mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-04-02 13:12:09 +00:00

The last dependency of code defined in LoopVectorize.cpp has been removed a while ago. Move VPTransformState::get() to VPlan.cpp where other members are also defined.
10621 lines
441 KiB
C++
10621 lines
441 KiB
C++
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
|
|
// and generates target-independent LLVM-IR.
|
|
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
|
|
// of instructions in order to estimate the profitability of vectorization.
|
|
//
|
|
// The loop vectorizer combines consecutive loop iterations into a single
|
|
// 'wide' iteration. After this transformation the index is incremented
|
|
// by the SIMD vector width, and not by one.
|
|
//
|
|
// This pass has three parts:
|
|
// 1. The main loop pass that drives the different parts.
|
|
// 2. LoopVectorizationLegality - A unit that checks for the legality
|
|
// of the vectorization.
|
|
// 3. InnerLoopVectorizer - A unit that performs the actual
|
|
// widening of instructions.
|
|
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
|
|
// of vectorization. It decides on the optimal vector width, which
|
|
// can be one, if vectorization is not profitable.
|
|
//
|
|
// There is a development effort going on to migrate loop vectorizer to the
|
|
// VPlan infrastructure and to introduce outer loop vectorization support (see
|
|
// docs/Proposal/VectorizationPlan.rst and
|
|
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
|
|
// purpose, we temporarily introduced the VPlan-native vectorization path: an
|
|
// alternative vectorization path that is natively implemented on top of the
|
|
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The reduction-variable vectorization is based on the paper:
|
|
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
|
|
//
|
|
// Variable uniformity checks are inspired by:
|
|
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
|
|
//
|
|
// The interleaved access vectorization is based on the paper:
|
|
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
|
|
// Data for SIMD
|
|
//
|
|
// Other ideas/concepts are from:
|
|
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
|
|
//
|
|
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
|
|
// Vectorizing Compilers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
|
|
#include "LoopVectorizationPlanner.h"
|
|
#include "VPRecipeBuilder.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanHCFGBuilder.h"
|
|
#include "VPlanTransforms.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/InstructionCost.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopVersioning.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define LV_NAME "loop-vectorize"
|
|
#define DEBUG_TYPE LV_NAME
|
|
|
|
#ifndef NDEBUG
|
|
const char VerboseDebug[] = DEBUG_TYPE "-verbose";
|
|
#endif
|
|
|
|
/// @{
|
|
/// Metadata attribute names
|
|
const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
|
|
const char LLVMLoopVectorizeFollowupVectorized[] =
|
|
"llvm.loop.vectorize.followup_vectorized";
|
|
const char LLVMLoopVectorizeFollowupEpilogue[] =
|
|
"llvm.loop.vectorize.followup_epilogue";
|
|
/// @}
|
|
|
|
STATISTIC(LoopsVectorized, "Number of loops vectorized");
|
|
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
|
|
STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
|
|
|
|
static cl::opt<bool> EnableEpilogueVectorization(
|
|
"enable-epilogue-vectorization", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable vectorization of epilogue loops."));
|
|
|
|
static cl::opt<unsigned> EpilogueVectorizationForceVF(
|
|
"epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
|
|
cl::desc("When epilogue vectorization is enabled, and a value greater than "
|
|
"1 is specified, forces the given VF for all applicable epilogue "
|
|
"loops."));
|
|
|
|
static cl::opt<unsigned> EpilogueVectorizationMinVF(
|
|
"epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
|
|
cl::desc("Only loops with vectorization factor equal to or larger than "
|
|
"the specified value are considered for epilogue vectorization."));
|
|
|
|
/// Loops with a known constant trip count below this number are vectorized only
|
|
/// if no scalar iteration overheads are incurred.
|
|
static cl::opt<unsigned> TinyTripCountVectorThreshold(
|
|
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
|
|
cl::desc("Loops with a constant trip count that is smaller than this "
|
|
"value are vectorized only if no scalar iteration overheads "
|
|
"are incurred."));
|
|
|
|
static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
|
|
"vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
|
|
cl::desc("The maximum allowed number of runtime memory checks"));
|
|
|
|
// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
|
|
// that predication is preferred, and this lists all options. I.e., the
|
|
// vectorizer will try to fold the tail-loop (epilogue) into the vector body
|
|
// and predicate the instructions accordingly. If tail-folding fails, there are
|
|
// different fallback strategies depending on these values:
|
|
namespace PreferPredicateTy {
|
|
enum Option {
|
|
ScalarEpilogue = 0,
|
|
PredicateElseScalarEpilogue,
|
|
PredicateOrDontVectorize
|
|
};
|
|
} // namespace PreferPredicateTy
|
|
|
|
static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
|
|
"prefer-predicate-over-epilogue",
|
|
cl::init(PreferPredicateTy::ScalarEpilogue),
|
|
cl::Hidden,
|
|
cl::desc("Tail-folding and predication preferences over creating a scalar "
|
|
"epilogue loop."),
|
|
cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
|
|
"scalar-epilogue",
|
|
"Don't tail-predicate loops, create scalar epilogue"),
|
|
clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
|
|
"predicate-else-scalar-epilogue",
|
|
"prefer tail-folding, create scalar epilogue if tail "
|
|
"folding fails."),
|
|
clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
|
|
"predicate-dont-vectorize",
|
|
"prefers tail-folding, don't attempt vectorization if "
|
|
"tail-folding fails.")));
|
|
|
|
static cl::opt<TailFoldingStyle> ForceTailFoldingStyle(
|
|
"force-tail-folding-style", cl::desc("Force the tail folding style"),
|
|
cl::init(TailFoldingStyle::None),
|
|
cl::values(
|
|
clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
|
|
clEnumValN(
|
|
TailFoldingStyle::Data, "data",
|
|
"Create lane mask for data only, using active.lane.mask intrinsic"),
|
|
clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
|
|
"data-without-lane-mask",
|
|
"Create lane mask with compare/stepvector"),
|
|
clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control",
|
|
"Create lane mask using active.lane.mask intrinsic, and use "
|
|
"it for both data and control flow"),
|
|
clEnumValN(
|
|
TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
|
|
"data-and-control-without-rt-check",
|
|
"Similar to data-and-control, but remove the runtime check")));
|
|
|
|
static cl::opt<bool> MaximizeBandwidth(
|
|
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
|
|
cl::desc("Maximize bandwidth when selecting vectorization factor which "
|
|
"will be determined by the smallest type in loop."));
|
|
|
|
static cl::opt<bool> EnableInterleavedMemAccesses(
|
|
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
|
|
|
|
/// An interleave-group may need masking if it resides in a block that needs
|
|
/// predication, or in order to mask away gaps.
|
|
static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
|
|
"enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
|
|
|
|
static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
|
|
"tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
|
|
cl::desc("We don't interleave loops with a estimated constant trip count "
|
|
"below this number"));
|
|
|
|
static cl::opt<unsigned> ForceTargetNumScalarRegs(
|
|
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
|
|
cl::desc("A flag that overrides the target's number of scalar registers."));
|
|
|
|
static cl::opt<unsigned> ForceTargetNumVectorRegs(
|
|
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
|
|
cl::desc("A flag that overrides the target's number of vector registers."));
|
|
|
|
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
|
|
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
|
|
cl::desc("A flag that overrides the target's max interleave factor for "
|
|
"scalar loops."));
|
|
|
|
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
|
|
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
|
|
cl::desc("A flag that overrides the target's max interleave factor for "
|
|
"vectorized loops."));
|
|
|
|
static cl::opt<unsigned> ForceTargetInstructionCost(
|
|
"force-target-instruction-cost", cl::init(0), cl::Hidden,
|
|
cl::desc("A flag that overrides the target's expected cost for "
|
|
"an instruction to a single constant value. Mostly "
|
|
"useful for getting consistent testing."));
|
|
|
|
static cl::opt<bool> ForceTargetSupportsScalableVectors(
|
|
"force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Pretend that scalable vectors are supported, even if the target does "
|
|
"not support them. This flag should only be used for testing."));
|
|
|
|
static cl::opt<unsigned> SmallLoopCost(
|
|
"small-loop-cost", cl::init(20), cl::Hidden,
|
|
cl::desc(
|
|
"The cost of a loop that is considered 'small' by the interleaver."));
|
|
|
|
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
|
|
"loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable the use of the block frequency analysis to access PGO "
|
|
"heuristics minimizing code growth in cold regions and being more "
|
|
"aggressive in hot regions."));
|
|
|
|
// Runtime interleave loops for load/store throughput.
|
|
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
|
|
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
|
|
cl::desc(
|
|
"Enable runtime interleaving until load/store ports are saturated"));
|
|
|
|
/// Interleave small loops with scalar reductions.
|
|
static cl::opt<bool> InterleaveSmallLoopScalarReduction(
|
|
"interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable interleaving for loops with small iteration counts that "
|
|
"contain scalar reductions to expose ILP."));
|
|
|
|
/// The number of stores in a loop that are allowed to need predication.
|
|
static cl::opt<unsigned> NumberOfStoresToPredicate(
|
|
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
|
|
cl::desc("Max number of stores to be predicated behind an if."));
|
|
|
|
static cl::opt<bool> EnableIndVarRegisterHeur(
|
|
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
|
|
cl::desc("Count the induction variable only once when interleaving"));
|
|
|
|
static cl::opt<bool> EnableCondStoresVectorization(
|
|
"enable-cond-stores-vec", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable if predication of stores during vectorization."));
|
|
|
|
static cl::opt<unsigned> MaxNestedScalarReductionIC(
|
|
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
|
|
cl::desc("The maximum interleave count to use when interleaving a scalar "
|
|
"reduction in a nested loop."));
|
|
|
|
static cl::opt<bool>
|
|
PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
|
|
cl::Hidden,
|
|
cl::desc("Prefer in-loop vector reductions, "
|
|
"overriding the targets preference."));
|
|
|
|
static cl::opt<bool> ForceOrderedReductions(
|
|
"force-ordered-reductions", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable the vectorisation of loops with in-order (strict) "
|
|
"FP reductions"));
|
|
|
|
static cl::opt<bool> PreferPredicatedReductionSelect(
|
|
"prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Prefer predicating a reduction operation over an after loop select."));
|
|
|
|
namespace llvm {
|
|
cl::opt<bool> EnableVPlanNativePath(
|
|
"enable-vplan-native-path", cl::Hidden,
|
|
cl::desc("Enable VPlan-native vectorization path with "
|
|
"support for outer loop vectorization."));
|
|
}
|
|
|
|
// This flag enables the stress testing of the VPlan H-CFG construction in the
|
|
// VPlan-native vectorization path. It must be used in conjuction with
|
|
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
|
|
// verification of the H-CFGs built.
|
|
static cl::opt<bool> VPlanBuildStressTest(
|
|
"vplan-build-stress-test", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Build VPlan for every supported loop nest in the function and bail "
|
|
"out right after the build (stress test the VPlan H-CFG construction "
|
|
"in the VPlan-native vectorization path)."));
|
|
|
|
cl::opt<bool> llvm::EnableLoopInterleaving(
|
|
"interleave-loops", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable loop interleaving in Loop vectorization passes"));
|
|
cl::opt<bool> llvm::EnableLoopVectorization(
|
|
"vectorize-loops", cl::init(true), cl::Hidden,
|
|
cl::desc("Run the Loop vectorization passes"));
|
|
|
|
static cl::opt<bool> PrintVPlansInDotFormat(
|
|
"vplan-print-in-dot-format", cl::Hidden,
|
|
cl::desc("Use dot format instead of plain text when dumping VPlans"));
|
|
|
|
static cl::opt<cl::boolOrDefault> ForceSafeDivisor(
|
|
"force-widen-divrem-via-safe-divisor", cl::Hidden,
|
|
cl::desc(
|
|
"Override cost based safe divisor widening for div/rem instructions"));
|
|
|
|
/// A helper function that returns true if the given type is irregular. The
|
|
/// type is irregular if its allocated size doesn't equal the store size of an
|
|
/// element of the corresponding vector type.
|
|
static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
|
|
// Determine if an array of N elements of type Ty is "bitcast compatible"
|
|
// with a <N x Ty> vector.
|
|
// This is only true if there is no padding between the array elements.
|
|
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
|
|
}
|
|
|
|
/// A helper function that returns the reciprocal of the block probability of
|
|
/// predicated blocks. If we return X, we are assuming the predicated block
|
|
/// will execute once for every X iterations of the loop header.
|
|
///
|
|
/// TODO: We should use actual block probability here, if available. Currently,
|
|
/// we always assume predicated blocks have a 50% chance of executing.
|
|
static unsigned getReciprocalPredBlockProb() { return 2; }
|
|
|
|
/// A helper function that returns an integer or floating-point constant with
|
|
/// value C.
|
|
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
|
|
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
|
|
: ConstantFP::get(Ty, C);
|
|
}
|
|
|
|
/// Returns "best known" trip count for the specified loop \p L as defined by
|
|
/// the following procedure:
|
|
/// 1) Returns exact trip count if it is known.
|
|
/// 2) Returns expected trip count according to profile data if any.
|
|
/// 3) Returns upper bound estimate if it is known.
|
|
/// 4) Returns std::nullopt if all of the above failed.
|
|
static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE,
|
|
Loop *L) {
|
|
// Check if exact trip count is known.
|
|
if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
|
|
return ExpectedTC;
|
|
|
|
// Check if there is an expected trip count available from profile data.
|
|
if (LoopVectorizeWithBlockFrequency)
|
|
if (auto EstimatedTC = getLoopEstimatedTripCount(L))
|
|
return *EstimatedTC;
|
|
|
|
// Check if upper bound estimate is known.
|
|
if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
|
|
return ExpectedTC;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Return a vector containing interleaved elements from multiple
|
|
/// smaller input vectors.
|
|
static Value *interleaveVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vals,
|
|
const Twine &Name) {
|
|
unsigned Factor = Vals.size();
|
|
assert(Factor > 1 && "Tried to interleave invalid number of vectors");
|
|
|
|
VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
|
|
#ifndef NDEBUG
|
|
for (Value *Val : Vals)
|
|
assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
|
|
#endif
|
|
|
|
// Scalable vectors cannot use arbitrary shufflevectors (only splats), so
|
|
// must use intrinsics to interleave.
|
|
if (VecTy->isScalableTy()) {
|
|
VectorType *WideVecTy = VectorType::getDoubleElementsVectorType(VecTy);
|
|
return Builder.CreateIntrinsic(
|
|
WideVecTy, Intrinsic::experimental_vector_interleave2, Vals,
|
|
/*FMFSource=*/nullptr, Name);
|
|
}
|
|
|
|
// Fixed length. Start by concatenating all vectors into a wide vector.
|
|
Value *WideVec = concatenateVectors(Builder, Vals);
|
|
|
|
// Interleave the elements into the wide vector.
|
|
const unsigned NumElts = VecTy->getElementCount().getFixedValue();
|
|
return Builder.CreateShuffleVector(
|
|
WideVec, createInterleaveMask(NumElts, Factor), Name);
|
|
}
|
|
|
|
namespace {
|
|
// Forward declare GeneratedRTChecks.
|
|
class GeneratedRTChecks;
|
|
|
|
using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
AnalysisKey ShouldRunExtraVectorPasses::Key;
|
|
|
|
/// InnerLoopVectorizer vectorizes loops which contain only one basic
|
|
/// block to a specified vectorization factor (VF).
|
|
/// This class performs the widening of scalars into vectors, or multiple
|
|
/// scalars. This class also implements the following features:
|
|
/// * It inserts an epilogue loop for handling loops that don't have iteration
|
|
/// counts that are known to be a multiple of the vectorization factor.
|
|
/// * It handles the code generation for reduction variables.
|
|
/// * Scalarization (implementation using scalars) of un-vectorizable
|
|
/// instructions.
|
|
/// InnerLoopVectorizer does not perform any vectorization-legality
|
|
/// checks, and relies on the caller to check for the different legality
|
|
/// aspects. The InnerLoopVectorizer relies on the
|
|
/// LoopVectorizationLegality class to provide information about the induction
|
|
/// and reduction variables that were found to a given vectorization factor.
|
|
class InnerLoopVectorizer {
|
|
public:
|
|
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
|
|
LoopInfo *LI, DominatorTree *DT,
|
|
const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
|
|
ElementCount MinProfitableTripCount,
|
|
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
|
|
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
|
|
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
|
|
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
|
|
Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
|
|
PSI(PSI), RTChecks(RTChecks) {
|
|
// Query this against the original loop and save it here because the profile
|
|
// of the original loop header may change as the transformation happens.
|
|
OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
|
|
OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
|
|
|
|
if (MinProfitableTripCount.isZero())
|
|
this->MinProfitableTripCount = VecWidth;
|
|
else
|
|
this->MinProfitableTripCount = MinProfitableTripCount;
|
|
}
|
|
|
|
virtual ~InnerLoopVectorizer() = default;
|
|
|
|
/// Create a new empty loop that will contain vectorized instructions later
|
|
/// on, while the old loop will be used as the scalar remainder. Control flow
|
|
/// is generated around the vectorized (and scalar epilogue) loops consisting
|
|
/// of various checks and bypasses. Return the pre-header block of the new
|
|
/// loop and the start value for the canonical induction, if it is != 0. The
|
|
/// latter is the case when vectorizing the epilogue loop. In the case of
|
|
/// epilogue vectorization, this function is overriden to handle the more
|
|
/// complex control flow around the loops. \p ExpandedSCEVs is used to
|
|
/// look up SCEV expansions for expressions needed during skeleton creation.
