mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-14 11:39:35 +00:00
cc575dd2ce
The implementation of Messages with forward_list<> makes some nonstandard assumptions about the validity of iterators that don't hold up with MSVC's implementation. Use list<> instead. The measured performance is comparable. This change obviated a distinction between two member functions of Messages, and the uses of one have been replaced with calls to the other. Similar usage in CharBuffer was also replaced for consistency. Differential revision: https://reviews.llvm.org/D91210
934 lines
31 KiB
C++
934 lines
31 KiB
C++
//===-- lib/Parser/basic-parsers.h ------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef FORTRAN_PARSER_BASIC_PARSERS_H_
|
|
#define FORTRAN_PARSER_BASIC_PARSERS_H_
|
|
|
|
// Let a "parser" be an instance of any class that supports this
|
|
// type definition and member (or static) function:
|
|
//
|
|
// using resultType = ...;
|
|
// std::optional<resultType> Parse(ParseState &) const;
|
|
//
|
|
// which either returns a value to signify a successful recognition or else
|
|
// returns {} to signify failure. On failure, the state cannot be assumed
|
|
// to still be valid, in general -- see below for exceptions.
|
|
//
|
|
// This header defines the fundamental parser class templates and helper
|
|
// template functions. See parser-combinators.txt for documentation.
|
|
|
|
#include "flang/Common/Fortran-features.h"
|
|
#include "flang/Common/idioms.h"
|
|
#include "flang/Common/indirection.h"
|
|
#include "flang/Parser/char-block.h"
|
|
#include "flang/Parser/message.h"
|
|
#include "flang/Parser/parse-state.h"
|
|
#include "flang/Parser/provenance.h"
|
|
#include "flang/Parser/user-state.h"
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace Fortran::parser {
|
|
|
|
// fail<A>("..."_err_en_US) returns a parser that never succeeds. It reports an
|
|
// error message at the current position. The result type is unused,
|
|
// but might have to be specified at the point of call to satisfy
|
|
// the type checker. The state remains valid.
|
|
template <typename A> class FailParser {
|
|
public:
|
|
using resultType = A;
|
|
constexpr FailParser(const FailParser &) = default;
|
|
constexpr explicit FailParser(MessageFixedText t) : text_{t} {}
|
|
std::optional<A> Parse(ParseState &state) const {
|
|
state.Say(text_);
|
|
return std::nullopt;
|
|
}
|
|
|
|
private:
|
|
const MessageFixedText text_;
|
|
};
|
|
|
|
template <typename A = Success> inline constexpr auto fail(MessageFixedText t) {
|
|
return FailParser<A>{t};
|
|
}
|
|
|
|
// pure(x) returns a parser that always succeeds, does not advance the
|
|
// parse, and returns a captured value x whose type must be copy-constructible.
|
|
//
|
|
// pure<A>() is essentially pure(A{}); it returns a default-constructed A{},
|
|
// and works even when A is not copy-constructible.
|
|
template <typename A> class PureParser {
|
|
public:
|
|
using resultType = A;
|
|
constexpr PureParser(const PureParser &) = default;
|
|
constexpr explicit PureParser(A &&x) : value_(std::move(x)) {}
|
|
std::optional<A> Parse(ParseState &) const { return value_; }
|
|
|
|
private:
|
|
const A value_;
|
|
};
|
|
|
|
template <typename A> inline constexpr auto pure(A x) {
|
|
return PureParser<A>(std::move(x));
|
|
}
|
|
|
|
template <typename A> class PureDefaultParser {
|
|
public:
|
|
using resultType = A;
|
|
constexpr PureDefaultParser(const PureDefaultParser &) = default;
|
|
constexpr PureDefaultParser() {}
|
|
std::optional<A> Parse(ParseState &) const { return std::make_optional<A>(); }
|
|
};
|
|
|
|
template <typename A> inline constexpr auto pure() {
|
|
return PureDefaultParser<A>();
|
|
}
|
|
|
|
// If a is a parser, attempt(a) is the same parser, but on failure
|
|
// the ParseState is guaranteed to have been restored to its initial value.
