llvm-capstone/mlir/lib/Bindings/Python/DialectSparseTensor.cpp
Alex Zinenko 95ddbed9b7 [mlir] Split out Python bindings for dialects into separate libs
Historically, the bindings for the Linalg dialect were included into the
"core" bindings library because they depended on the C++ implementation
of the "core" bindings. The other dialects followed the pattern. Now
that this dependency is gone, split out each dialect into a separate
Python extension library.

Depends On D116649, D116605

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D116662
2022-01-06 10:31:14 +01:00

75 lines
3.0 KiB
C++

//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/Dialect/SparseTensor.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace llvm;
using namespace mlir;
using namespace mlir::python::adaptors;
static void populateDialectSparseTensorSubmodule(const py::module &m) {
py::enum_<MlirSparseTensorDimLevelType>(m, "DimLevelType", py::module_local())
.value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE)
.value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED)
.value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON);
mlir_attribute_subclass(m, "EncodingAttr",
mlirAttributeIsASparseTensorEncodingAttr)
.def_classmethod(
"get",
[](py::object cls,
std::vector<MlirSparseTensorDimLevelType> dimLevelTypes,
llvm::Optional<MlirAffineMap> dimOrdering, int pointerBitWidth,
int indexBitWidth, MlirContext context) {
return cls(mlirSparseTensorEncodingAttrGet(
context, dimLevelTypes.size(), dimLevelTypes.data(),
dimOrdering ? *dimOrdering : MlirAffineMap{nullptr},
pointerBitWidth, indexBitWidth));
},
py::arg("cls"), py::arg("dim_level_types"), py::arg("dim_ordering"),
py::arg("pointer_bit_width"), py::arg("index_bit_width"),
py::arg("context") = py::none(),
"Gets a sparse_tensor.encoding from parameters.")
.def_property_readonly(
"dim_level_types",
[](MlirAttribute self) {
std::vector<MlirSparseTensorDimLevelType> ret;
for (int i = 0,
e = mlirSparseTensorEncodingGetNumDimLevelTypes(self);
i < e; ++i)
ret.push_back(
mlirSparseTensorEncodingAttrGetDimLevelType(self, i));
return ret;
})
.def_property_readonly(
"dim_ordering",
[](MlirAttribute self) -> llvm::Optional<MlirAffineMap> {
MlirAffineMap ret =
mlirSparseTensorEncodingAttrGetDimOrdering(self);
if (mlirAffineMapIsNull(ret))
return {};
return ret;
})
.def_property_readonly(
"pointer_bit_width",
[](MlirAttribute self) {
return mlirSparseTensorEncodingAttrGetPointerBitWidth(self);
})
.def_property_readonly("index_bit_width", [](MlirAttribute self) {
return mlirSparseTensorEncodingAttrGetIndexBitWidth(self);
});
}
PYBIND11_MODULE(_mlirDialectsSparseTensor, m) {
m.doc() = "MLIR SparseTensor dialect.";
populateDialectSparseTensorSubmodule(m);
}