|
|
virtual std::pair<BasicBlock *, Value *>
|
|
createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs);
|
|
|
|
/// Fix the vectorized code, taking care of header phi's, live-outs, and more.
|
|
void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
|
|
|
|
// Return true if any runtime check is added.
|
|
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
|
|
|
|
/// A type for vectorized values in the new loop. Each value from the
|
|
/// original loop, when vectorized, is represented by UF vector values in the
|
|
/// new unrolled loop, where UF is the unroll factor.
|
|
using VectorParts = SmallVector<Value *, 2>;
|
|
|
|
/// A helper function to scalarize a single Instruction in the innermost loop.
|
|
/// Generates a sequence of scalar instances for each lane between \p MinLane
|
|
/// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
|
|
/// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
|
|
/// Instr's operands.
|
|
void scalarizeInstruction(const Instruction *Instr,
|
|
VPReplicateRecipe *RepRecipe,
|
|
const VPIteration &Instance,
|
|
VPTransformState &State);
|
|
|
|
/// Try to vectorize interleaved access group \p Group with the base address
|
|
/// given in \p Addr, optionally masking the vector operations if \p
|
|
/// BlockInMask is non-null. Use \p State to translate given VPValues to IR
|
|
/// values in the vectorized loop.
|
|
void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
|
|
ArrayRef<VPValue *> VPDefs,
|
|
VPTransformState &State, VPValue *Addr,
|
|
ArrayRef<VPValue *> StoredValues,
|
|
VPValue *BlockInMask, bool NeedsMaskForGaps);
|
|
|
|
/// Fix the non-induction PHIs in \p Plan.
|
|
void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
|
|
|
|
/// Returns true if the reordering of FP operations is not allowed, but we are
|
|
/// able to vectorize with strict in-order reductions for the given RdxDesc.
|
|
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
|
|
|
|
// Returns the resume value (bc.merge.rdx) for a reduction as
|
|
// generated by fixReduction.
|
|
PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
|
|
|
|
/// Create a new phi node for the induction variable \p OrigPhi to resume
|
|
/// iteration count in the scalar epilogue, from where the vectorized loop
|
|
/// left off. \p Step is the SCEV-expanded induction step to use. In cases
|
|
/// where the loop skeleton is more complicated (i.e., epilogue vectorization)
|
|
/// and the resume values can come from an additional bypass block, the \p
|
|
/// AdditionalBypass pair provides information about the bypass block and the
|
|
/// end value on the edge from bypass to this loop.
|
|
PHINode *createInductionResumeValue(
|
|
PHINode *OrigPhi, const InductionDescriptor &ID, Value *Step,
|
|
ArrayRef<BasicBlock *> BypassBlocks,
|
|
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
|
|
|
|
/// Returns the original loop trip count.
|
|
Value *getTripCount() const { return TripCount; }
|
|
|
|
/// Used to set the trip count after ILV's construction and after the
|
|
/// preheader block has been executed. Note that this always holds the trip
|
|
/// count of the original loop for both main loop and epilogue vectorization.
|
|
void setTripCount(Value *TC) { TripCount = TC; }
|
|
|
|
protected:
|
|
friend class LoopVectorizationPlanner;
|
|
|
|
/// A small list of PHINodes.
|
|
using PhiVector = SmallVector<PHINode *, 4>;
|
|
|
|
/// A type for scalarized values in the new loop. Each value from the
|
|
/// original loop, when scalarized, is represented by UF x VF scalar values
|
|
/// in the new unrolled loop, where UF is the unroll factor and VF is the
|
|
/// vectorization factor.
|
|
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
|
|
|
|
/// Set up the values of the IVs correctly when exiting the vector loop.
|
|
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
|
|
Value *VectorTripCount, Value *EndValue,
|
|
BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
|
|
VPlan &Plan, VPTransformState &State);
|
|
|
|
/// Handle all cross-iteration phis in the header.
|
|
void fixCrossIterationPHIs(VPTransformState &State);
|
|
|
|
/// Create the exit value of first order recurrences in the middle block and
|
|
/// update their users.
|
|
void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
|
|
VPTransformState &State);
|
|
|
|
/// Create code for the loop exit value of the reduction.
|
|
void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
|
|
|
|
/// Iteratively sink the scalarized operands of a predicated instruction into
|
|
/// the block that was created for it.
|
|
void sinkScalarOperands(Instruction *PredInst);
|
|
|
|
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
|
|
/// represented as.
|
|
void truncateToMinimalBitwidths(VPTransformState &State);
|
|
|
|
/// Returns (and creates if needed) the trip count of the widened loop.
|
|
Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
|
|
|
|
/// Returns a bitcasted value to the requested vector type.
|
|
/// Also handles bitcasts of vector<float> <-> vector<pointer> types.
|
|
Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
|
|
const DataLayout &DL);
|
|
|
|
/// Emit a bypass check to see if the vector trip count is zero, including if
|
|
/// it overflows.
|
|
void emitIterationCountCheck(BasicBlock *Bypass);
|
|
|
|
/// Emit a bypass check to see if all of the SCEV assumptions we've
|
|
/// had to make are correct. Returns the block containing the checks or
|
|
/// nullptr if no checks have been added.
|
|
BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
|
|
|
|
/// Emit bypass checks to check any memory assumptions we may have made.
|
|
/// Returns the block containing the checks or nullptr if no checks have been
|
|
/// added.
|
|
BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
|
|
|
|
/// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
|
|
/// vector loop preheader, middle block and scalar preheader.
|
|
void createVectorLoopSkeleton(StringRef Prefix);
|
|
|
|
/// Create new phi nodes for the induction variables to resume iteration count
|
|
/// in the scalar epilogue, from where the vectorized loop left off.
|
|
/// In cases where the loop skeleton is more complicated (eg. epilogue
|
|
/// vectorization) and the resume values can come from an additional bypass
|
|
/// block, the \p AdditionalBypass pair provides information about the bypass
|
|
/// block and the end value on the edge from bypass to this loop.
|
|
void createInductionResumeValues(
|
|
const SCEV2ValueTy &ExpandedSCEVs,
|
|
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
|
|
|
|
/// Complete the loop skeleton by adding debug MDs, creating appropriate
|
|
/// conditional branches in the middle block, preparing the builder and
|
|
/// running the verifier. Return the preheader of the completed vector loop.
|
|
BasicBlock *completeLoopSkeleton();
|
|
|
|
/// Collect poison-generating recipes that may generate a poison value that is
|
|
/// used after vectorization, even when their operands are not poison. Those
|
|
/// recipes meet the following conditions:
|
|
/// * Contribute to the address computation of a recipe generating a widen
|
|
/// memory load/store (VPWidenMemoryInstructionRecipe or
|
|
/// VPInterleaveRecipe).
|
|
/// * Such a widen memory load/store has at least one underlying Instruction
|
|
/// that is in a basic block that needs predication and after vectorization
|
|
/// the generated instruction won't be predicated.
|
|
void collectPoisonGeneratingRecipes(VPTransformState &State);
|
|
|
|
/// Allow subclasses to override and print debug traces before/after vplan
|
|
/// execution, when trace information is requested.
|
|
virtual void printDebugTracesAtStart(){};
|
|
virtual void printDebugTracesAtEnd(){};
|
|
|
|
/// The original loop.
|
|
Loop *OrigLoop;
|
|
|
|
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
|
|
/// dynamic knowledge to simplify SCEV expressions and converts them to a
|
|
/// more usable form.
|
|
PredicatedScalarEvolution &PSE;
|
|
|
|
/// Loop Info.
|
|
LoopInfo *LI;
|
|
|
|
/// Dominator Tree.
|
|
DominatorTree *DT;
|
|
|
|
/// Target Library Info.
|
|
const TargetLibraryInfo *TLI;
|
|
|
|
/// Target Transform Info.
|
|
const TargetTransformInfo *TTI;
|
|
|
|
/// Assumption Cache.
|
|
AssumptionCache *AC;
|
|
|
|
/// Interface to emit optimization remarks.
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
/// The vectorization SIMD factor to use. Each vector will have this many
|
|
/// vector elements.
|
|
ElementCount VF;
|
|
|
|
ElementCount MinProfitableTripCount;
|
|
|
|
/// The vectorization unroll factor to use. Each scalar is vectorized to this
|
|
/// many different vector instructions.
|
|
unsigned UF;
|
|
|
|
/// The builder that we use
|
|
IRBuilder<> Builder;
|
|
|
|
// --- Vectorization state ---
|
|
|
|
/// The vector-loop preheader.
|
|
BasicBlock *LoopVectorPreHeader;
|
|
|
|
/// The scalar-loop preheader.
|
|
BasicBlock *LoopScalarPreHeader;
|
|
|
|
/// Middle Block between the vector and the scalar.
|
|
BasicBlock *LoopMiddleBlock;
|
|
|
|
/// The unique ExitBlock of the scalar loop if one exists. Note that
|
|
/// there can be multiple exiting edges reaching this block.
|
|
BasicBlock *LoopExitBlock;
|
|
|
|
/// The scalar loop body.
|
|
BasicBlock *LoopScalarBody;
|
|
|
|
/// A list of all bypass blocks. The first block is the entry of the loop.
|
|
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
|
|
|
|
/// Store instructions that were predicated.
|
|
SmallVector<Instruction *, 4> PredicatedInstructions;
|
|
|
|
/// Trip count of the original loop.
|
|
Value *TripCount = nullptr;
|
|
|
|
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
|
|
Value *VectorTripCount = nullptr;
|
|
|
|
/// The legality analysis.
|
|
LoopVectorizationLegality *Legal;
|
|
|
|
/// The profitablity analysis.
|
|
LoopVectorizationCostModel *Cost;
|
|
|
|
// Record whether runtime checks are added.
|
|
bool AddedSafetyChecks = false;
|
|
|
|
// Holds the end values for each induction variable. We save the end values
|
|
// so we can later fix-up the external users of the induction variables.
|
|
DenseMap<PHINode *, Value *> IVEndValues;
|
|
|
|
/// BFI and PSI are used to check for profile guided size optimizations.
|
|
BlockFrequencyInfo *BFI;
|
|
ProfileSummaryInfo *PSI;
|
|
|
|
// Whether this loop should be optimized for size based on profile guided size
|
|
// optimizatios.
|
|
bool OptForSizeBasedOnProfile;
|
|
|
|
/// Structure to hold information about generated runtime checks, responsible
|
|
/// for cleaning the checks, if vectorization turns out unprofitable.
|
|
GeneratedRTChecks &RTChecks;
|
|
|
|
// Holds the resume values for reductions in the loops, used to set the
|
|
// correct start value of reduction PHIs when vectorizing the epilogue.
|
|
SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
|
|
ReductionResumeValues;
|
|
};
|
|
|
|
class InnerLoopUnroller : public InnerLoopVectorizer {
|
|
public:
|
|
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
|
|
LoopInfo *LI, DominatorTree *DT,
|
|
const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
|
|
LoopVectorizationLegality *LVL,
|
|
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
|
|
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
|
|
ElementCount::getFixed(1),
|
|
ElementCount::getFixed(1), UnrollFactor, LVL, CM,
|
|
BFI, PSI, Check) {}
|
|
};
|
|
|
|
/// Encapsulate information regarding vectorization of a loop and its epilogue.
|
|
/// This information is meant to be updated and used across two stages of
|
|
/// epilogue vectorization.
|
|
struct EpilogueLoopVectorizationInfo {
|
|
ElementCount MainLoopVF = ElementCount::getFixed(0);
|
|
unsigned MainLoopUF = 0;
|
|
ElementCount EpilogueVF = ElementCount::getFixed(0);
|
|
unsigned EpilogueUF = 0;
|
|
BasicBlock *MainLoopIterationCountCheck = nullptr;
|
|
BasicBlock *EpilogueIterationCountCheck = nullptr;
|
|
BasicBlock *SCEVSafetyCheck = nullptr;
|
|
BasicBlock *MemSafetyCheck = nullptr;
|
|
Value *TripCount = nullptr;
|
|
Value *VectorTripCount = nullptr;
|
|
|
|
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
|
|
ElementCount EVF, unsigned EUF)
|
|
: MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
|
|
assert(EUF == 1 &&
|
|
"A high UF for the epilogue loop is likely not beneficial.");
|
|
}
|
|
};
|
|
|
|
/// An extension of the inner loop vectorizer that creates a skeleton for a
|
|
/// vectorized loop that has its epilogue (residual) also vectorized.
|
|
/// The idea is to run the vplan on a given loop twice, firstly to setup the
|
|
/// skeleton and vectorize the main loop, and secondly to complete the skeleton
|
|
/// from the first step and vectorize the epilogue. This is achieved by
|
|
/// deriving two concrete strategy classes from this base class and invoking
|
|
/// them in succession from the loop vectorizer planner.
|
|
class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
|
|
public:
|
|
InnerLoopAndEpilogueVectorizer(
|
|
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
|
|
DominatorTree *DT, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
|
|
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
|
|
GeneratedRTChecks &Checks)
|
|
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
|
|
EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
|
|
CM, BFI, PSI, Checks),
|
|
EPI(EPI) {}
|
|
|
|
// Override this function to handle the more complex control flow around the
|
|
// three loops.
|
|
std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(
|
|
const SCEV2ValueTy &ExpandedSCEVs) final {
|
|
return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs);
|
|
}
|
|
|
|
/// The interface for creating a vectorized skeleton using one of two
|
|
/// different strategies, each corresponding to one execution of the vplan
|
|
/// as described above.
|
|
virtual std::pair<BasicBlock *, Value *>
|
|
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0;
|
|
|
|
/// Holds and updates state information required to vectorize the main loop
|
|
/// and its epilogue in two separate passes. This setup helps us avoid
|
|
/// regenerating and recomputing runtime safety checks. It also helps us to
|
|
/// shorten the iteration-count-check path length for the cases where the
|
|
/// iteration count of the loop is so small that the main vector loop is
|
|
/// completely skipped.
|
|
EpilogueLoopVectorizationInfo &EPI;
|
|
};
|
|
|
|
/// A specialized derived class of inner loop vectorizer that performs
|
|
/// vectorization of *main* loops in the process of vectorizing loops and their
|
|
/// epilogues.
|
|
class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
|
|
public:
|
|
EpilogueVectorizerMainLoop(
|
|
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
|
|
DominatorTree *DT, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
|
|
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
|
|
GeneratedRTChecks &Check)
|
|
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
|
|
EPI, LVL, CM, BFI, PSI, Check) {}
|
|
/// Implements the interface for creating a vectorized skeleton using the
|
|
/// *main loop* strategy (ie the first pass of vplan execution).
|
|
std::pair<BasicBlock *, Value *>
|
|
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
|
|
|
|
protected:
|
|
/// Emits an iteration count bypass check once for the main loop (when \p
|
|
/// ForEpilogue is false) and once for the epilogue loop (when \p
|
|
/// ForEpilogue is true).
|
|
BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
|
|
void printDebugTracesAtStart() override;
|
|
void printDebugTracesAtEnd() override;
|
|
};
|
|
|
|
// A specialized derived class of inner loop vectorizer that performs
|
|
// vectorization of *epilogue* loops in the process of vectorizing loops and
|
|
// their epilogues.
|
|
class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
|
|
public:
|
|
EpilogueVectorizerEpilogueLoop(
|
|
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
|
|
DominatorTree *DT, const TargetLibraryInfo *TLI,
|
|
const TargetTransformInfo *TTI, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
|
|
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
|
|
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
|
|
GeneratedRTChecks &Checks)
|
|
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
|
|
EPI, LVL, CM, BFI, PSI, Checks) {
|
|
TripCount = EPI.TripCount;
|
|
}
|
|
/// Implements the interface for creating a vectorized skeleton using the
|
|
/// *epilogue loop* strategy (ie the second pass of vplan execution).
|
|
std::pair<BasicBlock *, Value *>
|
|
createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
|
|
|
|
protected:
|
|
/// Emits an iteration count bypass check after the main vector loop has
|
|
/// finished to see if there are any iterations left to execute by either
|
|
/// the vector epilogue or the scalar epilogue.
|
|
BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
|
|
BasicBlock *Bypass,
|
|
BasicBlock *Insert);
|
|
void printDebugTracesAtStart() override;
|
|
void printDebugTracesAtEnd() override;
|
|
};
|
|
} // end namespace llvm
|
|
|
|
/// Look for a meaningful debug location on the instruction or it's
|
|
/// operands.
|
|
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
|
|
if (!I)
|
|
return I;
|
|
|
|
DebugLoc Empty;
|
|
if (I->getDebugLoc() != Empty)
|
|
return I;
|
|
|
|
for (Use &Op : I->operands()) {
|
|
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
|
|
if (OpInst->getDebugLoc() != Empty)
|
|
return OpInst;
|
|
}
|
|
|
|
return I;
|
|
}
|
|
|
|
/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
|
|
/// is passed, the message relates to that particular instruction.