|
|
template <typename A> class BacktrackingParser {
|
|
public:
|
|
using resultType = typename A::resultType;
|
|
constexpr BacktrackingParser(const BacktrackingParser &) = default;
|
|
constexpr BacktrackingParser(const A &parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
Messages messages{std::move(state.messages())};
|
|
ParseState backtrack{state};
|
|
std::optional<resultType> result{parser_.Parse(state)};
|
|
if (result) {
|
|
state.messages().Annex(std::move(messages));
|
|
} else {
|
|
state = std::move(backtrack);
|
|
state.messages() = std::move(messages);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const A parser_;
|
|
};
|
|
|
|
template <typename A> inline constexpr auto attempt(const A &parser) {
|
|
return BacktrackingParser<A>{parser};
|
|
}
|
|
|
|
// For any parser x, the parser returned by !x is one that succeeds when
|
|
// x fails, returning a useless (but present) result. !x fails when x succeeds.
|
|
template <typename PA> class NegatedParser {
|
|
public:
|
|
using resultType = Success;
|
|
constexpr NegatedParser(const NegatedParser &) = default;
|
|
constexpr NegatedParser(PA p) : parser_{p} {}
|
|
std::optional<Success> Parse(ParseState &state) const {
|
|
ParseState forked{state};
|
|
forked.set_deferMessages(true);
|
|
if (parser_.Parse(forked)) {
|
|
return std::nullopt;
|
|
}
|
|
return Success{};
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA, typename = typename PA::resultType>
|
|
constexpr auto operator!(PA p) {
|
|
return NegatedParser<PA>(p);
|
|
}
|
|
|
|
// For any parser x, the parser returned by lookAhead(x) is one that succeeds
|
|
// or fails if x does, but the state is not modified.
|
|
template <typename PA> class LookAheadParser {
|
|
public:
|
|
using resultType = Success;
|
|
constexpr LookAheadParser(const LookAheadParser &) = default;
|
|
constexpr LookAheadParser(PA p) : parser_{p} {}
|
|
std::optional<Success> Parse(ParseState &state) const {
|
|
ParseState forked{state};
|
|
forked.set_deferMessages(true);
|
|
if (parser_.Parse(forked)) {
|
|
return Success{};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto lookAhead(PA p) {
|
|
return LookAheadParser<PA>{p};
|
|
}
|
|
|
|
// If a is a parser, inContext("..."_en_US, a) runs it in a nested message
|
|
// context.
|
|
template <typename PA> class MessageContextParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr MessageContextParser(const MessageContextParser &) = default;
|
|
constexpr MessageContextParser(MessageFixedText t, PA p)
|
|
: text_{t}, parser_{p} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
state.PushContext(text_);
|
|
std::optional<resultType> result{parser_.Parse(state)};
|
|
state.PopContext();
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const MessageFixedText text_;
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA>
|
|
inline constexpr auto inContext(MessageFixedText context, PA parser) {
|
|
return MessageContextParser{context, parser};
|
|
}
|
|
|
|
// If a is a parser, withMessage("..."_en_US, a) runs it unchanged if it
|
|
// succeeds, and overrides its messages with a specific one if it fails and
|
|
// has matched no tokens.
|
|
template <typename PA> class WithMessageParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr WithMessageParser(const WithMessageParser &) = default;
|
|
constexpr WithMessageParser(MessageFixedText t, PA p)
|
|
: text_{t}, parser_{p} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
Messages messages{std::move(state.messages())};
|
|
ParseState backtrack{state};
|
|
state.set_anyTokenMatched(false);
|
|
std::optional<resultType> result{parser_.Parse(state)};
|
|
bool emitMessage{false};
|
|
if (result) {
|
|
messages.Annex(std::move(state.messages()));
|
|
if (backtrack.anyTokenMatched()) {
|
|
state.set_anyTokenMatched();
|
|
}
|
|
} else if (state.anyTokenMatched()) {
|
|
emitMessage = state.messages().empty();
|
|
messages.Annex(std::move(state.messages()));
|
|
backtrack.set_anyTokenMatched();
|
|
if (state.anyDeferredMessages()) {
|
|
backtrack.set_anyDeferredMessages(true);
|
|
}
|
|
state = std::move(backtrack);
|
|
} else {
|
|
emitMessage = true;
|
|
}
|
|
state.messages() = std::move(messages);
|
|
if (emitMessage) {
|
|
state.Say(text_);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const MessageFixedText text_;
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA>
|
|
inline constexpr auto withMessage(MessageFixedText msg, PA parser) {
|
|
return WithMessageParser{msg, parser};
|
|
}
|
|
|
|
// If a and b are parsers, then a >> b returns a parser that succeeds when
|
|
// b succeeds after a does so, but fails when either a or b does. The
|
|
// result is taken from b. Similarly, a / b also succeeds if both a and b
|
|
// do so, but the result is that returned by a.
