_byte_size == sizeof(double)) {
ss.precision(std::numeric_limits<double>::digits10);
ss << GetDouble(&offset);
} else if (item_byte_size == sizeof(long double) ||
item_byte_size == 10) {
ss.precision(std::numeric_limits<long double>::digits10);
ss << GetLongDouble(&offset);
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for float format",
(uint64_t)item_byte_size);
return offset;
}
ss.flush();
s->Printf("%s", ss.str().c_str());
}
} break;
case eFormatUnicode16:
s->Printf("U+%4.4x", GetU16(&offset));
break;
case eFormatUnicode32:
s->Printf("U+0x%8.8x", GetU32(&offset));
break;
case eFormatAddressInfo: {
addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
item_bit_offset);
s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
(int)(2 * item_byte_size), addr);
if (exe_scope) {
TargetSP target_sp(exe_scope->CalculateTarget());
lldb_private::Address so_addr;
if (target_sp) {
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
so_addr)) {
s->PutChar(' ');
so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
Address::DumpStyleModuleWithFileAddress);
} else {
so_addr.SetOffset(addr);
so_addr.Dump(s, exe_scope,
Address::DumpStyleResolvedPointerDescription);
}
}
}
} break;
case eFormatHexFloat:
if (sizeof(float) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(GetFloat(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else if (sizeof(double) == item_byte_size) {
char float_cstr[256];
llvm::APFloat ap_float(GetDouble(&offset));
ap_float.convertToHexString(float_cstr, 0, false,
llvm::APFloat::rmNearestTiesToEven);
s->Printf("%s", float_cstr);
break;
} else {
s->Printf("error: unsupported byte size (%" PRIu64
") for hex float format",
(uint64_t)item_byte_size);
return offset;
}
break;
// please keep the single-item formats below in sync with
// FormatManager::GetSingleItemFormat
// if you fail to do so, users will start getting different outputs
// depending on internal
// implementation details they should not care about ||
case eFormatVectorOfChar: // ||
s->PutChar('{'); // \/
offset = Dump(s, offset, eFormatCharArray, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt8:
s->PutChar('{');
offset = Dump(s, offset, eFormatDecimal, 1, item_byte_size,
item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt8:
s->PutChar('{');
offset = Dump(s, offset, eFormatHex, 1, item_byte_size, item_byte_size,
LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt16:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt16:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint16_t),
item_byte_size / sizeof(uint16_t),
item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt32:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt32:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint32_t),
item_byte_size / sizeof(uint32_t),
item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt64:
s->PutChar('{');
offset =
Dump(s, offset, eFormatDecimal, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt64:
s->PutChar('{');
offset =
Dump(s, offset, eFormatHex, sizeof(uint64_t),
item_byte_size / sizeof(uint64_t),
item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat16:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 2, item_byte_size / 2,
item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat32:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 4, item_byte_size / 4,
item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat64:
s->PutChar('{');
offset = Dump(s, offset, eFormatFloat, 8, item_byte_size / 8,
item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt128:
s->PutChar('{');
offset = Dump(s, offset, eFormatHex, 16, item_byte_size / 16,
item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
}
}
if (item_format == eFormatBytesWithASCII && offset > line_start_offset) {
s->Printf("%*s", static_cast<int>(
(num_per_line - (offset - line_start_offset)) * 3 + 2),
"");
Dump(s, line_start_offset, eFormatCharPrintable, 1,
offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte
// before "end_offset". "base_addr" will be added to the offset
// into the dumped data when showing the offset into the data in the
// output information. "num_per_line" objects of type "type" will
// be dumped with the option to override the format for each object
// with "type_format". "type_format" is a printf style formatting
// string. If "type_format" is nullptr, then an appropriate format
// string will be used for the supplied "type". If the stream "s"
// is nullptr, then the output will be send to Log().