|
|
#ifndef NDEBUG
|
|
static void debugVectorizationMessage(const StringRef Prefix,
|
|
const StringRef DebugMsg,
|
|
Instruction *I) {
|
|
dbgs() << "LV: " << Prefix << DebugMsg;
|
|
if (I != nullptr)
|
|
dbgs() << " " << *I;
|
|
else
|
|
dbgs() << '.';
|
|
dbgs() << '\n';
|
|
}
|
|
#endif
|
|
|
|
/// Create an analysis remark that explains why vectorization failed
|
|
///
|
|
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
|
|
/// RemarkName is the identifier for the remark. If \p I is passed it is an
|
|
/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
|
|
/// the location of the remark. \return the remark object that can be
|
|
/// streamed to.
|
|
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
|
|
StringRef RemarkName, Loop *TheLoop, Instruction *I) {
|
|
Value *CodeRegion = TheLoop->getHeader();
|
|
DebugLoc DL = TheLoop->getStartLoc();
|
|
|
|
if (I) {
|
|
CodeRegion = I->getParent();
|
|
// If there is no debug location attached to the instruction, revert back to
|
|
// using the loop's.
|
|
if (I->getDebugLoc())
|
|
DL = I->getDebugLoc();
|
|
}
|
|
|
|
return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
/// Return a value for Step multiplied by VF.
|
|
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
|
|
int64_t Step) {
|
|
assert(Ty->isIntegerTy() && "Expected an integer step");
|
|
return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step));
|
|
}
|
|
|
|
/// Return the runtime value for VF.
|
|
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
|
|
return B.CreateElementCount(Ty, VF);
|
|
}
|
|
|
|
const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE,
|
|
Loop *OrigLoop) {
|
|
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
|
|
assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count");
|
|
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
return SE.getTripCountFromExitCount(BackedgeTakenCount, IdxTy, OrigLoop);
|
|
}
|
|
|
|
static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
|
|
ElementCount VF) {
|
|
assert(FTy->isFloatingPointTy() && "Expected floating point type!");
|
|
Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
|
|
Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
|
|
return B.CreateUIToFP(RuntimeVF, FTy);
|
|
}
|
|
|
|
void reportVectorizationFailure(const StringRef DebugMsg,
|
|
const StringRef OREMsg, const StringRef ORETag,
|
|
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
|
|
Instruction *I) {
|
|
LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
|
|
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
|
|
ORE->emit(
|
|
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
|
|
<< "loop not vectorized: " << OREMsg);
|
|
}
|
|
|
|
void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
|
|
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
|
|
Instruction *I) {
|
|
LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
|
|
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
|
|
ORE->emit(
|
|
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
|
|
<< Msg);
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#ifndef NDEBUG
|
|
/// \return string containing a file name and a line # for the given loop.
|
|
static std::string getDebugLocString(const Loop *L) {
|
|
std::string Result;
|
|
if (L) {
|
|
raw_string_ostream OS(Result);
|
|
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
|
|
LoopDbgLoc.print(OS);
|
|
else
|
|
// Just print the module name.
|
|
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
|
|
OS.flush();
|
|
}
|
|
return Result;
|
|
}
|
|
#endif
|
|
|
|
void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
|
|
VPTransformState &State) {
|
|
|
|
// Collect recipes in the backward slice of `Root` that may generate a poison
|
|
// value that is used after vectorization.
|
|
SmallPtrSet<VPRecipeBase *, 16> Visited;
|
|
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
|
|
SmallVector<VPRecipeBase *, 16> Worklist;
|
|
Worklist.push_back(Root);
|
|
|
|
// Traverse the backward slice of Root through its use-def chain.
|
|
while (!Worklist.empty()) {
|
|
VPRecipeBase *CurRec = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
if (!Visited.insert(CurRec).second)
|
|
continue;
|
|
|
|
// Prune search if we find another recipe generating a widen memory
|
|
// instruction. Widen memory instructions involved in address computation
|
|
// will lead to gather/scatter instructions, which don't need to be
|
|
// handled.
|
|
if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
|
|
isa<VPInterleaveRecipe>(CurRec) ||
|
|
isa<VPScalarIVStepsRecipe>(CurRec) ||
|
|
isa<VPCanonicalIVPHIRecipe>(CurRec) ||
|
|
isa<VPActiveLaneMaskPHIRecipe>(CurRec))
|
|
continue;
|
|
|
|
// This recipe contributes to the address computation of a widen
|
|
// load/store. If the underlying instruction has poison-generating flags,
|
|
// drop them directly.
|
|
if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
} else {
|
|
Instruction *Instr = CurRec->getUnderlyingInstr();
|
|
(void)Instr;
|
|
assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
|
|
"found instruction with poison generating flags not covered by "
|
|
"VPRecipeWithIRFlags");
|
|
}
|
|
|
|
// Add new definitions to the worklist.
|
|
for (VPValue *operand : CurRec->operands())
|
|
if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
|
|
Worklist.push_back(OpDef);
|
|
}
|
|
});
|
|
|
|
// Traverse all the recipes in the VPlan and collect the poison-generating
|
|
// recipes in the backward slice starting at the address of a VPWidenRecipe or
|
|
// VPInterleaveRecipe.
|
|
auto Iter = vp_depth_first_deep(State.Plan->getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
|
|
for (VPRecipeBase &Recipe : *VPBB) {
|
|
if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
|
|
Instruction &UnderlyingInstr = WidenRec->getIngredient();
|
|
VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef && WidenRec->isConsecutive() &&
|
|
Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
|
|
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
|
|
VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
|
|
if (AddrDef) {
|
|
// Check if any member of the interleave group needs predication.
|
|
const InterleaveGroup<Instruction> *InterGroup =
|
|
InterleaveRec->getInterleaveGroup();
|
|
bool NeedPredication = false;
|
|
for (int I = 0, NumMembers = InterGroup->getNumMembers();
|
|
I < NumMembers; ++I) {
|
|
Instruction *Member = InterGroup->getMember(I);
|
|
if (Member)
|
|
NeedPredication |=
|
|
Legal->blockNeedsPredication(Member->getParent());
|
|
}
|
|
|
|
if (NeedPredication)
|
|
collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PHINode *InnerLoopVectorizer::getReductionResumeValue(
|
|
const RecurrenceDescriptor &RdxDesc) {
|
|
auto It = ReductionResumeValues.find(&RdxDesc);
|
|
assert(It != ReductionResumeValues.end() &&
|
|
"Expected to find a resume value for the reduction.");
|
|
return It->second;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
// Loop vectorization cost-model hints how the scalar epilogue loop should be
|
|
// lowered.
|
|
enum ScalarEpilogueLowering {
|
|
|
|
// The default: allowing scalar epilogues.
|
|
CM_ScalarEpilogueAllowed,
|
|
|
|
// Vectorization with OptForSize: don't allow epilogues.
|
|
CM_ScalarEpilogueNotAllowedOptSize,
|
|
|
|
// A special case of vectorisation with OptForSize: loops with a very small
|
|
// trip count are considered for vectorization under OptForSize, thereby
|
|
// making sure the cost of their loop body is dominant, free of runtime
|
|
// guards and scalar iteration overheads.
|
|
CM_ScalarEpilogueNotAllowedLowTripLoop,
|
|
|
|
// Loop hint predicate indicating an epilogue is undesired.
|
|
CM_ScalarEpilogueNotNeededUsePredicate,
|
|
|
|
// Directive indicating we must either tail fold or not vectorize
|
|
CM_ScalarEpilogueNotAllowedUsePredicate
|
|
};
|
|
|
|
using InstructionVFPair = std::pair<Instruction *, ElementCount>;
|
|
|
|
/// LoopVectorizationCostModel - estimates the expected speedups due to
|
|
/// vectorization.
|
|
/// In many cases vectorization is not profitable. This can happen because of
|
|
/// a number of reasons. In this class we mainly attempt to predict the
|
|
/// expected speedup/slowdowns due to the supported instruction set. We use the
|
|
/// TargetTransformInfo to query the different backends for the cost of
|
|
/// different operations.
|
|
class LoopVectorizationCostModel {
|
|
public:
|
|
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
|
|
PredicatedScalarEvolution &PSE, LoopInfo *LI,
|
|
LoopVectorizationLegality *Legal,
|
|
const TargetTransformInfo &TTI,
|
|
const TargetLibraryInfo *TLI, DemandedBits *DB,
|
|
AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, const Function *F,
|
|
const LoopVectorizeHints *Hints,
|
|
InterleavedAccessInfo &IAI)
|
|
: ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
|
|
TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
|
|
Hints(Hints), InterleaveInfo(IAI) {}
|
|
|
|
/// \return An upper bound for the vectorization factors (both fixed and
|
|
/// scalable). If the factors are 0, vectorization and interleaving should be
|
|
/// avoided up front.
|
|
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
|
|
|
|
/// \return True if runtime checks are required for vectorization, and false
|
|
/// otherwise.
|
|
bool runtimeChecksRequired();
|
|
|
|
/// Setup cost-based decisions for user vectorization factor.
|
|
/// \return true if the UserVF is a feasible VF to be chosen.
|
|
bool selectUserVectorizationFactor(ElementCount UserVF) {
|
|
collectUniformsAndScalars(UserVF);
|
|
collectInstsToScalarize(UserVF);
|
|
return expectedCost(UserVF).first.isValid();
|
|
}
|
|
|
|
/// \return The size (in bits) of the smallest and widest types in the code
|
|
/// that needs to be vectorized. We ignore values that remain scalar such as
|
|
/// 64 bit loop indices.
|
|
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
|
|
|
|
/// \return The desired interleave count.
|
|
/// If interleave count has been specified by metadata it will be returned.
|
|
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
|
|
/// are the selected vectorization factor and the cost of the selected VF.
|
|
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost);
|
|
|
|
/// Memory access instruction may be vectorized in more than one way.
|
|
/// Form of instruction after vectorization depends on cost.
|
|
/// This function takes cost-based decisions for Load/Store instructions
|
|
/// and collects them in a map. This decisions map is used for building
|
|
/// the lists of loop-uniform and loop-scalar instructions.
|
|
/// The calculated cost is saved with widening decision in order to
|
|
/// avoid redundant calculations.
|
|
void setCostBasedWideningDecision(ElementCount VF);
|
|
|
|
/// A struct that represents some properties of the register usage
|
|
/// of a loop.
|
|
struct RegisterUsage {
|
|
/// Holds the number of loop invariant values that are used in the loop.
|
|
/// The key is ClassID of target-provided register class.
|
|
SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
|
|
/// Holds the maximum number of concurrent live intervals in the loop.
|
|
/// The key is ClassID of target-provided register class.
|
|
SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
|
|
};
|
|
|
|
/// \return Returns information about the register usages of the loop for the
|
|
/// given vectorization factors.
|
|
SmallVector<RegisterUsage, 8>
|
|
calculateRegisterUsage(ArrayRef<ElementCount> VFs);
|
|
|
|
/// Collect values we want to ignore in the cost model.
|
|
void collectValuesToIgnore();
|
|
|
|
/// Collect all element types in the loop for which widening is needed.
|
|
void collectElementTypesForWidening();
|
|
|
|
/// Split reductions into those that happen in the loop, and those that happen
|
|
/// outside. In loop reductions are collected into InLoopReductions.
|
|
void collectInLoopReductions();
|
|
|
|
/// Returns true if we should use strict in-order reductions for the given
|
|
/// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
|
|
/// the IsOrdered flag of RdxDesc is set and we do not allow reordering
|
|
/// of FP operations.
|
|
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
|
|
return !Hints->allowReordering() && RdxDesc.isOrdered();
|
|
}
|
|
|
|
/// \returns The smallest bitwidth each instruction can be represented with.
|
|
/// The vector equivalents of these instructions should be truncated to this
|
|
/// type.
|
|
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
|
|
return MinBWs;
|
|
}
|
|
|
|
/// \returns True if it is more profitable to scalarize instruction \p I for
|
|
/// vectorization factor \p VF.
|
|
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
|
|
assert(VF.isVector() &&
|
|
"Profitable to scalarize relevant only for VF > 1.");
|
|
|
|
// Cost model is not run in the VPlan-native path - return conservative
|
|
// result until this changes.
|
|
if (EnableVPlanNativePath)
|
|
return false;
|
|
|
|
auto Scalars = InstsToScalarize.find(VF);
|
|
assert(Scalars != InstsToScalarize.end() &&
|
|
"VF not yet analyzed for scalarization profitability");
|
|
return Scalars->second.contains(I);
|
|
}
|
|
|
|
/// Returns true if \p I is known to be uniform after vectorization.
|
|
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
|
|
// Pseudo probe needs to be duplicated for each unrolled iteration and
|
|
// vector lane so that profiled loop trip count can be accurately
|
|
// accumulated instead of being under counted.
|
|
if (isa<PseudoProbeInst>(I))
|
|
return false;
|
|
|
|
if (VF.isScalar())
|
|
return true;
|
|
|
|
// Cost model is not run in the VPlan-native path - return conservative
|
|
// result until this changes.
|
|
if (EnableVPlanNativePath)
|
|
return false;
|
|
|
|
auto UniformsPerVF = Uniforms.find(VF);
|
|
assert(UniformsPerVF != Uniforms.end() &&
|
|
"VF not yet analyzed for uniformity");
|
|
return UniformsPerVF->second.count(I);
|
|
}
|
|
|
|
/// Returns true if \p I is known to be scalar after vectorization.
|
|
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
|
|
if (VF.isScalar())
|
|
return true;
|
|
|
|
// Cost model is not run in the VPlan-native path - return conservative
|
|
// result until this changes.
|
|
if (EnableVPlanNativePath)
|
|
return false;
|
|
|
|
auto ScalarsPerVF = Scalars.find(VF);
|
|
assert(ScalarsPerVF != Scalars.end() &&
|
|
"Scalar values are not calculated for VF");
|
|
return ScalarsPerVF->second.count(I);
|
|
}
|
|
|
|
/// \returns True if instruction \p I can be truncated to a smaller bitwidth
|
|
/// for vectorization factor \p VF.
|
|
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
|
|
return VF.isVector() && MinBWs.contains(I) &&
|
|
!isProfitableToScalarize(I, VF) &&
|
|
!isScalarAfterVectorization(I, VF);
|
|
}
|
|
|
|
/// Decision that was taken during cost calculation for memory instruction.
|
|
enum InstWidening {
|
|
CM_Unknown,
|
|
CM_Widen, // For consecutive accesses with stride +1.
|
|
CM_Widen_Reverse, // For consecutive accesses with stride -1.
|
|
CM_Interleave,
|
|
CM_GatherScatter,
|
|
CM_Scalarize
|
|
};
|
|
|
|
/// Save vectorization decision \p W and \p Cost taken by the cost model for
|
|
/// instruction \p I and vector width \p VF.
|
|
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
|
|
InstructionCost Cost) {
|
|
assert(VF.isVector() && "Expected VF >=2");
|
|
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
|
|
}
|
|
|
|
/// Save vectorization decision \p W and \p Cost taken by the cost model for
|
|
/// interleaving group \p Grp and vector width \p VF.
|
|
void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
|
|
ElementCount VF, InstWidening W,
|
|
InstructionCost Cost) {
|
|
assert(VF.isVector() && "Expected VF >=2");
|
|
/// Broadcast this decicion to all instructions inside the group.
|
|
/// But the cost will be assigned to one instruction only.
|
|
for (unsigned i = 0; i < Grp->getFactor(); ++i) {
|
|
if (auto *I = Grp->getMember(i)) {
|
|
if (Grp->getInsertPos() == I)
|
|
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
|
|
else
|
|
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the cost model decision for the given instruction \p I and vector
|
|
/// width \p VF. Return CM_Unknown if this instruction did not pass
|
|
/// through the cost modeling.
|
|
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
|
|
assert(VF.isVector() && "Expected VF to be a vector VF");
|
|
// Cost model is not run in the VPlan-native path - return conservative
|
|
// result until this changes.
|
|
if (EnableVPlanNativePath)
|
|
return CM_GatherScatter;
|
|
|
|
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
|
|
auto Itr = WideningDecisions.find(InstOnVF);
|
|
if (Itr == WideningDecisions.end())
|
|
return CM_Unknown;
|
|
return Itr->second.first;
|
|
}
|
|
|
|
/// Return the vectorization cost for the given instruction \p I and vector
|
|
/// width \p VF.
|
|
InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
|
|
assert(VF.isVector() && "Expected VF >=2");
|
|
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
|
|
assert(WideningDecisions.contains(InstOnVF) &&
|
|
"The cost is not calculated");
|
|
return WideningDecisions[InstOnVF].second;
|
|
}
|
|
|
|
/// Return True if instruction \p I is an optimizable truncate whose operand
|
|
/// is an induction variable. Such a truncate will be removed by adding a new
|
|
/// induction variable with the destination type.
|
|
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
|
|
// If the instruction is not a truncate, return false.
|
|
auto *Trunc = dyn_cast<TruncInst>(I);
|
|
if (!Trunc)
|
|
return false;
|
|
|
|
// Get the source and destination types of the truncate.
|
|
Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
|
|
Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
|
|
|
|
// If the truncate is free for the given types, return false. Replacing a
|
|
// free truncate with an induction variable would add an induction variable
|
|
// update instruction to each iteration of the loop. We exclude from this
|
|
// check the primary induction variable since it will need an update
|
|
// instruction regardless.
|
|
Value *Op = Trunc->getOperand(0);
|
|
if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
|
|
return false;
|
|
|
|
// If the truncated value is not an induction variable, return false.