|
|
template <typename PA, typename PB> class SequenceParser {
|
|
public:
|
|
using resultType = typename PB::resultType;
|
|
constexpr SequenceParser(const SequenceParser &) = default;
|
|
constexpr SequenceParser(PA pa, PB pb) : pa_{pa}, pb2_{pb} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if (pa_.Parse(state)) {
|
|
return pb2_.Parse(state);
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
private:
|
|
const PA pa_;
|
|
const PB pb2_;
|
|
};
|
|
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto operator>>(PA pa, PB pb) {
|
|
return SequenceParser<PA, PB>{pa, pb};
|
|
}
|
|
|
|
template <typename PA, typename PB> class FollowParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr FollowParser(const FollowParser &) = default;
|
|
constexpr FollowParser(PA pa, PB pb) : pa_{pa}, pb_{pb} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if (std::optional<resultType> ax{pa_.Parse(state)}) {
|
|
if (pb_.Parse(state)) {
|
|
return ax;
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
private:
|
|
const PA pa_;
|
|
const PB pb_;
|
|
};
|
|
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto operator/(PA pa, PB pb) {
|
|
return FollowParser<PA, PB>{pa, pb};
|
|
}
|
|
|
|
template <typename PA, typename... Ps> class AlternativesParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr AlternativesParser(PA pa, Ps... ps) : ps_{pa, ps...} {}
|
|
constexpr AlternativesParser(const AlternativesParser &) = default;
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
Messages messages{std::move(state.messages())};
|
|
ParseState backtrack{state};
|
|
std::optional<resultType> result{std::get<0>(ps_).Parse(state)};
|
|
if constexpr (sizeof...(Ps) > 0) {
|
|
if (!result) {
|
|
ParseRest<1>(result, state, backtrack);
|
|
}
|
|
}
|
|
state.messages().Annex(std::move(messages));
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
template <int J>
|
|
void ParseRest(std::optional<resultType> &result, ParseState &state,
|
|
ParseState &backtrack) const {
|
|
ParseState prevState{std::move(state)};
|
|
state = backtrack;
|
|
result = std::get<J>(ps_).Parse(state);
|
|
if (!result) {
|
|
state.CombineFailedParses(std::move(prevState));
|
|
if constexpr (J < sizeof...(Ps)) {
|
|
ParseRest<J + 1>(result, state, backtrack);
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::tuple<PA, Ps...> ps_;
|
|
};
|
|
|
|
template <typename... Ps> inline constexpr auto first(Ps... ps) {
|
|
return AlternativesParser<Ps...>{ps...};
|
|
}
|
|
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto operator||(PA pa, PB pb) {
|
|
return AlternativesParser<PA, PB>{pa, pb};
|
|
}
|
|
|
|
// If a and b are parsers, then recovery(a,b) returns a parser that succeeds if
|
|
// a does so, or if a fails and b succeeds. If a succeeds, b is not attempted.
|
|
// All messages from the first parse are retained.
|
|
// The two parsers must return values of the same type.
|
|
template <typename PA, typename PB> class RecoveryParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
static_assert(std::is_same_v<resultType, typename PB::resultType>);
|
|
constexpr RecoveryParser(const RecoveryParser &) = default;
|
|
constexpr RecoveryParser(PA pa, PB pb) : pa_{pa}, pb3_{pb} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
bool originallyDeferred{state.deferMessages()};
|
|
ParseState backtrack{state};
|
|
if (!originallyDeferred && state.messages().empty() &&
|
|
!state.anyErrorRecovery()) {
|
|
// Fast path. There are no messages or recovered errors in the incoming
|
|
// state. Attempt to parse with messages deferred, expecting that the
|
|
// parse will succeed silently.
