llvm-capstone/flang/docs/ProcedurePointer.md
Peixin Qiao feb9d33a2a [flang] Support codegen for global procedure pointer
This supports the codegen for global procedure pointer in BoxedProcedure
pass. Reset the boxproc type.

Reviewed By: jeanPerier

Differential Revision: https://reviews.llvm.org/D138273
2022-12-07 21:24:01 +08:00

16 KiB

Procedure Pointer

A procedure pointer is a procedure that has the EXTERNAL and POINTER attributes.

This document summarizes what of context the procedure pointers should appear, and how they are lowered to FIR.

The current plan is to use/extend the BoxedProcedure pass for the conversion to LLVM IR, and thus will not be lowering the procedure-pointer-related operations to LLVM IR in CodeGen.cpp.

Fortran standard

Here is a list of the sections and constraints of the Fortran standard involved for procedure pointers.

  • 8.5.4 Components
    • C757
    • C758
    • C759
  • 8.5.9: EXTERNAL attribute
  • 8.5.14: POINTER attribute
    • C853
    • A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.
  • 8.5.15 PROTECTED attribute
    • C855
  • 8.5.16 SAVE attribute
    • (4) A procedure pointer declared in the scoping unit of a main program, module, or submodule implicitly has the SAVE attribute.
  • 8.10.2.1 COMMON statement
    • C8119
  • 10.2.2.2 Pointer assignment statement
    • C1028
    • C1029
  • 10.2.2.4 Procedure pointer assignment
  • 11.1.3 ASSOCIATE construct
    • C1005
  • 12.6.3 Data transfer input/output list
    • C1233
  • 15.2.2.4 Procedure pointers
    • A procedure pointer may be pointer associated with an external procedure, an internal procedure, an intrinsic procedure, a module procedure, or a dummy procedure that is not a procedure pointer.
  • 15.4.3.6 Procedure declaration statement
  • 15.5.2.9(5) Actual arguments associated with dummy procedure entities
  • 16.9.16 ASSOCIATED(POINTER [, TARGET])
    • POINTER may be a procedure pointer, and TARGET may be proc-target in a pointer assignment statement (10.2.2).
  • 16.9.144 NULL([MOLD])
    • MOLD may be a procedure pointer.
  • 18.2.3.4 C_F_PROCPOINTER(CPTR, FPTR)
    • FPTR shall be a procedure pointer, and not be a component of a coindexed object.
  • C.1.1 A procedure that is not a procedure pointer can be an actual argument that corresponds to a procedure pointer dummy argument with the INTENT(IN) attribute.

Representation in FIR

Procedure pointer !fir.ref<!fir.boxproc<T>>

A procedure pointer may have an explicit or implicit interface. T in !fir.ref<!fir.boxproc<T>> is the function type, which is () -> () if the procedure pointer has the implicit interface declared as procedure(), pointer :: p.

A procedure declaration statement specifies EXTERNAL attribute (8.5.9) for all entities for all entities in the procedure declaration list.

Actual arguments associated with dummy procedure entities

The actual argument may be a procedure pointer, a valid target for the dummy pointer, a reference to the NULL() intrinsic, or a reference to a function that returns a procedure pointer.

If the interface is explicit, and the dummy argument is procedure pointer, the reference is resolved as the pointer to the procedure; otherwise, the reference is resolved as the pointer target.

Fortran case 1

subroutine proc_pointer_dummy_argument(p)
  interface
    function func(x)
      integer :: x
    end function func
  end interface
  procedure(func), pointer :: p
  call foo1(p)
  call foo2(p)
contains
  subroutine foo2(q)
    interface
      function func(x)
        integer :: x
      end function func
    end interface
    procedure(func), pointer :: q
  end subroutine foo2
end subroutine proc_pointer_dummy_argument

FIR for case 1

func.func private @foo1(!fir.boxproc<(!fir.ref<i32>) -> f32>)
func.func private @foo2(!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>)

func.func @proc_pointer_dummy_argument(%0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>) {
  %1 = fir.load %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  fir.call @foo1(%1) : (!fir.boxproc<(!fir.ref<i32>) -> f32>) -> ()
  fir.call @foo2(%0) : (!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>) -> ()
  return
}