|
|
return Legal->isInductionPhi(Op);
|
|
}
|
|
|
|
/// Collects the instructions to scalarize for each predicated instruction in
|
|
/// the loop.
|
|
void collectInstsToScalarize(ElementCount VF);
|
|
|
|
/// Collect Uniform and Scalar values for the given \p VF.
|
|
/// The sets depend on CM decision for Load/Store instructions
|
|
/// that may be vectorized as interleave, gather-scatter or scalarized.
|
|
void collectUniformsAndScalars(ElementCount VF) {
|
|
// Do the analysis once.
|
|
if (VF.isScalar() || Uniforms.contains(VF))
|
|
return;
|
|
setCostBasedWideningDecision(VF);
|
|
collectLoopUniforms(VF);
|
|
collectLoopScalars(VF);
|
|
}
|
|
|
|
/// Returns true if the target machine supports masked store operation
|
|
/// for the given \p DataType and kind of access to \p Ptr.
|
|
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
|
|
return Legal->isConsecutivePtr(DataType, Ptr) &&
|
|
TTI.isLegalMaskedStore(DataType, Alignment);
|
|
}
|
|
|
|
/// Returns true if the target machine supports masked load operation
|
|
/// for the given \p DataType and kind of access to \p Ptr.
|
|
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
|
|
return Legal->isConsecutivePtr(DataType, Ptr) &&
|
|
TTI.isLegalMaskedLoad(DataType, Alignment);
|
|
}
|
|
|
|
/// Returns true if the target machine can represent \p V as a masked gather
|
|
/// or scatter operation.
|
|
bool isLegalGatherOrScatter(Value *V, ElementCount VF) {
|
|
bool LI = isa<LoadInst>(V);
|
|
bool SI = isa<StoreInst>(V);
|
|
if (!LI && !SI)
|
|
return false;
|
|
auto *Ty = getLoadStoreType(V);
|
|
Align Align = getLoadStoreAlignment(V);
|
|
if (VF.isVector())
|
|
Ty = VectorType::get(Ty, VF);
|
|
return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
|
|
(SI && TTI.isLegalMaskedScatter(Ty, Align));
|
|
}
|
|
|
|
/// Returns true if the target machine supports all of the reduction
|
|
/// variables found for the given VF.
|
|
bool canVectorizeReductions(ElementCount VF) const {
|
|
return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
|
|
}));
|
|
}
|
|
|
|
/// Given costs for both strategies, return true if the scalar predication
|
|
/// lowering should be used for div/rem. This incorporates an override
|
|
/// option so it is not simply a cost comparison.
|
|
bool isDivRemScalarWithPredication(InstructionCost ScalarCost,
|
|
InstructionCost SafeDivisorCost) const {
|
|
switch (ForceSafeDivisor) {
|
|
case cl::BOU_UNSET:
|
|
return ScalarCost < SafeDivisorCost;
|
|
case cl::BOU_TRUE:
|
|
return false;
|
|
case cl::BOU_FALSE:
|
|
return true;
|
|
};
|
|
llvm_unreachable("impossible case value");
|
|
}
|
|
|
|
/// Returns true if \p I is an instruction which requires predication and
|
|
/// for which our chosen predication strategy is scalarization (i.e. we
|
|
/// don't have an alternate strategy such as masking available).
|
|
/// \p VF is the vectorization factor that will be used to vectorize \p I.
|
|
bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
|
|
|
|
/// Returns true if \p I is an instruction that needs to be predicated
|
|
/// at runtime. The result is independent of the predication mechanism.
|
|
/// Superset of instructions that return true for isScalarWithPredication.
|
|
bool isPredicatedInst(Instruction *I) const;
|
|
|
|
/// Return the costs for our two available strategies for lowering a
|
|
/// div/rem operation which requires speculating at least one lane.
|
|
/// First result is for scalarization (will be invalid for scalable
|
|
/// vectors); second is for the safe-divisor strategy.
|
|
std::pair<InstructionCost, InstructionCost>
|
|
getDivRemSpeculationCost(Instruction *I,
|
|
ElementCount VF) const;
|
|
|
|
/// Returns true if \p I is a memory instruction with consecutive memory
|
|
/// access that can be widened.
|
|
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
|
|
|
|
/// Returns true if \p I is a memory instruction in an interleaved-group
|
|
/// of memory accesses that can be vectorized with wide vector loads/stores
|
|
/// and shuffles.
|
|
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF);
|
|
|
|
/// Check if \p Instr belongs to any interleaved access group.
|
|
bool isAccessInterleaved(Instruction *Instr) {
|
|
return InterleaveInfo.isInterleaved(Instr);
|
|
}
|
|
|
|
/// Get the interleaved access group that \p Instr belongs to.
|
|
const InterleaveGroup<Instruction> *
|
|
getInterleavedAccessGroup(Instruction *Instr) {
|
|
return InterleaveInfo.getInterleaveGroup(Instr);
|
|
}
|
|
|
|
/// Returns true if we're required to use a scalar epilogue for at least
|
|
/// the final iteration of the original loop.
|
|
bool requiresScalarEpilogue(bool IsVectorizing) const {
|
|
if (!isScalarEpilogueAllowed())
|
|
return false;
|
|
// If we might exit from anywhere but the latch, must run the exiting
|
|
// iteration in scalar form.
|
|
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
|
|
return true;
|
|
return IsVectorizing && InterleaveInfo.requiresScalarEpilogue();
|
|
}
|
|
|
|
/// Returns true if we're required to use a scalar epilogue for at least
|
|
/// the final iteration of the original loop for all VFs in \p Range.
|
|
/// A scalar epilogue must either be required for all VFs in \p Range or for
|
|
/// none.
|
|
bool requiresScalarEpilogue(VFRange Range) const {
|
|
auto RequiresScalarEpilogue = [this](ElementCount VF) {
|
|
return requiresScalarEpilogue(VF.isVector());
|
|
};
|
|
bool IsRequired = all_of(Range, RequiresScalarEpilogue);
|
|
assert(
|
|
(IsRequired || none_of(Range, RequiresScalarEpilogue)) &&
|
|
"all VFs in range must agree on whether a scalar epilogue is required");
|
|
return IsRequired;
|
|
}
|
|
|
|
/// Returns true if a scalar epilogue is not allowed due to optsize or a
|
|
/// loop hint annotation.
|
|
bool isScalarEpilogueAllowed() const {
|
|
return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
|
|
}
|
|
|
|
/// Returns the TailFoldingStyle that is best for the current loop.
|
|
TailFoldingStyle
|
|
getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
|
|
if (!CanFoldTailByMasking)
|
|
return TailFoldingStyle::None;
|
|
|
|
if (ForceTailFoldingStyle.getNumOccurrences())
|
|
return ForceTailFoldingStyle;
|
|
|
|
return TTI.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
|
|
}
|
|
|
|
/// Returns true if all loop blocks should be masked to fold tail loop.
|
|
bool foldTailByMasking() const {
|
|
return getTailFoldingStyle() != TailFoldingStyle::None;
|
|
}
|
|
|
|
/// Returns true if the instructions in this block requires predication
|
|
/// for any reason, e.g. because tail folding now requires a predicate
|
|
/// or because the block in the original loop was predicated.
|
|
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
|
|
return foldTailByMasking() || Legal->blockNeedsPredication(BB);
|
|
}
|
|
|
|
/// Returns true if the Phi is part of an inloop reduction.
|
|
bool isInLoopReduction(PHINode *Phi) const {
|
|
return InLoopReductions.contains(Phi);
|
|
}
|
|
|
|
/// Estimate cost of an intrinsic call instruction CI if it were vectorized
|
|
/// with factor VF. Return the cost of the instruction, including
|
|
/// scalarization overhead if it's needed.
|
|
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
|
|
|
|
/// Estimate cost of a call instruction CI if it were vectorized with factor
|
|
/// VF. Return the cost of the instruction, including scalarization overhead
|
|
/// if it's needed. The flag NeedToScalarize shows if the call needs to be
|
|
/// scalarized -
|
|
/// i.e. either vector version isn't available, or is too expensive.
|
|
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
|
|
Function **Variant,
|
|
bool *NeedsMask = nullptr) const;
|
|
|
|
/// Invalidates decisions already taken by the cost model.
|
|
void invalidateCostModelingDecisions() {
|
|
WideningDecisions.clear();
|
|
Uniforms.clear();
|
|
Scalars.clear();
|
|
}
|
|
|
|
/// The vectorization cost is a combination of the cost itself and a boolean
|
|
/// indicating whether any of the contributing operations will actually
|
|
/// operate on vector values after type legalization in the backend. If this
|
|
/// latter value is false, then all operations will be scalarized (i.e. no
|
|
/// vectorization has actually taken place).
|
|
using VectorizationCostTy = std::pair<InstructionCost, bool>;
|
|
|
|
/// Returns the expected execution cost. The unit of the cost does
|
|
/// not matter because we use the 'cost' units to compare different
|
|
/// vector widths. The cost that is returned is *not* normalized by
|
|
/// the factor width. If \p Invalid is not nullptr, this function
|
|
/// will add a pair(Instruction*, ElementCount) to \p Invalid for
|
|
/// each instruction that has an Invalid cost for the given VF.
|
|
VectorizationCostTy
|
|
expectedCost(ElementCount VF,
|
|
SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
|
|
|
|
bool hasPredStores() const { return NumPredStores > 0; }
|
|
|
|
/// Returns true if epilogue vectorization is considered profitable, and
|
|
/// false otherwise.
|
|
/// \p VF is the vectorization factor chosen for the original loop.
|
|
bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
|
|
|
|
private:
|
|
unsigned NumPredStores = 0;
|
|
|
|
/// \return An upper bound for the vectorization factors for both
|
|
/// fixed and scalable vectorization, where the minimum-known number of
|
|
/// elements is a power-of-2 larger than zero. If scalable vectorization is
|
|
/// disabled or unsupported, then the scalable part will be equal to
|
|
/// ElementCount::getScalable(0).
|
|
FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
|
|
ElementCount UserVF,
|
|
bool FoldTailByMasking);
|
|
|
|
/// \return the maximized element count based on the targets vector
|
|
/// registers and the loop trip-count, but limited to a maximum safe VF.
|
|
/// This is a helper function of computeFeasibleMaxVF.
|
|
ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
|
|
unsigned SmallestType,
|
|
unsigned WidestType,
|
|
ElementCount MaxSafeVF,
|
|
bool FoldTailByMasking);
|
|
|
|
/// \return the maximum legal scalable VF, based on the safe max number
|
|
/// of elements.
|
|
ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
|
|
|
|
/// Returns the execution time cost of an instruction for a given vector
|
|
/// width. Vector width of one means scalar.
|
|
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost-computation logic from getInstructionCost which provides
|
|
/// the vector type as an output parameter.
|
|
InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
|
|
Type *&VectorTy);
|
|
|
|
/// Return the cost of instructions in an inloop reduction pattern, if I is
|
|
/// part of that pattern.
|
|
std::optional<InstructionCost>
|
|
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
|
|
TTI::TargetCostKind CostKind);
|
|
|
|
/// Calculate vectorization cost of memory instruction \p I.
|
|
InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost computation for scalarized memory instruction.
|
|
InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost computation for interleaving group of memory instructions.
|
|
InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost computation for Gather/Scatter instruction.
|
|
InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost computation for widening instruction \p I with consecutive
|
|
/// memory access.
|
|
InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
|
|
|
|
/// The cost calculation for Load/Store instruction \p I with uniform pointer -
|
|
/// Load: scalar load + broadcast.
|
|
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
|
|
/// element)
|
|
InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. This is a
|
|
/// convenience wrapper for the type-based getScalarizationOverhead API.
|
|
InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF,
|
|
TTI::TargetCostKind CostKind) const;
|
|
|
|
/// Returns true if an artificially high cost for emulated masked memrefs
|
|
/// should be used.
|
|
bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
|
|
|
|
/// Map of scalar integer values to the smallest bitwidth they can be legally
|
|
/// represented as. The vector equivalents of these values should be truncated
|
|
/// to this type.
|
|
MapVector<Instruction *, uint64_t> MinBWs;
|
|
|
|
/// A type representing the costs for instructions if they were to be
|
|
/// scalarized rather than vectorized. The entries are Instruction-Cost
|
|
/// pairs.
|
|
using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
|
|
|
|
/// A set containing all BasicBlocks that are known to present after
|
|
/// vectorization as a predicated block.
|
|
DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
|
|
PredicatedBBsAfterVectorization;
|
|
|
|
/// Records whether it is allowed to have the original scalar loop execute at
|
|
/// least once. This may be needed as a fallback loop in case runtime
|
|
/// aliasing/dependence checks fail, or to handle the tail/remainder
|
|
/// iterations when the trip count is unknown or doesn't divide by the VF,
|
|
/// or as a peel-loop to handle gaps in interleave-groups.
|
|
/// Under optsize and when the trip count is very small we don't allow any
|
|
/// iterations to execute in the scalar loop.
|
|
ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
|
|
|
|
/// All blocks of loop are to be masked to fold tail of scalar iterations.
|
|
bool CanFoldTailByMasking = false;
|
|
|
|
/// A map holding scalar costs for different vectorization factors. The
|
|
/// presence of a cost for an instruction in the mapping indicates that the
|
|
/// instruction will be scalarized when vectorizing with the associated
|
|
/// vectorization factor. The entries are VF-ScalarCostTy pairs.
|
|
DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
|
|
|
|
/// Holds the instructions known to be uniform after vectorization.
|
|
/// The data is collected per VF.
|
|
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
|
|
|
|
/// Holds the instructions known to be scalar after vectorization.
|
|
/// The data is collected per VF.
|
|
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
|
|
|
|
/// Holds the instructions (address computations) that are forced to be
|
|
/// scalarized.
|
|
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
|
|
|
|
/// PHINodes of the reductions that should be expanded in-loop.
|
|
SmallPtrSet<PHINode *, 4> InLoopReductions;
|
|
|
|
/// A Map of inloop reduction operations and their immediate chain operand.
|
|
/// FIXME: This can be removed once reductions can be costed correctly in
|
|
/// VPlan. This was added to allow quick lookup of the inloop operations.
|
|
DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
|
|
|
|
/// Returns the expected difference in cost from scalarizing the expression
|
|
/// feeding a predicated instruction \p PredInst. The instructions to
|
|
/// scalarize and their scalar costs are collected in \p ScalarCosts. A
|
|
/// non-negative return value implies the expression will be scalarized.
|
|
/// Currently, only single-use chains are considered for scalarization.
|
|
InstructionCost computePredInstDiscount(Instruction *PredInst,
|
|
ScalarCostsTy &ScalarCosts,
|
|
ElementCount VF);
|
|
|
|
/// Collect the instructions that are uniform after vectorization. An
|
|
/// instruction is uniform if we represent it with a single scalar value in
|
|
/// the vectorized loop corresponding to each vector iteration. Examples of
|
|
/// uniform instructions include pointer operands of consecutive or
|
|
/// interleaved memory accesses. Note that although uniformity implies an
|
|
/// instruction will be scalar, the reverse is not true. In general, a
|
|
/// scalarized instruction will be represented by VF scalar values in the
|
|
/// vectorized loop, each corresponding to an iteration of the original
|
|
/// scalar loop.
|
|
void collectLoopUniforms(ElementCount VF);
|
|
|
|
/// Collect the instructions that are scalar after vectorization. An
|
|
/// instruction is scalar if it is known to be uniform or will be scalarized
|
|
/// during vectorization. collectLoopScalars should only add non-uniform nodes
|
|
/// to the list if they are used by a load/store instruction that is marked as
|
|
/// CM_Scalarize. Non-uniform scalarized instructions will be represented by
|
|
/// VF values in the vectorized loop, each corresponding to an iteration of
|
|
/// the original scalar loop.
|
|
void collectLoopScalars(ElementCount VF);
|
|
|
|
/// Keeps cost model vectorization decision and cost for instructions.
|
|
/// Right now it is used for memory instructions only.
|
|
using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
|
|
std::pair<InstWidening, InstructionCost>>;
|
|
|
|
DecisionList WideningDecisions;
|
|
|
|
/// Returns true if \p V is expected to be vectorized and it needs to be
|
|
/// extracted.
|
|
bool needsExtract(Value *V, ElementCount VF) const {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (VF.isScalar() || !I || !TheLoop->contains(I) ||
|
|
TheLoop->isLoopInvariant(I))
|
|
return false;
|
|
|
|
// Assume we can vectorize V (and hence we need extraction) if the
|
|
// scalars are not computed yet. This can happen, because it is called
|
|
// via getScalarizationOverhead from setCostBasedWideningDecision, before
|
|
// the scalars are collected. That should be a safe assumption in most
|
|
// cases, because we check if the operands have vectorizable types
|
|
// beforehand in LoopVectorizationLegality.
|
|
return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
|
|
};
|
|
|
|
/// Returns a range containing only operands needing to be extracted.
|
|
SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
|
|
ElementCount VF) const {
|
|
return SmallVector<Value *, 4>(make_filter_range(
|
|
Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
|
|
}
|
|
|
|
public:
|
|
/// The loop that we evaluate.
|
|
Loop *TheLoop;
|
|
|
|
/// Predicated scalar evolution analysis.
|
|
PredicatedScalarEvolution &PSE;
|
|
|
|
/// Loop Info analysis.
|
|
LoopInfo *LI;
|
|
|
|
/// Vectorization legality.
|
|
LoopVectorizationLegality *Legal;
|
|
|
|
/// Vector target information.
|
|
const TargetTransformInfo &TTI;
|
|
|
|
/// Target Library Info.
|
|
const TargetLibraryInfo *TLI;
|
|
|
|
/// Demanded bits analysis.
|
|
DemandedBits *DB;
|
|
|
|
/// Assumption cache.
|
|
AssumptionCache *AC;
|
|
|
|
/// Interface to emit optimization remarks.