|
|
state.set_deferMessages(true);
|
|
if (std::optional<resultType> ax{pa_.Parse(state)}) {
|
|
if (!state.anyDeferredMessages() && !state.anyErrorRecovery()) {
|
|
state.set_deferMessages(false);
|
|
return ax;
|
|
}
|
|
}
|
|
state = backtrack;
|
|
}
|
|
Messages messages{std::move(state.messages())};
|
|
if (std::optional<resultType> ax{pa_.Parse(state)}) {
|
|
state.messages().Annex(std::move(messages));
|
|
return ax;
|
|
}
|
|
messages.Annex(std::move(state.messages()));
|
|
bool hadDeferredMessages{state.anyDeferredMessages()};
|
|
bool anyTokenMatched{state.anyTokenMatched()};
|
|
state = std::move(backtrack);
|
|
state.set_deferMessages(true);
|
|
std::optional<resultType> bx{pb3_.Parse(state)};
|
|
state.messages() = std::move(messages);
|
|
state.set_deferMessages(originallyDeferred);
|
|
if (anyTokenMatched) {
|
|
state.set_anyTokenMatched();
|
|
}
|
|
if (hadDeferredMessages) {
|
|
state.set_anyDeferredMessages();
|
|
}
|
|
if (bx) {
|
|
// Error recovery situations must also produce messages.
|
|
CHECK(state.anyDeferredMessages() || state.messages().AnyFatalError());
|
|
state.set_anyErrorRecovery();
|
|
}
|
|
return bx;
|
|
}
|
|
|
|
private:
|
|
const PA pa_;
|
|
const PB pb3_;
|
|
};
|
|
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto recovery(PA pa, PB pb) {
|
|
return RecoveryParser<PA, PB>{pa, pb};
|
|
}
|
|
|
|
// If x is a parser, then many(x) returns a parser that always succeeds
|
|
// and whose value is a list, possibly empty, of the values returned from
|
|
// repeated application of x until it fails or does not advance the parse.
|
|
template <typename PA> class ManyParser {
|
|
using paType = typename PA::resultType;
|
|
|
|
public:
|
|
using resultType = std::list<paType>;
|
|
constexpr ManyParser(const ManyParser &) = default;
|
|
constexpr ManyParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
resultType result;
|
|
auto at{state.GetLocation()};
|
|
while (std::optional<paType> x{parser_.Parse(state)}) {
|
|
result.emplace_back(std::move(*x));
|
|
if (state.GetLocation() <= at) {
|
|
break; // no forward progress, don't loop
|
|
}
|
|
at = state.GetLocation();
|
|
}
|
|
return {std::move(result)};
|
|
}
|
|
|
|
private:
|
|
const BacktrackingParser<PA> parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto many(PA parser) {
|
|
return ManyParser<PA>{parser};
|
|
}
|
|
|
|
// If x is a parser, then some(x) returns a parser that succeeds if x does
|
|
// and whose value is a nonempty list of the values returned from repeated
|
|
// application of x until it fails or does not advance the parse. In other
|
|
// words, some(x) is a variant of many(x) that has to succeed at least once.
|
|
template <typename PA> class SomeParser {
|
|
using paType = typename PA::resultType;
|
|
|
|
public:
|
|
using resultType = std::list<paType>;
|
|
constexpr SomeParser(const SomeParser &) = default;
|
|
constexpr SomeParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
auto start{state.GetLocation()};
|
|
if (std::optional<paType> first{parser_.Parse(state)}) {
|
|
resultType result;
|
|
result.emplace_back(std::move(*first));
|
|
if (state.GetLocation() > start) {
|
|
result.splice(result.end(), many(parser_).Parse(state).value());
|
|
}
|
|
return {std::move(result)};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto some(PA parser) {
|
|
return SomeParser<PA>{parser};
|
|
}
|
|
|
|
// If x is a parser, skipMany(x) is equivalent to many(x) but with no result.
|
|
template <typename PA> class SkipManyParser {
|
|
public:
|
|
using resultType = Success;
|
|
constexpr SkipManyParser(const SkipManyParser &) = default;
|
|
constexpr SkipManyParser(PA parser) : parser_{parser} {}
|
|
std::optional<Success> Parse(ParseState &state) const {
|
|
for (auto at{state.GetLocation()};
|
|
parser_.Parse(state) && state.GetLocation() > at;
|
|
at = state.GetLocation()) {
|
|
}
|
|
return Success{};
|
|
}
|
|
|
|
private:
|
|
const BacktrackingParser<PA> parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto skipMany(PA parser) {
|
|
return SkipManyParser<PA>{parser};
|
|
}
|
|
|
|
// If x is a parser, skipManyFast(x) is equivalent to skipMany(x).
