mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-27 20:06:20 +00:00
95ddbed9b7
Historically, the bindings for the Linalg dialect were included into the "core" bindings library because they depended on the C++ implementation of the "core" bindings. The other dialects followed the pattern. Now that this dependency is gone, split out each dialect into a separate Python extension library. Depends On D116649, D116605 Reviewed By: stellaraccident Differential Revision: https://reviews.llvm.org/D116662
75 lines
3.0 KiB
C++
75 lines
3.0 KiB
C++
//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir-c/Dialect/SparseTensor.h"
|
|
#include "mlir-c/IR.h"
|
|
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
|
|
|
namespace py = pybind11;
|
|
using namespace llvm;
|
|
using namespace mlir;
|
|
using namespace mlir::python::adaptors;
|
|
|
|
static void populateDialectSparseTensorSubmodule(const py::module &m) {
|
|
py::enum_<MlirSparseTensorDimLevelType>(m, "DimLevelType", py::module_local())
|
|
.value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE)
|
|
.value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED)
|
|
.value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON);
|
|
|
|
mlir_attribute_subclass(m, "EncodingAttr",
|
|
mlirAttributeIsASparseTensorEncodingAttr)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls,
|
|
std::vector<MlirSparseTensorDimLevelType> dimLevelTypes,
|
|
llvm::Optional<MlirAffineMap> dimOrdering, int pointerBitWidth,
|
|
int indexBitWidth, MlirContext context) {
|
|
return cls(mlirSparseTensorEncodingAttrGet(
|
|
context, dimLevelTypes.size(), dimLevelTypes.data(),
|
|
dimOrdering ? *dimOrdering : MlirAffineMap{nullptr},
|
|
pointerBitWidth, indexBitWidth));
|
|
},
|
|
py::arg("cls"), py::arg("dim_level_types"), py::arg("dim_ordering"),
|
|
py::arg("pointer_bit_width"), py::arg("index_bit_width"),
|
|
py::arg("context") = py::none(),
|
|
"Gets a sparse_tensor.encoding from parameters.")
|
|
.def_property_readonly(
|
|
"dim_level_types",
|
|
[](MlirAttribute self) {
|
|
std::vector<MlirSparseTensorDimLevelType> ret;
|
|
for (int i = 0,
|
|
e = mlirSparseTensorEncodingGetNumDimLevelTypes(self);
|
|
i < e; ++i)
|
|
ret.push_back(
|
|
mlirSparseTensorEncodingAttrGetDimLevelType(self, i));
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"dim_ordering",
|
|
[](MlirAttribute self) -> llvm::Optional<MlirAffineMap> {
|
|
MlirAffineMap ret =
|
|
mlirSparseTensorEncodingAttrGetDimOrdering(self);
|
|
if (mlirAffineMapIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"pointer_bit_width",
|
|
[](MlirAttribute self) {
|
|
return mlirSparseTensorEncodingAttrGetPointerBitWidth(self);
|
|
})
|
|
.def_property_readonly("index_bit_width", [](MlirAttribute self) {
|
|
return mlirSparseTensorEncodingAttrGetIndexBitWidth(self);
|
|
});
|
|
}
|
|
|
|
PYBIND11_MODULE(_mlirDialectsSparseTensor, m) {
|
|
m.doc() = "MLIR SparseTensor dialect.";
|
|
populateDialectSparseTensorSubmodule(m);
|
|
}
|