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
const Function *TheFunction;
|
|
|
|
/// Loop Vectorize Hint.
|
|
const LoopVectorizeHints *Hints;
|
|
|
|
/// The interleave access information contains groups of interleaved accesses
|
|
/// with the same stride and close to each other.
|
|
InterleavedAccessInfo &InterleaveInfo;
|
|
|
|
/// Values to ignore in the cost model.
|
|
SmallPtrSet<const Value *, 16> ValuesToIgnore;
|
|
|
|
/// Values to ignore in the cost model when VF > 1.
|
|
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
|
|
|
|
/// All element types found in the loop.
|
|
SmallPtrSet<Type *, 16> ElementTypesInLoop;
|
|
};
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
/// Helper struct to manage generating runtime checks for vectorization.
|
|
///
|
|
/// The runtime checks are created up-front in temporary blocks to allow better
|
|
/// estimating the cost and un-linked from the existing IR. After deciding to
|
|
/// vectorize, the checks are moved back. If deciding not to vectorize, the
|
|
/// temporary blocks are completely removed.
|
|
class GeneratedRTChecks {
|
|
/// Basic block which contains the generated SCEV checks, if any.
|
|
BasicBlock *SCEVCheckBlock = nullptr;
|
|
|
|
/// The value representing the result of the generated SCEV checks. If it is
|
|
/// nullptr, either no SCEV checks have been generated or they have been used.
|
|
Value *SCEVCheckCond = nullptr;
|
|
|
|
/// Basic block which contains the generated memory runtime checks, if any.
|
|
BasicBlock *MemCheckBlock = nullptr;
|
|
|
|
/// The value representing the result of the generated memory runtime checks.
|
|
/// If it is nullptr, either no memory runtime checks have been generated or
|
|
/// they have been used.
|
|
Value *MemRuntimeCheckCond = nullptr;
|
|
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
TargetTransformInfo *TTI;
|
|
|
|
SCEVExpander SCEVExp;
|
|
SCEVExpander MemCheckExp;
|
|
|
|
bool CostTooHigh = false;
|
|
|
|
public:
|
|
GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
|
|
TargetTransformInfo *TTI, const DataLayout &DL)
|
|
: DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
|
|
MemCheckExp(SE, DL, "scev.check") {}
|
|
|
|
/// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
|
|
/// accurately estimate the cost of the runtime checks. The blocks are
|
|
/// un-linked from the IR and is added back during vector code generation. If
|
|
/// there is no vector code generation, the check blocks are removed
|
|
/// completely.
|
|
void Create(Loop *L, const LoopAccessInfo &LAI,
|
|
const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
|
|
|
|
// Hard cutoff to limit compile-time increase in case a very large number of
|
|
// runtime checks needs to be generated.
|
|
// TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
|
|
// profile info.
|
|
CostTooHigh =
|
|
LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
|
|
if (CostTooHigh)
|
|
return;
|
|
|
|
BasicBlock *LoopHeader = L->getHeader();
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
|
|
// Use SplitBlock to create blocks for SCEV & memory runtime checks to
|
|
// ensure the blocks are properly added to LoopInfo & DominatorTree. Those
|
|
// may be used by SCEVExpander. The blocks will be un-linked from their
|
|
// predecessors and removed from LI & DT at the end of the function.
|
|
if (!UnionPred.isAlwaysTrue()) {
|
|
SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
|
|
nullptr, "vector.scevcheck");
|
|
|
|
SCEVCheckCond = SCEVExp.expandCodeForPredicate(
|
|
&UnionPred, SCEVCheckBlock->getTerminator());
|
|
}
|
|
|
|
const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
|
|
if (RtPtrChecking.Need) {
|
|
auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
|
|
MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
|
|
"vector.memcheck");
|
|
|
|
auto DiffChecks = RtPtrChecking.getDiffChecks();
|
|
if (DiffChecks) {
|
|
Value *RuntimeVF = nullptr;
|
|
MemRuntimeCheckCond = addDiffRuntimeChecks(
|
|
MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
|
|
[VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
|
|
if (!RuntimeVF)
|
|
RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
|
|
return RuntimeVF;
|
|
},
|
|
IC);
|
|
} else {
|
|
MemRuntimeCheckCond =
|
|
addRuntimeChecks(MemCheckBlock->getTerminator(), L,
|
|
RtPtrChecking.getChecks(), MemCheckExp);
|
|
}
|
|
assert(MemRuntimeCheckCond &&
|
|
"no RT checks generated although RtPtrChecking "
|
|
"claimed checks are required");
|
|
}
|
|
|
|
if (!MemCheckBlock && !SCEVCheckBlock)
|
|
return;
|
|
|
|
// Unhook the temporary block with the checks, update various places
|
|
// accordingly.
|
|
if (SCEVCheckBlock)
|
|
SCEVCheckBlock->replaceAllUsesWith(Preheader);
|
|
if (MemCheckBlock)
|
|
MemCheckBlock->replaceAllUsesWith(Preheader);
|
|
|
|
if (SCEVCheckBlock) {
|
|
SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
|
|
new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
}
|
|
if (MemCheckBlock) {
|
|
MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
|
|
new UnreachableInst(Preheader->getContext(), MemCheckBlock);
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
}
|
|
|
|
DT->changeImmediateDominator(LoopHeader, Preheader);
|
|
if (MemCheckBlock) {
|
|
DT->eraseNode(MemCheckBlock);
|
|
LI->removeBlock(MemCheckBlock);
|
|
}
|
|
if (SCEVCheckBlock) {
|
|
DT->eraseNode(SCEVCheckBlock);
|
|
LI->removeBlock(SCEVCheckBlock);
|
|
}
|
|
}
|
|
|
|
InstructionCost getCost() {
|
|
if (SCEVCheckBlock || MemCheckBlock)
|
|
LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
|
|
|
|
if (CostTooHigh) {
|
|
InstructionCost Cost;
|
|
Cost.setInvalid();
|
|
LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost RTCheckCost = 0;
|
|
if (SCEVCheckBlock)
|
|
for (Instruction &I : *SCEVCheckBlock) {
|
|
if (SCEVCheckBlock->getTerminator() == &I)
|
|
continue;
|
|
InstructionCost C =
|
|
TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
|
|
LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
|
|
RTCheckCost += C;
|
|
}
|
|
if (MemCheckBlock)
|
|
for (Instruction &I : *MemCheckBlock) {
|
|
if (MemCheckBlock->getTerminator() == &I)
|
|
continue;
|
|
InstructionCost C =
|
|
TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
|
|
LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
|
|
RTCheckCost += C;
|
|
}
|
|
|
|
if (SCEVCheckBlock || MemCheckBlock)
|
|
LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
|
|
<< "\n");
|
|
|
|
return RTCheckCost;
|
|
}
|
|
|
|
/// Remove the created SCEV & memory runtime check blocks & instructions, if
|
|
/// unused.
|
|
~GeneratedRTChecks() {
|
|
SCEVExpanderCleaner SCEVCleaner(SCEVExp);
|
|
SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
|
|
if (!SCEVCheckCond)
|
|
SCEVCleaner.markResultUsed();
|
|
|
|
if (!MemRuntimeCheckCond)
|
|
MemCheckCleaner.markResultUsed();
|
|
|
|
if (MemRuntimeCheckCond) {
|
|
auto &SE = *MemCheckExp.getSE();
|
|
// Memory runtime check generation creates compares that use expanded
|
|
// values. Remove them before running the SCEVExpanderCleaners.
|
|
for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
|
|
if (MemCheckExp.isInsertedInstruction(&I))
|
|
continue;
|
|
SE.forgetValue(&I);
|
|
I.eraseFromParent();
|
|
}
|
|
}
|
|
MemCheckCleaner.cleanup();
|
|
SCEVCleaner.cleanup();
|
|
|
|
if (SCEVCheckCond)
|
|
SCEVCheckBlock->eraseFromParent();
|
|
if (MemRuntimeCheckCond)
|
|
MemCheckBlock->eraseFromParent();
|
|
}
|
|
|
|
/// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
|
|
/// adjusts the branches to branch to the vector preheader or \p Bypass,
|
|
/// depending on the generated condition.
|
|
BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
|
|
BasicBlock *LoopVectorPreHeader,
|
|
BasicBlock *LoopExitBlock) {
|
|
if (!SCEVCheckCond)
|
|
return nullptr;
|
|
|
|
Value *Cond = SCEVCheckCond;
|
|
// Mark the check as used, to prevent it from being removed during cleanup.
|
|
SCEVCheckCond = nullptr;
|
|
if (auto *C = dyn_cast<ConstantInt>(Cond))
|
|
if (C->isZero())
|
|
return nullptr;
|
|
|
|
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
|
|
|
|
BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
|
|
// Create new preheader for vector loop.
|
|
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
|
|
PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
|
|
|
|
SCEVCheckBlock->getTerminator()->eraseFromParent();
|
|
SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
|
|
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
|
|
SCEVCheckBlock);
|
|
|
|
DT->addNewBlock(SCEVCheckBlock, Pred);
|
|
DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
|
|
|
|
ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
|
|
BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
|
|
return SCEVCheckBlock;
|
|
}
|
|
|
|
/// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
|
|
/// the branches to branch to the vector preheader or \p Bypass, depending on
|
|
/// the generated condition.
|
|
BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
|
|
BasicBlock *LoopVectorPreHeader) {
|
|
// Check if we generated code that checks in runtime if arrays overlap.
|
|
if (!MemRuntimeCheckCond)
|
|
return nullptr;
|
|
|
|
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
|
|
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
|
|
MemCheckBlock);
|
|
|
|
DT->addNewBlock(MemCheckBlock, Pred);
|
|
DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
|
|
MemCheckBlock->moveBefore(LoopVectorPreHeader);
|
|
|
|
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
|
|
PL->addBasicBlockToLoop(MemCheckBlock, *LI);
|
|
|
|
ReplaceInstWithInst(
|
|
MemCheckBlock->getTerminator(),
|
|
BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
|
|
MemCheckBlock->getTerminator()->setDebugLoc(
|
|
Pred->getTerminator()->getDebugLoc());
|
|
|
|
// Mark the check as used, to prevent it from being removed during cleanup.
|
|
MemRuntimeCheckCond = nullptr;
|
|
return MemCheckBlock;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static bool useActiveLaneMask(TailFoldingStyle Style) {
|
|
return Style == TailFoldingStyle::Data ||
|
|
Style == TailFoldingStyle::DataAndControlFlow ||
|
|
Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
|
|
}
|
|
|
|
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style) {
|
|
return Style == TailFoldingStyle::DataAndControlFlow ||
|
|
Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
|
|
}
|
|
|
|
// Return true if \p OuterLp is an outer loop annotated with hints for explicit
|
|
// vectorization. The loop needs to be annotated with #pragma omp simd
|
|
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
|
|
// vector length information is not provided, vectorization is not considered
|
|
// explicit. Interleave hints are not allowed either. These limitations will be
|
|
// relaxed in the future.
|
|
// Please, note that we are currently forced to abuse the pragma 'clang
|
|
// vectorize' semantics. This pragma provides *auto-vectorization hints*
|
|
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
|
|
// provides *explicit vectorization hints* (LV can bypass legal checks and
|
|
// assume that vectorization is legal). However, both hints are implemented
|
|
// using the same metadata (llvm.loop.vectorize, processed by
|
|
// LoopVectorizeHints). This will be fixed in the future when the native IR
|
|
// representation for pragma 'omp simd' is introduced.
|
|
static bool isExplicitVecOuterLoop(Loop *OuterLp,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
assert(!OuterLp->isInnermost() && "This is not an outer loop");
|
|
LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
|
|
|
|
// Only outer loops with an explicit vectorization hint are supported.
|
|
// Unannotated outer loops are ignored.
|
|
if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
|
|
return false;
|
|
|
|
Function *Fn = OuterLp->getHeader()->getParent();
|
|
if (!Hints.allowVectorization(Fn, OuterLp,
|
|
true /*VectorizeOnlyWhenForced*/)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
|
|
return false;
|
|
}
|
|
|
|
if (Hints.getInterleave() > 1) {
|
|
// TODO: Interleave support is future work.
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
|
|
"outer loops.\n");
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void collectSupportedLoops(Loop &L, LoopInfo *LI,
|
|
OptimizationRemarkEmitter *ORE,
|
|
SmallVectorImpl<Loop *> &V) {
|
|
// Collect inner loops and outer loops without irreducible control flow. For
|
|
// now, only collect outer loops that have explicit vectorization hints. If we
|
|
// are stress testing the VPlan H-CFG construction, we collect the outermost
|
|
// loop of every loop nest.
|
|
if (L.isInnermost() || VPlanBuildStressTest ||
|
|
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
|
|
LoopBlocksRPO RPOT(&L);
|
|
RPOT.perform(LI);
|
|
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
|
|
V.push_back(&L);
|
|
// TODO: Collect inner loops inside marked outer loops in case
|
|
// vectorization fails for the outer loop. Do not invoke
|
|
// 'containsIrreducibleCFG' again for inner loops when the outer loop is
|
|
// already known to be reducible. We can use an inherited attribute for
|
|
// that.
|
|
return;
|
|
}
|
|
}
|
|
for (Loop *InnerL : L)
|
|
collectSupportedLoops(*InnerL, LI, ORE, V);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
|
|
// LoopVectorizationCostModel and LoopVectorizationPlanner.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This function adds
|
|
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
|
|
/// to each vector element of Val. The sequence starts at StartIndex.
|
|
/// \p Opcode is relevant for FP induction variable.
|
|
static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
|
|
Instruction::BinaryOps BinOp, ElementCount VF,
|
|
IRBuilderBase &Builder) {
|
|
assert(VF.isVector() && "only vector VFs are supported");
|
|
|
|
// Create and check the types.
|
|
auto *ValVTy = cast<VectorType>(Val->getType());
|
|
ElementCount VLen = ValVTy->getElementCount();
|
|
|
|
Type *STy = Val->getType()->getScalarType();
|
|
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
|
|
"Induction Step must be an integer or FP");
|
|
assert(Step->getType() == STy && "Step has wrong type");
|
|
|
|
SmallVector<Constant *, 8> Indices;
|
|
|
|
// Create a vector of consecutive numbers from zero to VF.
|
|
VectorType *InitVecValVTy = ValVTy;
|
|
if (STy->isFloatingPointTy()) {
|
|
Type *InitVecValSTy =
|
|
IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
|
|
InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
|
|
}
|
|
Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
|
|
|
|
// Splat the StartIdx
|
|
Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
|
|
|
|
if (STy->isIntegerTy()) {
|
|
InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
|
|
Step = Builder.CreateVectorSplat(VLen, Step);
|
|
assert(Step->getType() == Val->getType() && "Invalid step vec");
|
|
// FIXME: The newly created binary instructions should contain nsw/nuw
|
|
// flags, which can be found from the original scalar operations.
|
|
Step = Builder.CreateMul(InitVec, Step);
|
|
return Builder.CreateAdd(Val, Step, "induction");
|
|
}
|
|
|
|
// Floating point induction.
|
|
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
|
|
"Binary Opcode should be specified for FP induction");
|
|
InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
|
|
InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
|
|
|
|
Step = Builder.CreateVectorSplat(VLen, Step);
|
|
Value *MulOp = Builder.CreateFMul(InitVec, Step);
|
|
return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
|
|
}
|
|
|
|
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
|
|
/// variable on which to base the steps, \p Step is the size of the step.
|
|
static void buildScalarSteps(Value *ScalarIV, Value *Step,
|
|
const InductionDescriptor &ID, VPValue *Def,
|
|
VPTransformState &State) {
|
|
IRBuilderBase &Builder = State.Builder;
|
|
|
|
// Ensure step has the same type as that of scalar IV.
|
|
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
|
|
if (ScalarIVTy != Step->getType()) {
|
|
// TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to
|
|
// avoid separate truncate here.
|
|
assert(Step->getType()->isIntegerTy() &&
|
|
"Truncation requires an integer step");
|
|
Step = State.Builder.CreateTrunc(Step, ScalarIVTy);
|
|
}
|
|
|
|
// We build scalar steps for both integer and floating-point induction
|
|
// variables. Here, we determine the kind of arithmetic we will perform.
|
|
Instruction::BinaryOps AddOp;
|
|
Instruction::BinaryOps MulOp;
|
|
if (ScalarIVTy->isIntegerTy()) {
|
|
AddOp = Instruction::Add;
|
|
MulOp = Instruction::Mul;
|
|
} else {
|
|
AddOp = ID.getInductionOpcode();
|
|
MulOp = Instruction::FMul;
|
|
}
|
|
|
|
// Determine the number of scalars we need to generate for each unroll
|
|
// iteration.
|
|
bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
|
|
// Compute the scalar steps and save the results in State.