|
|
// The parser x must always advance on success and never invalidate the
|
|
// state on failure.
|
|
template <typename PA> class SkipManyFastParser {
|
|
public:
|
|
using resultType = Success;
|
|
constexpr SkipManyFastParser(const SkipManyFastParser &) = default;
|
|
constexpr SkipManyFastParser(PA parser) : parser_{parser} {}
|
|
std::optional<Success> Parse(ParseState &state) const {
|
|
while (parser_.Parse(state)) {
|
|
}
|
|
return Success{};
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto skipManyFast(PA parser) {
|
|
return SkipManyFastParser<PA>{parser};
|
|
}
|
|
|
|
// If x is a parser returning some type A, then maybe(x) returns a
|
|
// parser that returns std::optional<A>, always succeeding.
|
|
template <typename PA> class MaybeParser {
|
|
using paType = typename PA::resultType;
|
|
|
|
public:
|
|
using resultType = std::optional<paType>;
|
|
constexpr MaybeParser(const MaybeParser &) = default;
|
|
constexpr MaybeParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if (resultType result{parser_.Parse(state)}) {
|
|
// permit optional<optional<...>>
|
|
return {std::move(result)};
|
|
}
|
|
return resultType{};
|
|
}
|
|
|
|
private:
|
|
const BacktrackingParser<PA> parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto maybe(PA parser) {
|
|
return MaybeParser<PA>{parser};
|
|
}
|
|
|
|
// If x is a parser, then defaulted(x) returns a parser that always
|
|
// succeeds. When x succeeds, its result is that of x; otherwise, its
|
|
// result is a default-constructed value of x's result type.
|
|
template <typename PA> class DefaultedParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr DefaultedParser(const DefaultedParser &) = default;
|
|
constexpr DefaultedParser(PA p) : parser_{p} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
std::optional<std::optional<resultType>> ax{maybe(parser_).Parse(state)};
|
|
if (ax.value()) { // maybe() always succeeds
|
|
return std::move(*ax);
|
|
}
|
|
return resultType{};
|
|
}
|
|
|
|
private:
|
|
const BacktrackingParser<PA> parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto defaulted(PA p) {
|
|
return DefaultedParser<PA>(p);
|
|
}
|
|
|
|
// If a is a parser, and f is a function mapping an rvalue of a's result type
|
|
// to some other type T, then applyFunction(f, a) returns a parser that succeeds
|
|
// iff a does, and whose result value ax has been passed through the function;
|
|
// the final result is that returned by the call f(std::move(ax)).
|
|
//
|
|
// Function application is generalized to functions with more than one
|
|
// argument with applyFunction(f, a, b, ...) succeeding if all of the parsers
|
|
// a, b, &c. do so, and the result is the value of applying f to their
|
|
// results.
|
|
//
|
|
// applyLambda(f, ...) is the same concept extended to std::function<> functors.
|
|
// It is not constexpr.
|
|
//
|
|
// Member function application is supported by applyMem(f, a). If the
|
|
// parser a succeeds and returns some value ax, the result is that returned
|
|
// by ax.f(). Additional parser arguments can be specified to supply their
|
|
// results to the member function call, so applyMem(f, a, b) succeeds if
|
|
// both a and b do so and returns the result of calling ax.f(std::move(bx)).
|
|
|
|
// Runs a sequence of parsers until one fails or all have succeeded.
|
|
// Collects their results in a std::tuple<std::optional<>...>.
|
|
template <typename... PARSER>
|
|
using ApplyArgs = std::tuple<std::optional<typename PARSER::resultType>...>;
|
|
|
|
template <typename... PARSER, std::size_t... J>
|
|
inline bool ApplyHelperArgs(const std::tuple<PARSER...> &parsers,
|
|
ApplyArgs<PARSER...> &args, ParseState &state, std::index_sequence<J...>) {
|
|
return (... &&
|
|
(std::get<J>(args) = std::get<J>(parsers).Parse(state),
|
|
std::get<J>(args).has_value()));
|
|
}
|
|
|
|
// Applies a function to the arguments collected by ApplyHelperArgs.
