llvm-capstone/flang/runtime/derived-api.cpp
Peter Klausler b21c24c308
[flang][runtime] Recognize and handle FINAL subroutines with contiguous dummy arrays when data are not so
When a FINAL subroutine is being invoked for a discontiguous array, which can
happen for INTENT(OUT) dummy arguments and for some left-hand side variables
in intrinsic assignment statements, it may be the case that the subroutine
being called was defined with a dummy argument that requires contiguous data.

Extend the derived type descriptions used by the runtime to signify when
a special procedure binding requires contiguity; set the flags accordingly;
check them in the runtime support library, and, when necessary, use a
temporary shallow copy of the finalized array data in the call to the
final subroutine.

Differential Revision: https://reviews.llvm.org/D156760
2023-08-01 13:46:45 -07:00

173 lines
5.7 KiB
C++

//===-- runtime/derived-api.cpp
//-----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/derived-api.h"
#include "derived.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
extern "C" {
void RTNAME(Initialize)(
const Descriptor &descriptor, const char *sourceFile, int sourceLine) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
Terminator terminator{sourceFile, sourceLine};
Initialize(descriptor, *derived, terminator);
}
}
}
}
void RTNAME(Destroy)(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
// TODO: Pass source file & line information to the API
// so that a good Terminator can be passed
Destroy(descriptor, true, *derived, nullptr);
}
}
}
}
bool RTNAME(ClassIs)(
const Descriptor &descriptor, const typeInfo::DerivedType &derivedType) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (derived == &derivedType) {
return true;
}
const typeInfo::DerivedType *parent{derived->GetParentType()};
while (parent) {
if (parent == &derivedType) {
return true;
}
parent = parent->GetParentType();
}
}
}
return false;
}
static bool CompareDerivedTypeNames(const Descriptor &a, const Descriptor &b) {
if (a.raw().version == CFI_VERSION &&
a.type() == TypeCode{TypeCategory::Character, 1} &&
a.ElementBytes() > 0 && a.rank() == 0 && a.OffsetElement() != nullptr &&
a.raw().version == CFI_VERSION &&
b.type() == TypeCode{TypeCategory::Character, 1} &&
b.ElementBytes() > 0 && b.rank() == 0 && b.OffsetElement() != nullptr &&
a.ElementBytes() == b.ElementBytes() &&
memcmp(a.OffsetElement(), b.OffsetElement(), a.ElementBytes()) == 0) {
return true;
}
return false;
}
inline bool CompareDerivedType(
const typeInfo::DerivedType *a, const typeInfo::DerivedType *b) {
return a == b || CompareDerivedTypeNames(a->name(), b->name());
}
static const typeInfo::DerivedType *GetDerivedType(const Descriptor &desc) {
if (const DescriptorAddendum * addendum{desc.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
return derived;
}
}
return nullptr;
}
bool RTNAME(SameTypeAs)(const Descriptor &a, const Descriptor &b) {
// Unlimited polymorphic with intrinsic dynamic type.
if (a.raw().type != CFI_type_struct && a.raw().type != CFI_type_other &&
b.raw().type != CFI_type_struct && b.raw().type != CFI_type_other)
return a.raw().type == b.raw().type;
const typeInfo::DerivedType *derivedTypeA{GetDerivedType(a)};
const typeInfo::DerivedType *derivedTypeB{GetDerivedType(b)};
// No dynamic type in one or both descriptor.
if (derivedTypeA == nullptr || derivedTypeB == nullptr) {
return false;
}
// Exact match of derived type.
if (derivedTypeA == derivedTypeB) {
return true;
}
// Otherwise compare with the name. Note 16.29 kind type parameters are not
// considered in the test.
return CompareDerivedTypeNames(derivedTypeA->name(), derivedTypeB->name());
}
bool RTNAME(ExtendsTypeOf)(const Descriptor &a, const Descriptor &mold) {
if (a.raw().type != CFI_type_struct && a.raw().type != CFI_type_other &&
mold.raw().type != CFI_type_struct && mold.raw().type != CFI_type_other)
return a.raw().type == mold.raw().type;
const typeInfo::DerivedType *derivedTypeA{GetDerivedType(a)};
const typeInfo::DerivedType *derivedTypeMold{GetDerivedType(mold)};
// If MOLD is unlimited polymorphic and is either a disassociated pointer or
// unallocated allocatable, the result is true.
// Unlimited polymorphic descriptors are initialized with a CFI_type_other
// type.
if (mold.type().raw() == CFI_type_other &&
(mold.IsAllocatable() || mold.IsPointer()) &&
derivedTypeMold == nullptr) {
return true;
}
// If A is unlimited polymorphic and is either a disassociated pointer or
// unallocated allocatable, the result is false.
// Unlimited polymorphic descriptors are initialized with a CFI_type_other
// type.
if (a.type().raw() == CFI_type_other &&
(a.IsAllocatable() || a.IsPointer()) && derivedTypeA == nullptr) {
return false;
}
if (derivedTypeA == nullptr || derivedTypeMold == nullptr) {
return false;
}
// Otherwise if the dynamic type of A or MOLD is extensible, the result is
// true if and only if the dynamic type of A is an extension type of the
// dynamic type of MOLD.
if (CompareDerivedType(derivedTypeA, derivedTypeMold)) {
return true;
}
const typeInfo::DerivedType *parent{derivedTypeA->GetParentType()};
while (parent) {
if (CompareDerivedType(parent, derivedTypeMold)) {
return true;
}
parent = parent->GetParentType();
}
return false;
}
void RTNAME(DestroyWithoutFinalization)(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
Destroy(descriptor, /*finalize=*/false, *derived, nullptr);
}
}
}
}
} // extern "C"
} // namespace Fortran::runtime