|
|
Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
|
|
ScalarIVTy->getScalarSizeInBits());
|
|
Type *VecIVTy = nullptr;
|
|
Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
|
|
if (!FirstLaneOnly && State.VF.isScalable()) {
|
|
VecIVTy = VectorType::get(ScalarIVTy, State.VF);
|
|
UnitStepVec =
|
|
Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
|
|
SplatStep = Builder.CreateVectorSplat(State.VF, Step);
|
|
SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
|
|
}
|
|
|
|
unsigned StartPart = 0;
|
|
unsigned EndPart = State.UF;
|
|
unsigned StartLane = 0;
|
|
unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
|
|
if (State.Instance) {
|
|
StartPart = State.Instance->Part;
|
|
EndPart = StartPart + 1;
|
|
StartLane = State.Instance->Lane.getKnownLane();
|
|
EndLane = StartLane + 1;
|
|
}
|
|
for (unsigned Part = StartPart; Part < EndPart; ++Part) {
|
|
Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
|
|
|
|
if (!FirstLaneOnly && State.VF.isScalable()) {
|
|
auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
|
|
auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
|
|
if (ScalarIVTy->isFloatingPointTy())
|
|
InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
|
|
auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
|
|
auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
|
|
State.set(Def, Add, Part);
|
|
// It's useful to record the lane values too for the known minimum number
|
|
// of elements so we do those below. This improves the code quality when
|
|
// trying to extract the first element, for example.
|
|
}
|
|
|
|
if (ScalarIVTy->isFloatingPointTy())
|
|
StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
|
|
|
|
for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
|
|
Value *StartIdx = Builder.CreateBinOp(
|
|
AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
|
|
// The step returned by `createStepForVF` is a runtime-evaluated value
|
|
// when VF is scalable. Otherwise, it should be folded into a Constant.
|
|
assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
|
|
"Expected StartIdx to be folded to a constant when VF is not "
|
|
"scalable");
|
|
auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
|
|
auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
|
|
State.set(Def, Add, VPIteration(Part, Lane));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the transformed value of Index at offset StartValue using step
|
|
/// StepValue.
|
|
/// For integer induction, returns StartValue + Index * StepValue.
|
|
/// For pointer induction, returns StartValue[Index * StepValue].
|
|
/// FIXME: The newly created binary instructions should contain nsw/nuw
|
|
/// flags, which can be found from the original scalar operations.
|
|
static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
|
|
Value *StartValue, Value *Step,
|
|
const InductionDescriptor &ID) {
|
|
Type *StepTy = Step->getType();
|
|
Value *CastedIndex = StepTy->isIntegerTy()
|
|
? B.CreateSExtOrTrunc(Index, StepTy)
|
|
: B.CreateCast(Instruction::SIToFP, Index, StepTy);
|
|
if (CastedIndex != Index) {
|
|
CastedIndex->setName(CastedIndex->getName() + ".cast");
|
|
Index = CastedIndex;
|
|
}
|
|
|
|
// Note: the IR at this point is broken. We cannot use SE to create any new
|
|
// SCEV and then expand it, hoping that SCEV's simplification will give us
|
|
// a more optimal code. Unfortunately, attempt of doing so on invalid IR may
|
|
// lead to various SCEV crashes. So all we can do is to use builder and rely
|
|
// on InstCombine for future simplifications. Here we handle some trivial
|
|
// cases only.
|
|
auto CreateAdd = [&B](Value *X, Value *Y) {
|
|
assert(X->getType() == Y->getType() && "Types don't match!");
|
|
if (auto *CX = dyn_cast<ConstantInt>(X))
|
|
if (CX->isZero())
|
|
return Y;
|
|
if (auto *CY = dyn_cast<ConstantInt>(Y))
|
|
if (CY->isZero())
|
|
return X;
|
|
return B.CreateAdd(X, Y);
|
|
};
|
|
|
|
// We allow X to be a vector type, in which case Y will potentially be
|
|
// splatted into a vector with the same element count.
|
|
auto CreateMul = [&B](Value *X, Value *Y) {
|
|
assert(X->getType()->getScalarType() == Y->getType() &&
|
|
"Types don't match!");
|
|
if (auto *CX = dyn_cast<ConstantInt>(X))
|
|
if (CX->isOne())
|
|
return Y;
|
|
if (auto *CY = dyn_cast<ConstantInt>(Y))
|
|
if (CY->isOne())
|
|
return X;
|
|
VectorType *XVTy = dyn_cast<VectorType>(X->getType());
|
|
if (XVTy && !isa<VectorType>(Y->getType()))
|
|
Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
|
|
return B.CreateMul(X, Y);
|
|
};
|
|
|
|
switch (ID.getKind()) {
|
|
case InductionDescriptor::IK_IntInduction: {
|
|
assert(!isa<VectorType>(Index->getType()) &&
|
|
"Vector indices not supported for integer inductions yet");
|
|
assert(Index->getType() == StartValue->getType() &&
|
|
"Index type does not match StartValue type");
|
|
if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
|
|
return B.CreateSub(StartValue, Index);
|
|
auto *Offset = CreateMul(Index, Step);
|
|
return CreateAdd(StartValue, Offset);
|
|
}
|
|
case InductionDescriptor::IK_PtrInduction: {
|
|
return B.CreateGEP(B.getInt8Ty(), StartValue, CreateMul(Index, Step));
|
|
}
|
|
case InductionDescriptor::IK_FpInduction: {
|
|
assert(!isa<VectorType>(Index->getType()) &&
|
|
"Vector indices not supported for FP inductions yet");
|
|
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
|
|
auto InductionBinOp = ID.getInductionBinOp();
|
|
assert(InductionBinOp &&
|
|
(InductionBinOp->getOpcode() == Instruction::FAdd ||
|
|
InductionBinOp->getOpcode() == Instruction::FSub) &&
|
|
"Original bin op should be defined for FP induction");
|
|
|
|
Value *MulExp = B.CreateFMul(Step, Index);
|
|
return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
|
|
"induction");
|
|
}
|
|
case InductionDescriptor::IK_NoInduction:
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
std::optional<unsigned> getMaxVScale(const Function &F,
|
|
const TargetTransformInfo &TTI) {
|
|
if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
|
|
return MaxVScale;
|
|
|
|
if (F.hasFnAttribute(Attribute::VScaleRange))
|
|
return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// For the given VF and UF and maximum trip count computed for the loop, return
|
|
/// whether the induction variable might overflow in the vectorized loop. If not,
|
|
/// then we know a runtime overflow check always evaluates to false and can be
|
|
/// removed.
|
|
static bool isIndvarOverflowCheckKnownFalse(
|
|
const LoopVectorizationCostModel *Cost,
|
|
ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
|
|
// Always be conservative if we don't know the exact unroll factor.
|
|
unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
|
|
|
|
Type *IdxTy = Cost->Legal->getWidestInductionType();
|
|
APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
|
|
|
|
// We know the runtime overflow check is known false iff the (max) trip-count
|
|
// is known and (max) trip-count + (VF * UF) does not overflow in the type of
|
|
// the vector loop induction variable.
|
|
if (unsigned TC =
|
|
Cost->PSE.getSE()->getSmallConstantMaxTripCount(Cost->TheLoop)) {
|
|
uint64_t MaxVF = VF.getKnownMinValue();
|
|
if (VF.isScalable()) {
|
|
std::optional<unsigned> MaxVScale =
|
|
getMaxVScale(*Cost->TheFunction, Cost->TTI);
|
|
if (!MaxVScale)
|
|
return false;
|
|
MaxVF *= *MaxVScale;
|
|
}
|
|
|
|
return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return whether we allow using masked interleave-groups (for dealing with
|
|
// strided loads/stores that reside in predicated blocks, or for dealing
|
|
// with gaps).
|
|
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
|
|
// If an override option has been passed in for interleaved accesses, use it.
|
|
if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
|
|
return EnableMaskedInterleavedMemAccesses;
|
|
|
|
return TTI.enableMaskedInterleavedAccessVectorization();
|
|
}
|
|
|
|
// Try to vectorize the interleave group that \p Instr belongs to.
|
|
//
|
|
// E.g. Translate following interleaved load group (factor = 3):
|
|
// for (i = 0; i < N; i+=3) {
|
|
// R = Pic[i]; // Member of index 0
|
|
// G = Pic[i+1]; // Member of index 1
|
|
// B = Pic[i+2]; // Member of index 2
|
|
// ... // do something to R, G, B
|
|
// }
|
|
// To:
|
|
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
|
|
// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
|
|
// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
|
|
// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
|
|
//
|
|
// Or translate following interleaved store group (factor = 3):
|
|
// for (i = 0; i < N; i+=3) {
|
|
// ... do something to R, G, B
|
|
// Pic[i] = R; // Member of index 0
|
|
// Pic[i+1] = G; // Member of index 1
|
|
// Pic[i+2] = B; // Member of index 2
|
|
// }
|
|
// To:
|
|
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
|
|
// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
|
|
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
|
|
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
|
|
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
|
|
void InnerLoopVectorizer::vectorizeInterleaveGroup(
|
|
const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
|
|
VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
|
|
VPValue *BlockInMask, bool NeedsMaskForGaps) {
|
|
Instruction *Instr = Group->getInsertPos();
|
|
const DataLayout &DL = Instr->getModule()->getDataLayout();
|
|
|
|
// Prepare for the vector type of the interleaved load/store.
|
|
Type *ScalarTy = getLoadStoreType(Instr);
|
|
unsigned InterleaveFactor = Group->getFactor();
|
|
auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
|
|
|
|
// Prepare for the new pointers.
|
|
SmallVector<Value *, 2> AddrParts;
|
|
unsigned Index = Group->getIndex(Instr);
|
|
|
|
// TODO: extend the masked interleaved-group support to reversed access.
|
|
assert((!BlockInMask || !Group->isReverse()) &&
|
|
"Reversed masked interleave-group not supported.");
|
|
|
|
Value *Idx;
|
|
// If the group is reverse, adjust the index to refer to the last vector lane
|
|
// instead of the first. We adjust the index from the first vector lane,
|
|
// rather than directly getting the pointer for lane VF - 1, because the
|
|
// pointer operand of the interleaved access is supposed to be uniform. For
|
|
// uniform instructions, we're only required to generate a value for the
|
|
// first vector lane in each unroll iteration.
|
|
if (Group->isReverse()) {
|
|
Value *RuntimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
|
|
Idx = Builder.CreateSub(RuntimeVF, Builder.getInt32(1));
|
|
Idx = Builder.CreateMul(Idx, Builder.getInt32(Group->getFactor()));
|
|
Idx = Builder.CreateAdd(Idx, Builder.getInt32(Index));
|
|
Idx = Builder.CreateNeg(Idx);
|
|
} else
|
|
Idx = Builder.getInt32(-Index);
|
|
|
|
for (unsigned Part = 0; Part < UF; Part++) {
|
|
Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
|
|
State.setDebugLocFromInst(AddrPart);
|
|
|
|
// Notice current instruction could be any index. Need to adjust the address
|
|
// to the member of index 0.
|
|
//
|
|
// E.g. a = A[i+1]; // Member of index 1 (Current instruction)
|
|
// b = A[i]; // Member of index 0
|
|
// Current pointer is pointed to A[i+1], adjust it to A[i].
|
|
//
|
|
// E.g. A[i+1] = a; // Member of index 1
|
|
// A[i] = b; // Member of index 0
|
|
// A[i+2] = c; // Member of index 2 (Current instruction)
|
|
// Current pointer is pointed to A[i+2], adjust it to A[i].
|
|
|
|
bool InBounds = false;
|
|
if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
|
|
InBounds = gep->isInBounds();
|
|
AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Idx, "", InBounds);
|
|
AddrParts.push_back(AddrPart);
|
|
}
|
|
|
|
State.setDebugLocFromInst(Instr);
|
|
Value *PoisonVec = PoisonValue::get(VecTy);
|
|
|
|
auto CreateGroupMask = [this, &BlockInMask, &State, &InterleaveFactor](
|
|
unsigned Part, Value *MaskForGaps) -> Value * {
|
|
if (VF.isScalable()) {
|
|
assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
|
|
assert(InterleaveFactor == 2 &&
|
|
"Unsupported deinterleave factor for scalable vectors");
|
|
auto *BlockInMaskPart = State.get(BlockInMask, Part);
|
|
SmallVector<Value *, 2> Ops = {BlockInMaskPart, BlockInMaskPart};
|
|
auto *MaskTy =
|
|
VectorType::get(Builder.getInt1Ty(), VF.getKnownMinValue() * 2, true);
|
|
return Builder.CreateIntrinsic(
|
|
MaskTy, Intrinsic::experimental_vector_interleave2, Ops,
|
|
/*FMFSource=*/nullptr, "interleaved.mask");
|
|
}
|
|
|
|
if (!BlockInMask)
|
|
return MaskForGaps;
|
|
|
|
Value *BlockInMaskPart = State.get(BlockInMask, Part);
|
|
Value *ShuffledMask = Builder.CreateShuffleVector(
|
|
BlockInMaskPart,
|
|
createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
|
|
"interleaved.mask");
|
|
return MaskForGaps ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
|
|
MaskForGaps)
|
|
: ShuffledMask;
|
|
};
|
|
|
|
// Vectorize the interleaved load group.
|
|
if (isa<LoadInst>(Instr)) {
|
|
Value *MaskForGaps = nullptr;
|
|
if (NeedsMaskForGaps) {
|
|
MaskForGaps =
|
|
createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
|
|
assert(MaskForGaps && "Mask for Gaps is required but it is null");
|
|
}
|
|
|
|
// For each unroll part, create a wide load for the group.
|
|
SmallVector<Value *, 2> NewLoads;
|
|
for (unsigned Part = 0; Part < UF; Part++) {
|
|
Instruction *NewLoad;
|
|
if (BlockInMask || MaskForGaps) {
|
|
assert(useMaskedInterleavedAccesses(*TTI) &&
|
|
"masked interleaved groups are not allowed.");
|
|
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
|
|
NewLoad =
|
|
Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
|
|
GroupMask, PoisonVec, "wide.masked.vec");
|
|
}
|
|
else
|
|
NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
|
|
Group->getAlign(), "wide.vec");
|
|
Group->addMetadata(NewLoad);
|
|
NewLoads.push_back(NewLoad);
|
|
}
|
|
|
|
if (VecTy->isScalableTy()) {
|
|
assert(InterleaveFactor == 2 &&
|
|
"Unsupported deinterleave factor for scalable vectors");
|
|
|
|
for (unsigned Part = 0; Part < UF; ++Part) {
|
|
// Scalable vectors cannot use arbitrary shufflevectors (only splats),
|
|
// so must use intrinsics to deinterleave.
|
|
Value *DI = Builder.CreateIntrinsic(
|
|
Intrinsic::experimental_vector_deinterleave2, VecTy, NewLoads[Part],
|
|
/*FMFSource=*/nullptr, "strided.vec");
|
|
unsigned J = 0;
|
|
for (unsigned I = 0; I < InterleaveFactor; ++I) {
|
|
Instruction *Member = Group->getMember(I);
|
|
|
|
if (!Member)
|
|
continue;
|
|
|
|
Value *StridedVec = Builder.CreateExtractValue(DI, I);
|
|
// If this member has different type, cast the result type.
|
|
if (Member->getType() != ScalarTy) {
|
|
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
|
|
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
|
|
}
|
|
|
|
if (Group->isReverse())
|
|
StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
|
|
|
|
State.set(VPDefs[J], StridedVec, Part);
|
|
++J;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// For each member in the group, shuffle out the appropriate data from the
|
|
// wide loads.
|
|
unsigned J = 0;
|
|
for (unsigned I = 0; I < InterleaveFactor; ++I) {
|
|
Instruction *Member = Group->getMember(I);
|
|
|
|
// Skip the gaps in the group.
|
|
if (!Member)
|
|
continue;
|
|
|
|
auto StrideMask =
|
|
createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
|
|
for (unsigned Part = 0; Part < UF; Part++) {
|
|
Value *StridedVec = Builder.CreateShuffleVector(
|
|
NewLoads[Part], StrideMask, "strided.vec");
|
|
|
|
// If this member has different type, cast the result type.
|
|
if (Member->getType() != ScalarTy) {
|
|
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
|
|
VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
|
|
StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
|
|
}
|
|
|
|
if (Group->isReverse())
|
|
StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
|
|
|
|
State.set(VPDefs[J], StridedVec, Part);
|
|
}
|
|
++J;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The sub vector type for current instruction.
|
|
auto *SubVT = VectorType::get(ScalarTy, VF);
|
|
|
|
// Vectorize the interleaved store group.
|
|
Value *MaskForGaps =
|
|
createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
|
|
assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
|
|
"masked interleaved groups are not allowed.");
|
|
assert((!MaskForGaps || !VF.isScalable()) &&
|
|
"masking gaps for scalable vectors is not yet supported.");
|
|
for (unsigned Part = 0; Part < UF; Part++) {
|
|
// Collect the stored vector from each member.
|
|
SmallVector<Value *, 4> StoredVecs;
|
|
unsigned StoredIdx = 0;
|
|
for (unsigned i = 0; i < InterleaveFactor; i++) {
|
|
assert((Group->getMember(i) || MaskForGaps) &&
|
|
"Fail to get a member from an interleaved store group");
|
|
Instruction *Member = Group->getMember(i);
|
|
|
|
// Skip the gaps in the group.