|
|
template <typename RESULT, typename... PARSER>
|
|
using ApplicableFunctionPointer = RESULT (*)(typename PARSER::resultType &&...);
|
|
template <typename RESULT, typename... PARSER>
|
|
using ApplicableFunctionObject =
|
|
const std::function<RESULT(typename PARSER::resultType &&...)> &;
|
|
|
|
template <template <typename...> class FUNCTION, typename RESULT,
|
|
typename... PARSER, std::size_t... J>
|
|
inline RESULT ApplyHelperFunction(FUNCTION<RESULT, PARSER...> f,
|
|
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
|
|
return f(std::move(*std::get<J>(args))...);
|
|
}
|
|
|
|
template <template <typename...> class FUNCTION, typename RESULT,
|
|
typename... PARSER>
|
|
class ApplyFunction {
|
|
using funcType = FUNCTION<RESULT, PARSER...>;
|
|
|
|
public:
|
|
using resultType = RESULT;
|
|
constexpr ApplyFunction(const ApplyFunction &) = default;
|
|
constexpr ApplyFunction(funcType f, PARSER... p)
|
|
: function_{f}, parsers_{p...} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
ApplyArgs<PARSER...> results;
|
|
using Sequence = std::index_sequence_for<PARSER...>;
|
|
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
|
|
return ApplyHelperFunction<FUNCTION, RESULT, PARSER...>(
|
|
function_, std::move(results), Sequence{});
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
private:
|
|
const funcType function_;
|
|
const std::tuple<PARSER...> parsers_;
|
|
};
|
|
|
|
template <typename RESULT, typename... PARSER>
|
|
inline constexpr auto applyFunction(
|
|
ApplicableFunctionPointer<RESULT, PARSER...> f, const PARSER &...parser) {
|
|
return ApplyFunction<ApplicableFunctionPointer, RESULT, PARSER...>{
|
|
f, parser...};
|
|
}
|
|
|
|
template <typename RESULT, typename... PARSER>
|
|
inline /* not constexpr */ auto applyLambda(
|
|
ApplicableFunctionObject<RESULT, PARSER...> f, const PARSER &...parser) {
|
|
return ApplyFunction<ApplicableFunctionObject, RESULT, PARSER...>{
|
|
f, parser...};
|
|
}
|
|
|
|
// Member function application
|
|
template <typename OBJPARSER, typename... PARSER> class AMFPHelper {
|
|
using resultType = typename OBJPARSER::resultType;
|
|
|
|
public:
|
|
using type = void (resultType::*)(typename PARSER::resultType &&...);
|
|
};
|
|
template <typename OBJPARSER, typename... PARSER>
|
|
using ApplicableMemberFunctionPointer =
|
|
typename AMFPHelper<OBJPARSER, PARSER...>::type;
|
|
|
|
template <typename OBJPARSER, typename... PARSER, std::size_t... J>
|
|
inline auto ApplyHelperMember(
|
|
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
|
|
ApplyArgs<OBJPARSER, PARSER...> &&args, std::index_sequence<J...>) ->
|
|
typename OBJPARSER::resultType {
|
|
((*std::get<0>(args)).*mfp)(std::move(*std::get<J + 1>(args))...);
|
|
return std::get<0>(std::move(args));
|
|
}
|
|
|
|
template <typename OBJPARSER, typename... PARSER> class ApplyMemberFunction {
|
|
using funcType = ApplicableMemberFunctionPointer<OBJPARSER, PARSER...>;
|
|
|
|
public:
|
|
using resultType = typename OBJPARSER::resultType;
|
|
constexpr ApplyMemberFunction(const ApplyMemberFunction &) = default;
|
|
constexpr ApplyMemberFunction(funcType f, OBJPARSER o, PARSER... p)
|
|
: function_{f}, parsers_{o, p...} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
ApplyArgs<OBJPARSER, PARSER...> results;
|
|
using Sequence1 = std::index_sequence_for<OBJPARSER, PARSER...>;
|
|
using Sequence2 = std::index_sequence_for<PARSER...>;
|
|
if (ApplyHelperArgs(parsers_, results, state, Sequence1{})) {
|
|
return ApplyHelperMember<OBJPARSER, PARSER...>(
|
|
function_, std::move(results), Sequence2{});
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
private:
|
|
const funcType function_;
|
|
const std::tuple<OBJPARSER, PARSER...> parsers_;
|
|
};
|
|
|
|
template <typename OBJPARSER, typename... PARSER>
|
|
inline constexpr auto applyMem(
|
|
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
|
|
const OBJPARSER &objParser, PARSER... parser) {
|
|
return ApplyMemberFunction<OBJPARSER, PARSER...>{mfp, objParser, parser...};
|
|
}
|
|
|
|
// As is done with function application via applyFunction() above, class
|
|
// instance construction can also be based upon the results of successful
|
|
// parses. For some type T and zero or more parsers a, b, &c., the call
|
|
// construct<T>(a, b, ...) returns a parser that succeeds if all of
|
|
// its argument parsers do so in succession, and whose result is an
|
|
// instance of T constructed upon the values they returned.