Fortran case 2

subroutine proc_pointer_global()
  interface
    function func(x)
      integer :: x
    end function func
  end interface
  procedure(func), pointer, save :: p
  call foo1(p)
  call foo2(p)
contains
  subroutine foo2(q)
    interface
      function func(x)
        integer :: x
      end function func
    end interface
    procedure(func), pointer :: q
  end subroutine foo2
end subroutine proc_pointer_global

FIR for case 2

func.func private @foo1(!fir.boxproc<(!fir.ref<i32>) -> f32>)
func.func private @foo2(!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>)

fir.global internal @ProcedurePointer : !fir.boxproc<(!fir.ref<i32>) -> f32> {
  %0 = fir.zero_bits (!fir.ref<i32>) -> f32
  %1 = fir.emboxproc %0 : ((!fir.ref<i32>) -> f32) -> !fir.boxproc<(!fir.ref<i32>) -> f32>
  fir.has_value %1 : !fir.boxproc<(!fir.ref<i32>) -> f32>
}

func.func @proc_pointer_global() {
  %0 = fir.address_of(@ProcedurePointer) : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  %1 = fir.load %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  fir.call @foo1(%1) : (!fir.boxproc<(!fir.ref<i32>) -> f32>) -> ()
  fir.call @foo2(%0) : (!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>) -> ()
  return
}

Fortran case 3

subroutine proc_pointer_local()
  interface
    function func(x)
      integer :: x
    end function func
  end interface
  procedure(func), pointer :: p
  call foo1(p)
  call foo2(p)
contains
  subroutine foo2(q)
    interface
      function func(x)
        integer :: x
      end function func
    end interface
    procedure(func), pointer :: q
  end subroutine foo2
end subroutine proc_pointer_local

FIR for case 3

func.func private @foo1(!fir.boxproc<(!fir.ref<i32>) -> f32>)
func.func private @foo2(!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>)

func.func @proc_pointer_local() {
  %0 = fir.alloca !fir.boxproc<(!fir.ref<i32>) -> f32>
  %1 = fir.zero_bits (!fir.ref<i32>) -> f32
  %2 = fir.emboxproc %1 : ((!fir.ref<i32>) -> f32) -> !fir.boxproc<(!fir.ref<i32>) -> f32>
  fir.store %2 to %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  %4 = fir.load %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  fir.call @foo1(%4) : (!fir.boxproc<(!fir.ref<i32>) -> f32>) -> ()
  fir.call @foo2(%0) : (!fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>) -> ()
  return
}

It is possible to pass procedure pointers to a C function. If the C function has an explicit interface in fortran code, and the dummy argument is a procedure pointer, the code passes a pointer to the procedure as the actual argument (see Case 5); Otherwise, the code passes the procedure pointer target as the actual argument (see Case 4).

Case 4

void func_(void (*foo)(int *)) {
  int *x, y = 1;
  x = &y;
  foo(x);
}
program main
  procedure(), pointer :: pp
  pp=>print_x
  call func(pp)
contains
  subroutine print_x(x)
    integer :: x
    print *, x
  end
end

Note that the internal procedure is not one good usage, but it works in implementation. It is better to use BIND(C) external or module procedure as right-hand side proc-target.

Case 5

void func_(void (**foo)(int *)) {
  int *x, y = 1;
  x = &y;
  (*foo)(x);
}
program main
  interface
    subroutine func(p)
      procedure(), pointer :: p
    end
  end interface
  procedure(), pointer :: pp
  pp=>print_x
  call func(pp)
contains
  subroutine print_x(x)
    integer :: x
    print *, x
  end
end

Case 4 and Case 5 are not recommended from Fortran 2003 standard, which provides the feature of interoperability with C to handle this. Specifically, C_F_PROCPOINTER is used to associate a procedure pointer with the target of a C function pointer. C_FUNPTR is also designed for interoperability with any C function pointer type.

Procedure pointer to function returning a character type

The dummy procedure pointer may not have a function type with an assumed length due to C721 and C723.

Procedure pointer to internal procedure

Initially the current plan is to implement pointers to internal procedures using the LLVM Trampoline intrinsics. This has the drawback of requiring the stack to be executable, which is a security hole. To avoid this, we will need improve the implementation to use heap-resident thunks.

Procedure pointer assignment p => proc

The right-hand side may be a procedure, a procedure pointer, or a function whose result is a procedure pointer.