|
|
if (!Member) {
|
|
Value *Undef = PoisonValue::get(SubVT);
|
|
StoredVecs.push_back(Undef);
|
|
continue;
|
|
}
|
|
|
|
Value *StoredVec = State.get(StoredValues[StoredIdx], Part);
|
|
++StoredIdx;
|
|
|
|
if (Group->isReverse())
|
|
StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
|
|
|
|
// If this member has different type, cast it to a unified type.
|
|
|
|
if (StoredVec->getType() != SubVT)
|
|
StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
|
|
|
|
StoredVecs.push_back(StoredVec);
|
|
}
|
|
|
|
// Interleave all the smaller vectors into one wider vector.
|
|
Value *IVec = interleaveVectors(Builder, StoredVecs, "interleaved.vec");
|
|
Instruction *NewStoreInstr;
|
|
if (BlockInMask || MaskForGaps) {
|
|
Value *GroupMask = CreateGroupMask(Part, MaskForGaps);
|
|
NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
|
|
Group->getAlign(), GroupMask);
|
|
} else
|
|
NewStoreInstr =
|
|
Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
|
|
|
|
Group->addMetadata(NewStoreInstr);
|
|
}
|
|
}
|
|
|
|
void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr,
|
|
VPReplicateRecipe *RepRecipe,
|
|
const VPIteration &Instance,
|
|
VPTransformState &State) {
|
|
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
|
|
|
|
// llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
|
|
// the first lane and part.
|
|
if (isa<NoAliasScopeDeclInst>(Instr))
|
|
if (!Instance.isFirstIteration())
|
|
return;
|
|
|
|
// Does this instruction return a value ?
|
|
bool IsVoidRetTy = Instr->getType()->isVoidTy();
|
|
|
|
Instruction *Cloned = Instr->clone();
|
|
if (!IsVoidRetTy)
|
|
Cloned->setName(Instr->getName() + ".cloned");
|
|
|
|
RepRecipe->setFlags(Cloned);
|
|
|
|
if (Instr->getDebugLoc())
|
|
State.setDebugLocFromInst(Instr);
|
|
|
|
// Replace the operands of the cloned instructions with their scalar
|
|
// equivalents in the new loop.
|
|
for (const auto &I : enumerate(RepRecipe->operands())) {
|
|
auto InputInstance = Instance;
|
|
VPValue *Operand = I.value();
|
|
if (vputils::isUniformAfterVectorization(Operand))
|
|
InputInstance.Lane = VPLane::getFirstLane();
|
|
Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
|
|
}
|
|
State.addNewMetadata(Cloned, Instr);
|
|
|
|
// Place the cloned scalar in the new loop.
|
|
State.Builder.Insert(Cloned);
|
|
|
|
State.set(RepRecipe, Cloned, Instance);
|
|
|
|
// If we just cloned a new assumption, add it the assumption cache.
|
|
if (auto *II = dyn_cast<AssumeInst>(Cloned))
|
|
AC->registerAssumption(II);
|
|
|
|
// End if-block.
|
|
bool IfPredicateInstr = RepRecipe->getParent()->getParent()->isReplicator();
|
|
if (IfPredicateInstr)
|
|
PredicatedInstructions.push_back(Cloned);
|
|
}
|
|
|
|
Value *
|
|
InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
|
|
if (VectorTripCount)
|
|
return VectorTripCount;
|
|
|
|
Value *TC = getTripCount();
|
|
IRBuilder<> Builder(InsertBlock->getTerminator());
|
|
|
|
Type *Ty = TC->getType();
|
|
// This is where we can make the step a runtime constant.
|
|
Value *Step = createStepForVF(Builder, Ty, VF, UF);
|
|
|
|
// If the tail is to be folded by masking, round the number of iterations N
|
|
// up to a multiple of Step instead of rounding down. This is done by first
|
|
// adding Step-1 and then rounding down. Note that it's ok if this addition
|
|
// overflows: the vector induction variable will eventually wrap to zero given
|
|
// that it starts at zero and its Step is a power of two; the loop will then
|
|
// exit, with the last early-exit vector comparison also producing all-true.
|
|
// For scalable vectors the VF is not guaranteed to be a power of 2, but this
|
|
// is accounted for in emitIterationCountCheck that adds an overflow check.
|
|
if (Cost->foldTailByMasking()) {
|
|
assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
|
|
"VF*UF must be a power of 2 when folding tail by masking");
|
|
Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
|
|
TC = Builder.CreateAdd(
|
|
TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
|
|
}
|
|
|
|
// Now we need to generate the expression for the part of the loop that the
|
|
// vectorized body will execute. This is equal to N - (N % Step) if scalar
|
|
// iterations are not required for correctness, or N - Step, otherwise. Step
|
|
// is equal to the vectorization factor (number of SIMD elements) times the
|
|
// unroll factor (number of SIMD instructions).
|
|
Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
|
|
|
|
// There are cases where we *must* run at least one iteration in the remainder
|
|
// loop. See the cost model for when this can happen. If the step evenly
|
|
// divides the trip count, we set the remainder to be equal to the step. If
|
|
// the step does not evenly divide the trip count, no adjustment is necessary
|
|
// since there will already be scalar iterations. Note that the minimum
|
|
// iterations check ensures that N >= Step.
|
|
if (Cost->requiresScalarEpilogue(VF.isVector())) {
|
|
auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
|
|
R = Builder.CreateSelect(IsZero, Step, R);
|
|
}
|
|
|
|
VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
|
|
|
|
return VectorTripCount;
|
|
}
|
|
|
|
Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
|
|
const DataLayout &DL) {
|
|
// Verify that V is a vector type with same number of elements as DstVTy.
|
|
auto *DstFVTy = cast<VectorType>(DstVTy);
|
|
auto VF = DstFVTy->getElementCount();
|
|
auto *SrcVecTy = cast<VectorType>(V->getType());
|
|
assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
|
|
Type *SrcElemTy = SrcVecTy->getElementType();
|
|
Type *DstElemTy = DstFVTy->getElementType();
|
|
assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
|
|
"Vector elements must have same size");
|
|
|
|
// Do a direct cast if element types are castable.
|
|
if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
|
|
return Builder.CreateBitOrPointerCast(V, DstFVTy);
|
|
}
|
|
// V cannot be directly casted to desired vector type.
|
|
// May happen when V is a floating point vector but DstVTy is a vector of
|
|
// pointers or vice-versa. Handle this using a two-step bitcast using an
|
|
// intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
|
|
assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
|
|
"Only one type should be a pointer type");
|
|
assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
|
|
"Only one type should be a floating point type");
|
|
Type *IntTy =
|
|
IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
|
|
auto *VecIntTy = VectorType::get(IntTy, VF);
|
|
Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
|
|
return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
|
|
}
|
|
|
|
void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
|
|
Value *Count = getTripCount();
|
|
// Reuse existing vector loop preheader for TC checks.
|
|
// Note that new preheader block is generated for vector loop.
|
|
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
|
|
IRBuilder<> Builder(TCCheckBlock->getTerminator());
|
|
|
|
// Generate code to check if the loop's trip count is less than VF * UF, or
|
|
// equal to it in case a scalar epilogue is required; this implies that the
|
|
// vector trip count is zero. This check also covers the case where adding one
|
|
// to the backedge-taken count overflowed leading to an incorrect trip count
|
|
// of zero. In this case we will also jump to the scalar loop.
|
|
auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
|
|
: ICmpInst::ICMP_ULT;
|
|
|
|
// If tail is to be folded, vector loop takes care of all iterations.
|
|
Type *CountTy = Count->getType();
|
|
Value *CheckMinIters = Builder.getFalse();
|
|
auto CreateStep = [&]() -> Value * {
|
|
// Create step with max(MinProTripCount, UF * VF).
|
|
if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
|
|
return createStepForVF(Builder, CountTy, VF, UF);
|
|
|
|
Value *MinProfTC =
|
|
createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
|
|
if (!VF.isScalable())
|
|
return MinProfTC;
|
|
return Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
|
|
};
|
|
|
|
TailFoldingStyle Style = Cost->getTailFoldingStyle();
|
|
if (Style == TailFoldingStyle::None)
|
|
CheckMinIters =
|
|
Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
|
|
else if (VF.isScalable() &&
|
|
!isIndvarOverflowCheckKnownFalse(Cost, VF, UF) &&
|
|
Style != TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
|
|
// vscale is not necessarily a power-of-2, which means we cannot guarantee
|
|
// an overflow to zero when updating induction variables and so an
|
|
// additional overflow check is required before entering the vector loop.
|
|
|
|
// Get the maximum unsigned value for the type.
|
|
Value *MaxUIntTripCount =
|
|
ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
|
|
Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
|
|
|
|
// Don't execute the vector loop if (UMax - n) < (VF * UF).
|
|
CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
|
|
}
|
|
|
|
// Create new preheader for vector loop.
|
|
LoopVectorPreHeader =
|
|
SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
|
|
"vector.ph");
|
|
|
|
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
|
|
DT->getNode(Bypass)->getIDom()) &&
|
|
"TC check is expected to dominate Bypass");
|
|
|
|
// Update dominator for Bypass & LoopExit (if needed).
|
|
DT->changeImmediateDominator(Bypass, TCCheckBlock);
|
|
if (!Cost->requiresScalarEpilogue(VF.isVector()))
|
|
// If there is an epilogue which must run, there's no edge from the
|
|
// middle block to exit blocks and thus no need to update the immediate
|
|
// dominator of the exit blocks.
|
|
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
|
|
|
|
ReplaceInstWithInst(
|
|
TCCheckBlock->getTerminator(),
|
|
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
|
|
LoopBypassBlocks.push_back(TCCheckBlock);
|
|
}
|
|
|
|
BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
|
|
BasicBlock *const SCEVCheckBlock =
|
|
RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
|
|
if (!SCEVCheckBlock)
|
|
return nullptr;
|
|
|
|
assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
|
|
(OptForSizeBasedOnProfile &&
|
|
Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
|
|
"Cannot SCEV check stride or overflow when optimizing for size");
|
|
|
|
|
|
// Update dominator only if this is first RT check.
|
|
if (LoopBypassBlocks.empty()) {
|
|
DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
|
|
if (!Cost->requiresScalarEpilogue(VF.isVector()))
|
|
// If there is an epilogue which must run, there's no edge from the
|
|
// middle block to exit blocks and thus no need to update the immediate
|
|
// dominator of the exit blocks.
|
|
DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
|
|
}
|
|
|
|
LoopBypassBlocks.push_back(SCEVCheckBlock);
|
|
AddedSafetyChecks = true;
|
|
return SCEVCheckBlock;
|
|
}
|
|
|
|
BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
|
|
// VPlan-native path does not do any analysis for runtime checks currently.
|
|
if (EnableVPlanNativePath)
|
|
return nullptr;
|
|
|
|
BasicBlock *const MemCheckBlock =
|
|
RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
|
|
|
|
// Check if we generated code that checks in runtime if arrays overlap. We put
|
|
// the checks into a separate block to make the more common case of few
|
|
// elements faster.
|
|
if (!MemCheckBlock)
|
|
return nullptr;
|
|
|
|
if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
|
|
assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
|
|
"Cannot emit memory checks when optimizing for size, unless forced "
|
|
"to vectorize.");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
|
|
OrigLoop->getStartLoc(),
|
|
OrigLoop->getHeader())
|
|
<< "Code-size may be reduced by not forcing "
|
|
"vectorization, or by source-code modifications "
|
|
"eliminating the need for runtime checks "
|
|
"(e.g., adding 'restrict').";
|
|
});
|
|
}
|
|
|
|
LoopBypassBlocks.push_back(MemCheckBlock);
|
|
|
|
AddedSafetyChecks = true;
|
|
|
|
return MemCheckBlock;
|
|
}
|
|
|
|
void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
|
|
LoopScalarBody = OrigLoop->getHeader();
|
|
LoopVectorPreHeader = OrigLoop->getLoopPreheader();
|
|
assert(LoopVectorPreHeader && "Invalid loop structure");
|
|
LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
|
|
assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF.isVector())) &&
|
|
"multiple exit loop without required epilogue?");
|
|
|
|
LoopMiddleBlock =
|
|
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
|
|
LI, nullptr, Twine(Prefix) + "middle.block");
|
|
LoopScalarPreHeader =
|
|
SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
|
|
nullptr, Twine(Prefix) + "scalar.ph");
|
|
|
|
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
|
|
|
|
// Set up the middle block terminator. Two cases:
|
|
// 1) If we know that we must execute the scalar epilogue, emit an
|
|
// unconditional branch.
|
|
// 2) Otherwise, we must have a single unique exit block (due to how we
|
|
// implement the multiple exit case). In this case, set up a conditional
|
|
// branch from the middle block to the loop scalar preheader, and the
|
|
// exit block. completeLoopSkeleton will update the condition to use an
|
|
// iteration check, if required to decide whether to execute the remainder.
|
|
BranchInst *BrInst =
|
|
Cost->requiresScalarEpilogue(VF.isVector())
|
|
? BranchInst::Create(LoopScalarPreHeader)
|
|
: BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
|
|
Builder.getTrue());
|
|
BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
|
|
ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
|
|
|
|
// Update dominator for loop exit. During skeleton creation, only the vector
|
|
// pre-header and the middle block are created. The vector loop is entirely
|
|
// created during VPlan exection.
|
|
if (!Cost->requiresScalarEpilogue(VF.isVector()))
|
|
// If there is an epilogue which must run, there's no edge from the
|
|
// middle block to exit blocks and thus no need to update the immediate
|
|
// dominator of the exit blocks.
|
|
DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
|
|
}
|
|
|
|
PHINode *InnerLoopVectorizer::createInductionResumeValue(
|
|
PHINode *OrigPhi, const InductionDescriptor &II, Value *Step,
|
|
ArrayRef<BasicBlock *> BypassBlocks,
|
|
std::pair<BasicBlock *, Value *> AdditionalBypass) {
|
|
Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
|
|
assert(VectorTripCount && "Expected valid arguments");
|
|
|
|
Instruction *OldInduction = Legal->getPrimaryInduction();
|
|
Value *&EndValue = IVEndValues[OrigPhi];
|
|
Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
|
|
if (OrigPhi == OldInduction) {
|
|
// We know what the end value is.
|
|
EndValue = VectorTripCount;
|
|
} else {
|
|
IRBuilder<> B(LoopVectorPreHeader->getTerminator());
|
|
|
|
// Fast-math-flags propagate from the original induction instruction.
|
|
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
|
|
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
|
|
|
|
EndValue =
|
|
emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II);
|
|
EndValue->setName("ind.end");
|
|
|
|
// Compute the end value for the additional bypass (if applicable).
|
|
if (AdditionalBypass.first) {
|
|
B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
|
|
EndValueFromAdditionalBypass = emitTransformedIndex(
|
|
B, AdditionalBypass.second, II.getStartValue(), Step, II);
|
|
EndValueFromAdditionalBypass->setName("ind.end");
|
|
}
|
|
}
|
|
|
|
// Create phi nodes to merge from the backedge-taken check block.
|
|
PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
|
|
LoopScalarPreHeader->getTerminator());
|
|
// Copy original phi DL over to the new one.
|
|
BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
|
|
|
|
// The new PHI merges the original incoming value, in case of a bypass,
|
|
// or the value at the end of the vectorized loop.
|
|
BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
|
|
|
|
// Fix the scalar body counter (PHI node).
|
|
// The old induction's phi node in the scalar body needs the truncated
|
|
// value.
|
|
for (BasicBlock *BB : BypassBlocks)
|
|
BCResumeVal->addIncoming(II.getStartValue(), BB);
|
|
|
|
if (AdditionalBypass.first)
|
|
BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
|
|
EndValueFromAdditionalBypass);
|
|
return BCResumeVal;
|
|
}
|
|
|
|
/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
|
|
/// expansion results.
|
|
static Value *getExpandedStep(const InductionDescriptor &ID,
|
|
const SCEV2ValueTy &ExpandedSCEVs) {
|
|
const SCEV *Step = ID.getStep();
|
|
if (auto *C = dyn_cast<SCEVConstant>(Step))
|
|
return C->getValue();
|
|
if (auto *U = dyn_cast<SCEVUnknown>(Step))
|
|
return U->getValue();
|
|
auto I = ExpandedSCEVs.find(Step);
|
|
assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point");
|
|
return I->second;
|
|
}
|
|
|
|
void InnerLoopVectorizer::createInductionResumeValues(
|
|
const SCEV2ValueTy &ExpandedSCEVs,
|
|
std::pair<BasicBlock *, Value *> AdditionalBypass) {
|
|
assert(((AdditionalBypass.first && AdditionalBypass.second) ||
|
|
(!AdditionalBypass.first && !AdditionalBypass.second)) &&
|
|
"Inconsistent information about additional bypass.");
|
|
// We are going to resume the execution of the scalar loop.
|
|
// Go over all of the induction variables that we found and fix the
|
|
// PHIs that are left in the scalar version of the loop.
|
|
// The starting values of PHI nodes depend on the counter of the last
|
|
// iteration in the vectorized loop.
|
|
// If we come from a bypass edge then we need to start from the original
|
|
// start value.