|
|
// With a single argument that is a parser with no usable value,
|
|
// construct<T>(p) invokes T's default nullary constructor (T(){}).
|
|
// (This means that "construct<T>(Foo >> Bar >> ok)" is functionally
|
|
// equivalent to "Foo >> Bar >> construct<T>()", but I'd like to hold open
|
|
// the opportunity to make construct<> capture source provenance all of the
|
|
// time, and the first form will then lead to better error positioning.)
|
|
|
|
template <typename RESULT, typename... PARSER, std::size_t... J>
|
|
inline RESULT ApplyHelperConstructor(
|
|
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
|
|
return RESULT{std::move(*std::get<J>(args))...};
|
|
}
|
|
|
|
template <typename RESULT, typename... PARSER> class ApplyConstructor {
|
|
public:
|
|
using resultType = RESULT;
|
|
constexpr ApplyConstructor(const ApplyConstructor &) = default;
|
|
constexpr explicit ApplyConstructor(PARSER... p) : parsers_{p...} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if constexpr (sizeof...(PARSER) == 0) {
|
|
return RESULT{};
|
|
} else {
|
|
if constexpr (sizeof...(PARSER) == 1) {
|
|
return ParseOne(state);
|
|
} else {
|
|
ApplyArgs<PARSER...> results;
|
|
using Sequence = std::index_sequence_for<PARSER...>;
|
|
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
|
|
return ApplyHelperConstructor<RESULT, PARSER...>(
|
|
std::move(results), Sequence{});
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::optional<resultType> ParseOne(ParseState &state) const {
|
|
if constexpr (std::is_same_v<Success, typename PARSER::resultType...>) {
|
|
if (std::get<0>(parsers_).Parse(state)) {
|
|
return RESULT{};
|
|
}
|
|
} else if (auto arg{std::get<0>(parsers_).Parse(state)}) {
|
|
return RESULT{std::move(*arg)};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
const std::tuple<PARSER...> parsers_;
|
|
};
|
|
|
|
template <typename RESULT, typename... PARSER>
|
|
inline constexpr auto construct(PARSER... p) {
|
|
return ApplyConstructor<RESULT, PARSER...>{p...};
|
|
}
|
|
|
|
// For a parser p, indirect(p) returns a parser that builds an indirect
|
|
// reference to p's return type.
|
|
template <typename PA> inline constexpr auto indirect(PA p) {
|
|
return construct<common::Indirection<typename PA::resultType>>(p);
|
|
}
|
|
|
|
// If a and b are parsers, then nonemptySeparated(a, b) returns a parser
|
|
// that succeeds if a does. If a succeeds, it then applies many(b >> a).
|
|
// The result is the list of the values returned from all of the applications
|
|
// of a.
|
|
template <typename T>
|
|
common::IfNoLvalue<std::list<T>, T> prepend(T &&head, std::list<T> &&rest) {
|
|
rest.push_front(std::move(head));
|
|
return std::move(rest);
|
|
}
|
|
|
|
template <typename PA, typename PB> class NonemptySeparated {
|
|
private:
|
|
using paType = typename PA::resultType;
|
|
|
|
public:
|
|
using resultType = std::list<paType>;
|
|
constexpr NonemptySeparated(const NonemptySeparated &) = default;
|
|
constexpr NonemptySeparated(PA p, PB sep) : parser_{p}, separator_{sep} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
return applyFunction<std::list<paType>>(
|
|
prepend<paType>, parser_, many(separator_ >> parser_))
|
|
.Parse(state);
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
const PB separator_;
|
|
};
|
|
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto nonemptySeparated(PA p, PB sep) {
|
|
return NonemptySeparated<PA, PB>{p, sep};
|
|
}
|
|
|
|
// ok is a parser that always succeeds. It is useful when a parser
|
|
// must discard its result in order to be compatible in type with other
|
|
// parsers in an alternative, e.g. "x >> ok || y >> ok" is type-safe even
|
|
// when x and y have distinct result types.
