llvm with tablegen backend for capstone disassembler
Go to file
Daniel Stone cccdd0579b libclc: Don't pass linker flags to CLC/LLAsm
We don't want the regular linker flags for these invocations, since
we're not compiling to the target machine anyway. This fixes things like
'/machine:x64' being unknown when invoked under Windows.

reviewer: jvesely
Differential Revision: https://reviews.llvm.org/D77164
2020-04-14 10:03:27 -04:00
clang [clang-objc-fuzzer] Add LLVMFuzzerInitialize to fix msvc builds (PR44414) 2020-04-14 13:37:27 +01:00
clang-tools-extra Fix target_info.test on Windows with a hack 2020-04-13 13:14:06 -07:00
compiler-rt [XRay] Define uint64_t Address = Sled.Address; NFC 2020-04-13 22:44:12 -07:00
debuginfo-tests [Dexter] Add support for Windows to regression test suite. 2020-03-31 10:18:12 +01:00
flang Add missing dependencies on the flang test target 2020-04-13 18:23:01 +00:00
libc [libc] Add very basic stdio FILE and fwrite 2020-04-14 04:02:27 -04:00
libclc libclc: Don't pass linker flags to CLC/LLAsm 2020-04-14 10:03:27 -04:00
libcxx [libc++] Simplify how with_system_cxx_lib and availability features are defined 2020-04-14 08:28:05 -04:00
libcxxabi [libc++abi] Enable the new libc++ testing format by default 2020-04-07 09:16:06 -04:00
libunwind [libunwind] Enable the new libc++ testing format by default 2020-04-13 18:17:18 -04:00
lld [ADT/STLExtras.h] - Add llvm::is_sorted wrapper and update callers. 2020-04-14 14:11:02 +03:00
lldb [lldb/test] Fix TestLoadUnload 2020-04-14 13:53:51 +02:00
llvm [DWARFDebugLine] Check for (EOF) errors when parsing v5 content descriptors 2020-04-14 16:02:56 +02:00
mlir [MLIR] Constant fold multiplies in deriveStaticUpperBound. 2020-04-14 13:04:16 +02:00
openmp [OpenMP] Refined CUDA plugin to put all CUDA operations into class 2020-04-13 13:32:46 -04:00
parallel-libs [arcconfig] Delete subproject arcconfigs 2020-02-24 16:20:36 -08:00
polly Make IRBuilder automatically set alignment on load/store/alloca. 2020-04-13 13:43:14 -07:00
pstl [pstl] A hot fix for exclusive_scan (+ lost enable_if in declaration) 2020-03-17 16:22:24 -04:00
utils/arcanist Use in-tree clang-format-diff.py as Arcanist linter 2020-04-06 12:02:20 -04:00
.arcconfig [arcconfig] Default base to previous revision 2020-02-24 16:20:25 -08:00
.arclint Setup clang-format as an Arcanist linter 2020-03-30 15:02:33 -04:00
.clang-format
.clang-tidy - Update .clang-tidy to ignore parameters of main like functions for naming violations in clang and llvm directory 2020-01-31 16:49:45 +00:00
.git-blame-ignore-revs Add some libc++ revisions to .git-blame-ignore-revs 2020-03-17 17:30:20 -04:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md Revert "This is a test commit." 2020-04-11 15:55:07 -07:00

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.