//----------------------------------------------------------------------
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
offset_t length, uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type,
const char *format) const {
if (log == nullptr)
return start_offset;
offset_t offset;
offset_t end_offset;
uint32_t count;
StreamString sstr;
for (offset = start_offset, end_offset = offset + length, count = 0;
ValidOffset(offset) && offset < end_offset; ++count) {
if ((count % num_per_line) == 0) {
// Print out any previous string
if (sstr.GetSize() > 0) {
log->PutString(sstr.GetString());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8" PRIx64 ":",
(uint64_t)(base_addr + (offset - start_offset)));
}
switch (type) {
case TypeUInt8:
sstr.Printf(format ? format : " %2.2x", GetU8(&offset));
break;
case TypeChar: {
char ch = GetU8(&offset);
sstr.Printf(format ? format : " %c", isprint(ch) ? ch : ' ');
} break;
case TypeUInt16:
sstr.Printf(format ? format : " %4.4x", GetU16(&offset));
break;
case TypeUInt32:
sstr.Printf(format ? format : " %8.8x", GetU32(&offset));
break;
case TypeUInt64:
sstr.Printf(format ? format : " %16.16" PRIx64, GetU64(&offset));
break;
case TypePointer:
sstr.Printf(format ? format : " 0x%" PRIx64, GetAddress(&offset));
break;
case TypeULEB128:
sstr.Printf(format ? format : " 0x%" PRIx64, GetULEB128(&offset));
break;
case TypeSLEB128:
sstr.Printf(format ? format : " %" PRId64, GetSLEB128(&offset));
break;
}
}
if (!sstr.Empty())
log->PutString(sstr.GetString());
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// DumpUUID
//
// Dump out a UUID starting at 'offset' bytes into the buffer
//----------------------------------------------------------------------
void DataExtractor::DumpUUID(Stream *s, offset_t offset) const {
if (s) {
const uint8_t *uuid_data = PeekData(offset, 16);
if (uuid_data) {
lldb_private::UUID uuid(uuid_data, 16);
uuid.Dump(s);
} else {
s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">",
offset);
}
}
}
void DataExtractor::DumpHexBytes(Stream *s, const void *src, size_t src_len,
uint32_t bytes_per_line, addr_t base_addr) {
DataExtractor data(src, src_len, eByteOrderLittle, 4);
data.Dump(s,
0, // Offset into "src"
eFormatBytes, // Dump as hex bytes
1, // Size of each item is 1 for single bytes
src_len, // Number of bytes
bytes_per_line, // Num bytes per line
base_addr, // Base address
0, 0); // Bitfield info
}
size_t DataExtractor::Copy(DataExtractor &dest_data) const {
if (m_data_sp) {
// we can pass along the SP to the data
dest_data.SetData(m_data_sp);
} else {
const uint8_t *base_ptr = m_start;
size_t data_size = GetByteSize();
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
}
return GetByteSize();
}
bool DataExtractor::Append(DataExtractor &rhs) {
if (rhs.GetByteOrder() != GetByteOrder())
return false;
if (rhs.GetByteSize() == 0)
return true;
if (GetByteSize() == 0)
return (rhs.Copy(*this) > 0);
size_t bytes = GetByteSize() + rhs.GetByteSize();
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
SetData(buffer_sp);
return true;
}
bool DataExtractor::Append(void *buf, offset_t length) {
if (buf == nullptr)
return false;
if (length == 0)
return true;
size_t bytes = GetByteSize() + length;
DataBufferHeap *buffer_heap_ptr = nullptr;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (!buffer_sp || buffer_heap_ptr == nullptr)
return false;
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
if (GetByteSize() > 0)
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), buf, length);
SetData(buffer_sp);
return true;
}
void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
uint64_t max_data) {
if (max_data == 0)
max_data = GetByteSize();
else
max_data = std::min(max_data, GetByteSize());
llvm::MD5 md5;
const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
md5.update(data);
llvm::MD5::MD5Result result;
md5.final(result);
dest.resize(16);
std::copy(result, result + 16, dest.begin());
}