|
|
struct OkParser {
|
|
using resultType = Success;
|
|
constexpr OkParser() {}
|
|
static constexpr std::optional<Success> Parse(ParseState &) {
|
|
return Success{};
|
|
}
|
|
};
|
|
constexpr OkParser ok;
|
|
|
|
// A variant of recovery() above for convenience.
|
|
template <typename PA, typename PB>
|
|
inline constexpr auto localRecovery(MessageFixedText msg, PA pa, PB pb) {
|
|
return recovery(withMessage(msg, pa), pb >> pure<typename PA::resultType>());
|
|
}
|
|
|
|
// nextCh is a parser that succeeds if the parsing state is not
|
|
// at the end of its input, returning the next character location and
|
|
// advancing the parse when it does so.
|
|
struct NextCh {
|
|
using resultType = const char *;
|
|
constexpr NextCh() {}
|
|
std::optional<const char *> Parse(ParseState &state) const {
|
|
if (std::optional<const char *> result{state.GetNextChar()}) {
|
|
return result;
|
|
}
|
|
state.Say("end of file"_err_en_US);
|
|
return std::nullopt;
|
|
}
|
|
};
|
|
|
|
constexpr NextCh nextCh;
|
|
|
|
// If a is a parser for some nonstandard language feature LF, extension<LF>(a)
|
|
// is a parser that optionally enabled, sets a strict conformance violation
|
|
// flag, and may emit a warning message, if those are enabled.
|
|
template <LanguageFeature LF, typename PA> class NonstandardParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr NonstandardParser(const NonstandardParser &) = default;
|
|
constexpr NonstandardParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if (UserState * ustate{state.userState()}) {
|
|
if (!ustate->features().IsEnabled(LF)) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
auto at{state.GetLocation()};
|
|
auto result{parser_.Parse(state)};
|
|
if (result) {
|
|
state.Nonstandard(
|
|
CharBlock{at, state.GetLocation()}, LF, "nonstandard usage"_en_US);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <LanguageFeature LF, typename PA>
|
|
inline constexpr auto extension(PA parser) {
|
|
return NonstandardParser<LF, PA>(parser);
|
|
}
|
|
|
|
// If a is a parser for some deprecated or deleted language feature LF,
|
|
// deprecated<LF>(a) is a parser that is optionally enabled, sets a strict
|
|
// conformance violation flag, and may emit a warning message, if enabled.
|
|
template <LanguageFeature LF, typename PA> class DeprecatedParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr DeprecatedParser(const DeprecatedParser &) = default;
|
|
constexpr DeprecatedParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
if (UserState * ustate{state.userState()}) {
|
|
if (!ustate->features().IsEnabled(LF)) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
auto at{state.GetLocation()};
|
|
auto result{parser_.Parse(state)};
|
|
if (result) {
|
|
state.Nonstandard(
|
|
CharBlock{at, state.GetLocation()}, LF, "deprecated usage"_en_US);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <LanguageFeature LF, typename PA>
|
|
inline constexpr auto deprecated(PA parser) {
|
|
return DeprecatedParser<LF, PA>(parser);
|
|
}
|
|
|
|
// Parsing objects with "source" members.
|
|
template <typename PA> class SourcedParser {
|
|
public:
|
|
using resultType = typename PA::resultType;
|
|
constexpr SourcedParser(const SourcedParser &) = default;
|
|
constexpr SourcedParser(PA parser) : parser_{parser} {}
|
|
std::optional<resultType> Parse(ParseState &state) const {
|
|
const char *start{state.GetLocation()};
|
|
auto result{parser_.Parse(state)};
|
|
if (result) {
|
|
const char *end{state.GetLocation()};
|
|
for (; start < end && start[0] == ' '; ++start) {
|
|
}
|
|
for (; start < end && end[-1] == ' '; --end) {
|
|
}
|
|
result->source = CharBlock{start, end};
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const PA parser_;
|
|
};
|
|
|
|
template <typename PA> inline constexpr auto sourced(PA parser) {
|
|
return SourcedParser<PA>{parser};
|
|
}
|
|
} // namespace Fortran::parser
|
|
#endif // FORTRAN_PARSER_BASIC_PARSERS_H_
|