The procedure could be a BIND(C) procedure. The lowering of it is the same as that of an external or module procedure. The case of internal procedure has been discussed above.

#include<stdio.h>
void func_(int *x) {
  printf("%d\n", *x);
}
program main
  interface
    subroutine func(x) bind(C)
      integer :: x
    end
  end interface
  procedure(func), bind(C, name="func_") :: proc
  procedure(func), pointer :: pp
  integer :: x = 5
  pp=>proc
  call pp(x)
end

Fortran case

subroutine proc_pointer_assignment(arg0, arg1)
  interface
    function func(x)
      integer :: x
    end
  end interface
  procedure(func), pointer :: arg0, arg1
  real, external, bind(C, name="Procedure") :: proc
  arg0=>proc    ! case 1
  arg0=>arg1    ! case 2
  arg0=>reffunc ! case 3
contains
  function reffunc() result(pp)
    interface
      function func(x)
        integer :: x
      end
    end interface
    procedure(func), pointer :: pp
  end
end
function proc(x) bind(C, name="Procedure")
  integer :: x
  proc = real(x)
end

FIR

func.func @Procedure(%arg0 : !fir.ref<i32>) -> f32 {
  %0 = fir.alloca f32 {bindc_name = "res", uniq_name = "_QFfuncEres"}
  %1 = fir.load %arg0 : !fir.ref<i32>
  %2 = fir.convert %1 : (i32) -> f32
  fir.store %2 to %0 : !fir.ref<f32>
  %3 = fir.load %0 : !fir.ref<f32>
  return %3 : f32
}

func.func @Reference2Function() -> !fir.boxproc<(!fir.ref<i32>) -> f32> {
  %0 = fir.alloca !fir.boxproc<(!fir.ref<i32>) -> f32>
  %1 = fir.load %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  return %1 : !fir.boxproc<(!fir.ref<i32>) -> f32>
}

func.func @proc_pointer_assignment(%arg0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>, %arg1 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>) {
  %0 = fir.alloca !fir.boxproc<(!fir.ref<i32>) -> f32> {bindc_name = ".result"}
  // case 1: assignment from external procedure
  %1 = fir.address_of(@Procedure) : (!fir.ref<i32>) -> f32
  %2 = fir.emboxproc %1 : ((!fir.ref<i32>) -> f32) -> !fir.boxproc<(!fir.ref<i32>) -> f32>
  fir.store %2 to %arg0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  // case2: assignment from procdure pointer
  %3 = fir.load %arg1 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  fir.store %3 to %arg0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  // case3: assignment from a reference to a function whose result is a procedure pointer
  %4 = fir.call @Reference2Function() : () -> !fir.boxproc<(!fir.ref<i32>) -> f32>
  fir.store %4 to %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  %5 = fir.load %0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  fir.store %5 to %arg0 : !fir.ref<!fir.boxproc<(!fir.ref<i32>) -> f32>>
  return
}

Procedure pointer components

Having procedure pointers in derived types permits methods to be dynamically bound to objects. Such procedure pointer components will have the type !fir.boxproc.

Fortran

subroutine proc_pointer_component(a, i, f)
  interface
    function func(x)
      integer :: x
    end
  end interface
  type matrix
    real :: element(2,2)
    procedure(func), pointer, nopass :: solve
  end type
  integer :: i
  procedure(func) :: f
  type(matrix) :: a
  a%solve=>f
  r = a%solve(i)
end subroutine proc_pointer_component

FIR

func.func @proc_pointer_component(%arg0 : !fir.boxproc<(!fir.ref<i32>) -> f32>, %arg1: !fir.ref<i32>) {
  %0 = fir.alloca !fir.type<_QFtestTmatrix{element:!fir.array<2x2xf32>,solve:!fir.boxproc<() -> ()>}>
  %1 = fir.field_index solve, !fir.type<_QFtestTmatrix{element:!fir.array<2x2xf32>,solve:!fir.boxproc<() -> ()>}>
  %2 = fir.coordinate_of %0, %1 : (!fir.ref<!fir.type<_QFtestTmatrix{element:!fir.array<2x2xf32>,solve:!fir.boxproc<() -> ()>}>>, !fir.field) -> !fir.ref<!fir.boxproc<() -> ()>>
  %3 = fir.convert %arg0 : (!fir.boxproc<(!fir.ref<i32>) -> f32>) ->  !fir.boxproc<() -> ()>
  fir.store %3 to %2 : !fir.ref<!fir.boxproc<() -> ()>>
  %4 = fir.field_index solve, !fir.type<_QFtestTmatrix{element:!fir.array<2x2xf32>,solve:!fir.boxproc<() -> ()>}>
  %5 = fir.coordinate_of %0, %4 : (!fir.ref<!fir.type<_QFtestTmatrix{element:!fir.array<2x2xf32>,solve:!fir.boxproc<() -> ()>}>>, !fir.field) -> !fir.ref<!fir.boxproc<() -> ()>>
  %6 = fir.load %5 : !fir.ref<!fir.boxproc<() -> ()>>
  %7 = fir.convert %6 : (!fir.boxproc<() -> ()>) -> !fir.boxproc<(!fir.ref<i32>) -> f32>
  %8 = fir.box_addr %7 : (!fir.boxproc<(!fir.ref<i32>) -> f32>) -> ((!fir.ref<i32>) -> f32)
  %9 = fir.call %8(%arg1) : (!fir.ref<i32>) -> f32
  return
}

Testing

The lowering part is tested with LIT tests in tree, but the execution tests are useful for full testing.

LLVM IR testing is also helpful with the initial check. A C function pointer is semantically equivalent to a Fortran procedure in LLVM IR level, and a pointer to a C function pointer is semantically equivalent to a Fortran procedure pointer in LLVM IR level. That is, a Fortran procedure will be converted to a opaque pointer in LLVM IR level, which is the same for a C function pointer; a Fortran procedure pointer will be converted to a opaque pointer pointing to a opaque pointer, which is the same for a pointer to a C function pointer.

The tests should include the following

  • function result, subroutine/function arguments with varying types
    • non-character scalar
    • character (assumed-length and non-assumed-length)
    • array (static and dynamic)
    • character array
    • derived type
    • ... (polymorphic?)
  • internal/external/module procedure or a C function as the target
    • procedure pointer initialization
    • procedure pointer assignment
  • procedure pointer, procedure pointer target passed to a C function
  • procedure pointer, procedure pointer target passed to a Fortran procedure
  • procedure pointer component in derived types

Current TODOs

Current list of TODOs in lowering:

  • flang/lib/Lower/CallInterface.cpp:708: not yet implemented: procedure pointer result not yet handled
  • flang/lib/Lower/CallInterface.cpp:961: not yet implemented: procedure pointer arguments
  • flang/lib/Lower/CallInterface.cpp:993: not yet implemented: procedure pointer results
  • flang/lib/Lower/ConvertExpr.cpp:1119: not yet implemented: procedure pointer component in derived type assignment
  • flang/lib/Lower/ConvertType.cpp:228: not yet implemented: procedure pointers
  • flang/lib/Lower/Bridge.cpp:2438: not yet implemented: procedure pointer assignment
  • flang/lib/Lower/ConvertVariable.cpp:348: not yet implemented: procedure pointer component default initialization
  • flang/lib/Lower/ConvertVariable.cpp:416: not yet implemented: procedure pointer globals
  • flang/lib/Lower/ConvertVariable.cpp:1459: not yet implemented: procedure pointers
  • flang/lib/Lower/HostAssociations.cpp:162: not yet implemented: capture procedure pointer in internal procedure
  • lowering of procedure pointers in ASSOCIATED, NULL, and C_F_PROCPOINTER

Current list of TODOs in code generation:

NOTE: There are any number of possible implementations.

BoxedProcedure pass

or

  • flang/lib/Optimizer/CodeGen/TypeConverter.h:64 TODO: BoxProcType type conversion
  • flang/lib/Optimizer/CodeGen/CodeGen.cpp:2080 not yet implemented: fir.emboxproc codegen
  • flang/lib/Optimizer/CodeGen/CodeGen.cpp:629 not yet implemented: fir.boxproc_host codegen
  • flang/lib/Optimizer/CodeGen/CodeGen.cpp:1078 not yet implemented: fir.len_param_index codegen
  • flang/lib/Optimizer/CodeGen/CodeGen.cpp:3166 not yet implemented: fir.unboxproc codegen

Resources:

  • [1] Fortran standard