|
|
for (const auto &InductionEntry : Legal->getInductionVars()) {
|
|
PHINode *OrigPhi = InductionEntry.first;
|
|
const InductionDescriptor &II = InductionEntry.second;
|
|
PHINode *BCResumeVal = createInductionResumeValue(
|
|
OrigPhi, II, getExpandedStep(II, ExpandedSCEVs), LoopBypassBlocks,
|
|
AdditionalBypass);
|
|
OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
|
|
}
|
|
}
|
|
|
|
BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() {
|
|
// The trip counts should be cached by now.
|
|
Value *Count = getTripCount();
|
|
Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
|
|
|
|
auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
|
|
|
|
// Add a check in the middle block to see if we have completed
|
|
// all of the iterations in the first vector loop. Three cases:
|
|
// 1) If we require a scalar epilogue, there is no conditional branch as
|
|
// we unconditionally branch to the scalar preheader. Do nothing.
|
|
// 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
|
|
// Thus if tail is to be folded, we know we don't need to run the
|
|
// remainder and we can use the previous value for the condition (true).
|
|
// 3) Otherwise, construct a runtime check.
|
|
if (!Cost->requiresScalarEpilogue(VF.isVector()) &&
|
|
!Cost->foldTailByMasking()) {
|
|
Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
|
|
Count, VectorTripCount, "cmp.n",
|
|
LoopMiddleBlock->getTerminator());
|
|
|
|
// Here we use the same DebugLoc as the scalar loop latch terminator instead
|
|
// of the corresponding compare because they may have ended up with
|
|
// different line numbers and we want to avoid awkward line stepping while
|
|
// debugging. Eg. if the compare has got a line number inside the loop.
|
|
CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
|
|
cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
|
|
}
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
#endif
|
|
|
|
return LoopVectorPreHeader;
|
|
}
|
|
|
|
std::pair<BasicBlock *, Value *>
|
|
InnerLoopVectorizer::createVectorizedLoopSkeleton(
|
|
const SCEV2ValueTy &ExpandedSCEVs) {
|
|
/*
|
|
In this function we generate a new loop. The new loop will contain
|
|
the vectorized instructions while the old loop will continue to run the
|
|
scalar remainder.
|
|
|
|
[ ] <-- old preheader - loop iteration number check and SCEVs in Plan's
|
|
/ | preheader are expanded here. Eventually all required SCEV
|
|
/ | expansion should happen here.
|
|
/ v
|
|
| [ ] <-- vector loop bypass (may consist of multiple blocks).
|
|
| / |
|
|
| / v
|
|
|| [ ] <-- vector pre header.
|
|
|/ |
|
|
| v
|
|
| [ ] \
|
|
| [ ]_| <-- vector loop (created during VPlan execution).
|
|
| |
|
|
| v
|
|
\ -[ ] <--- middle-block.
|
|
\/ |
|
|
/\ v
|
|
| ->[ ] <--- new preheader.
|
|
| |
|
|
(opt) v <-- edge from middle to exit iff epilogue is not required.
|
|
| [ ] \
|
|
| [ ]_| <-- old scalar loop to handle remainder (scalar epilogue).
|
|
\ |
|
|
\ v
|
|
>[ ] <-- exit block(s).
|
|
...
|
|
*/
|
|
|
|
// Create an empty vector loop, and prepare basic blocks for the runtime
|
|
// checks.
|
|
createVectorLoopSkeleton("");
|
|
|
|
// Now, compare the new count to zero. If it is zero skip the vector loop and
|
|
// jump to the scalar loop. This check also covers the case where the
|
|
// backedge-taken count is uint##_max: adding one to it will overflow leading
|
|
// to an incorrect trip count of zero. In this (rare) case we will also jump
|
|
// to the scalar loop.
|
|
emitIterationCountCheck(LoopScalarPreHeader);
|
|
|
|
// Generate the code to check any assumptions that we've made for SCEV
|
|
// expressions.
|
|
emitSCEVChecks(LoopScalarPreHeader);
|
|
|
|
// Generate the code that checks in runtime if arrays overlap. We put the
|
|
// checks into a separate block to make the more common case of few elements
|
|
// faster.
|
|
emitMemRuntimeChecks(LoopScalarPreHeader);
|
|
|
|
// Emit phis for the new starting index of the scalar loop.
|
|
createInductionResumeValues(ExpandedSCEVs);
|
|
|
|
return {completeLoopSkeleton(), nullptr};
|
|
}
|
|
|
|
// Fix up external users of the induction variable. At this point, we are
|
|
// in LCSSA form, with all external PHIs that use the IV having one input value,
|
|
// coming from the remainder loop. We need those PHIs to also have a correct
|
|
// value for the IV when arriving directly from the middle block.
|
|
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
|
|
const InductionDescriptor &II,
|
|
Value *VectorTripCount, Value *EndValue,
|
|
BasicBlock *MiddleBlock,
|
|
BasicBlock *VectorHeader, VPlan &Plan,
|
|
VPTransformState &State) {
|
|
// There are two kinds of external IV usages - those that use the value
|
|
// computed in the last iteration (the PHI) and those that use the penultimate
|
|
// value (the value that feeds into the phi from the loop latch).
|
|
// We allow both, but they, obviously, have different values.
|
|
|
|
assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
|
|
|
|
DenseMap<Value *, Value *> MissingVals;
|
|
|
|
// An external user of the last iteration's value should see the value that
|
|
// the remainder loop uses to initialize its own IV.
|
|
Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
|
|
for (User *U : PostInc->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (!OrigLoop->contains(UI)) {
|
|
assert(isa<PHINode>(UI) && "Expected LCSSA form");
|
|
MissingVals[UI] = EndValue;
|
|
}
|
|
}
|
|
|
|
// An external user of the penultimate value need to see EndValue - Step.
|
|
// The simplest way to get this is to recompute it from the constituent SCEVs,
|
|
// that is Start + (Step * (CRD - 1)).
|
|
for (User *U : OrigPhi->users()) {
|
|
auto *UI = cast<Instruction>(U);
|
|
if (!OrigLoop->contains(UI)) {
|
|
assert(isa<PHINode>(UI) && "Expected LCSSA form");
|
|
IRBuilder<> B(MiddleBlock->getTerminator());
|
|
|
|
// Fast-math-flags propagate from the original induction instruction.
|
|
if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
|
|
B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
|
|
|
|
Value *CountMinusOne = B.CreateSub(
|
|
VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
|
|
CountMinusOne->setName("cmo");
|
|
|
|
VPValue *StepVPV = Plan.getSCEVExpansion(II.getStep());
|
|
assert(StepVPV && "step must have been expanded during VPlan execution");
|
|
Value *Step = StepVPV->isLiveIn() ? StepVPV->getLiveInIRValue()
|
|
: State.get(StepVPV, {0, 0});
|
|
Value *Escape =
|
|
emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II);
|
|
Escape->setName("ind.escape");
|
|
MissingVals[UI] = Escape;
|
|
}
|
|
}
|
|
|
|
for (auto &I : MissingVals) {
|
|
PHINode *PHI = cast<PHINode>(I.first);
|
|
// One corner case we have to handle is two IVs "chasing" each-other,
|
|
// that is %IV2 = phi [...], [ %IV1, %latch ]
|
|
// In this case, if IV1 has an external use, we need to avoid adding both
|
|
// "last value of IV1" and "penultimate value of IV2". So, verify that we
|
|
// don't already have an incoming value for the middle block.
|
|
if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
|
|
PHI->addIncoming(I.second, MiddleBlock);
|
|
Plan.removeLiveOut(PHI);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct CSEDenseMapInfo {
|
|
static bool canHandle(const Instruction *I) {
|
|
return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
|
|
isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
|
|
}
|
|
|
|
static inline Instruction *getEmptyKey() {
|
|
return DenseMapInfo<Instruction *>::getEmptyKey();
|
|
}
|
|
|
|
static inline Instruction *getTombstoneKey() {
|
|
return DenseMapInfo<Instruction *>::getTombstoneKey();
|
|
}
|
|
|
|
static unsigned getHashValue(const Instruction *I) {
|
|
assert(canHandle(I) && "Unknown instruction!");
|
|
return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
|
|
I->value_op_end()));
|
|
}
|
|
|
|
static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
|
|
if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
|
|
LHS == getTombstoneKey() || RHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(RHS);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
///Perform cse of induction variable instructions.
|
|
static void cse(BasicBlock *BB) {
|
|
// Perform simple cse.
|
|
SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
|
|
for (Instruction &In : llvm::make_early_inc_range(*BB)) {
|
|
if (!CSEDenseMapInfo::canHandle(&In))
|
|
continue;
|
|
|
|
// Check if we can replace this instruction with any of the
|
|
// visited instructions.
|
|
if (Instruction *V = CSEMap.lookup(&In)) {
|
|
In.replaceAllUsesWith(V);
|
|
In.eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
CSEMap[&In] = &In;
|
|
}
|
|
}
|
|
|
|
InstructionCost LoopVectorizationCostModel::getVectorCallCost(
|
|
CallInst *CI, ElementCount VF, Function **Variant, bool *NeedsMask) const {
|
|
Function *F = CI->getCalledFunction();
|
|
Type *ScalarRetTy = CI->getType();
|
|
SmallVector<Type *, 4> Tys, ScalarTys;
|
|
bool MaskRequired = Legal->isMaskRequired(CI);
|
|
for (auto &ArgOp : CI->args())
|
|
ScalarTys.push_back(ArgOp->getType());
|
|
|
|
// Estimate cost of scalarized vector call. The source operands are assumed
|
|
// to be vectors, so we need to extract individual elements from there,
|
|
// execute VF scalar calls, and then gather the result into the vector return
|
|
// value.
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost ScalarCallCost =
|
|
TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind);
|
|
if (VF.isScalar())
|
|
return ScalarCallCost;
|
|
|
|
// Compute corresponding vector type for return value and arguments.
|
|
Type *RetTy = ToVectorTy(ScalarRetTy, VF);
|
|
for (Type *ScalarTy : ScalarTys)
|
|
Tys.push_back(ToVectorTy(ScalarTy, VF));
|
|
|
|
// Compute costs of unpacking argument values for the scalar calls and
|
|
// packing the return values to a vector.
|
|
InstructionCost ScalarizationCost =
|
|
getScalarizationOverhead(CI, VF, CostKind);
|
|
|
|
InstructionCost Cost =
|
|
ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
|
|
|
|
// If we can't emit a vector call for this function, then the currently found
|
|
// cost is the cost we need to return.
|
|
InstructionCost MaskCost = 0;
|
|
VFShape Shape = VFShape::get(*CI, VF, MaskRequired);
|
|
if (NeedsMask)
|
|
*NeedsMask = MaskRequired;
|
|
Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
|
|
// If we want an unmasked vector function but can't find one matching the VF,
|
|
// maybe we can find vector function that does use a mask and synthesize
|
|
// an all-true mask.
|
|
if (!VecFunc && !MaskRequired) {
|
|
Shape = VFShape::get(*CI, VF, /*HasGlobalPred=*/true);
|
|
VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
|
|
// If we found one, add in the cost of creating a mask
|
|
if (VecFunc) {
|
|
if (NeedsMask)
|
|
*NeedsMask = true;
|
|
MaskCost = TTI.getShuffleCost(
|
|
TargetTransformInfo::SK_Broadcast,
|
|
VectorType::get(
|
|
IntegerType::getInt1Ty(VecFunc->getFunctionType()->getContext()),
|
|
VF));
|
|
}
|
|
}
|
|
|
|
// We don't support masked function calls yet, but we can scalarize a
|
|
// masked call with branches (unless VF is scalable).
|
|
if (!TLI || CI->isNoBuiltin() || !VecFunc)
|
|
return VF.isScalable() ? InstructionCost::getInvalid() : Cost;
|
|
|
|
// If the corresponding vector cost is cheaper, return its cost.
|
|
InstructionCost VectorCallCost =
|
|
TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost;
|
|
if (VectorCallCost < Cost) {
|
|
*Variant = VecFunc;
|
|
Cost = VectorCallCost;
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
|
|
if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
|
|
return Elt;
|
|
return VectorType::get(Elt, VF);
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
|
|
ElementCount VF) const {
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
assert(ID && "Expected intrinsic call!");
|
|
Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
|
|
FastMathFlags FMF;
|
|
if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
|
|
FMF = FPMO->getFastMathFlags();
|
|
|
|
SmallVector<const Value *> Arguments(CI->args());
|
|
FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
|
|
SmallVector<Type *> ParamTys;
|
|
std::transform(FTy->param_begin(), FTy->param_end(),
|
|
std::back_inserter(ParamTys),
|
|
[&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
|
|
|
|
IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
|
|
dyn_cast<IntrinsicInst>(CI));
|
|
return TTI.getIntrinsicInstrCost(CostAttrs,
|
|
TargetTransformInfo::TCK_RecipThroughput);
|
|
}
|
|
|
|
static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
|
|
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
|
|
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
|
|
return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
|
|
}
|
|
|
|
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
|
|
auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
|
|
auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
|
|
return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
|
|
}
|
|
|
|
void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
|
|
// For every instruction `I` in MinBWs, truncate the operands, create a
|
|
// truncated version of `I` and reextend its result. InstCombine runs
|
|
// later and will remove any ext/trunc pairs.
|
|
SmallPtrSet<Value *, 4> Erased;
|
|
for (const auto &KV : Cost->getMinimalBitwidths()) {
|
|
// If the value wasn't vectorized, we must maintain the original scalar
|
|
// type. The absence of the value from State indicates that it
|
|
// wasn't vectorized.
|
|
// FIXME: Should not rely on getVPValue at this point.
|
|
VPValue *Def = State.Plan->getVPValue(KV.first, true);
|
|
if (!State.hasAnyVectorValue(Def))
|
|
continue;
|
|
// If the instruction is defined outside the loop, only update the first
|
|
// part; the first part will be re-used for all other parts.
|
|
unsigned UFToUse = OrigLoop->contains(KV.first) ? UF : 1;
|
|
for (unsigned Part = 0; Part < UFToUse; ++Part) {
|
|
Value *I = State.get(Def, Part);
|
|
if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
|
|
continue;
|
|
Type *OriginalTy = I->getType();
|
|
Type *ScalarTruncatedTy =
|
|
IntegerType::get(OriginalTy->getContext(), KV.second);
|
|
auto *TruncatedTy = VectorType::get(
|
|
ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
|
|
if (TruncatedTy == OriginalTy)
|
|
continue;
|
|
|
|
IRBuilder<> B(cast<Instruction>(I));
|
|
auto ShrinkOperand = [&](Value *V) -> Value * {
|
|
if (auto *ZI = dyn_cast<ZExtInst>(V))
|
|
if (ZI->getSrcTy() == TruncatedTy)
|
|
return ZI->getOperand(0);
|
|
return B.CreateZExtOrTrunc(V, TruncatedTy);
|
|
};
|
|
|
|
// The actual instruction modification depends on the instruction type,
|
|
// unfortunately.
|
|
Value *NewI = nullptr;
|
|
if (auto *BO = dyn_cast<BinaryOperator>(I)) {
|
|
Value *Op0 = ShrinkOperand(BO->getOperand(0));
|
|
Value *Op1 = ShrinkOperand(BO->getOperand(1));
|
|
NewI = B.CreateBinOp(BO->getOpcode(), Op0, Op1);
|
|
|
|
// Any wrapping introduced by shrinking this operation shouldn't be
|
|
// considered undefined behavior. So, we can't unconditionally copy
|
|
// arithmetic wrapping flags to NewI.
|
|
cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
|
|
} else if (auto *CI = dyn_cast<ICmpInst>(I)) {
|
|
Value *Op0 = ShrinkOperand(BO->getOperand(0));
|
|
Value *Op1 = ShrinkOperand(BO->getOperand(1));
|
|
NewI = B.CreateICmp(CI->getPredicate(), Op0, Op1);
|
|
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
|
|
Value *TV = ShrinkOperand(SI->getTrueValue());
|
|
Value *FV = ShrinkOperand(SI->getFalseValue());
|
|
NewI = B.CreateSelect(SI->getCondition(), TV, FV);
|
|
} else if (auto *CI = dyn_cast<CastInst>(I)) {
|
|
switch (CI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unhandled cast!");
|
|
case Instruction::Trunc:
|
|
NewI = ShrinkOperand(CI->getOperand(0));
|
|
break;
|
|
case Instruction::SExt:
|
|
NewI = B.CreateSExtOrTrunc(
|
|
CI->getOperand(0),
|
|
smallestIntegerVectorType(OriginalTy, TruncatedTy));
|
|
break;
|
|
case Instruction::ZExt:
|
|
NewI = B.CreateZExtOrTrunc(
|
|
CI->getOperand(0),
|
|
smallestIntegerVectorType(OriginalTy, TruncatedTy));
|
|
break;
|
|
}
|
|
} else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
|
|
auto Elements0 =
|
|
cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
|
|
auto *O0 = B.CreateZExtOrTrunc(
|
|
SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
|
|
auto Elements1 =
|
|
cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
|
|
auto *O1 = B.CreateZExtOrTrunc(
|
|
SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
|
|
|
|
NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
|
|
} else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
|
|
// Don't do anything with the operands, just extend the result.
|
|
continue;
|
|
} else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
|
|
auto Elements =
|
|
cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
|
|
auto *O0 = B.CreateZExtOrTrunc(
|
|
IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
|
|
auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
|
|
NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
|
|
} else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
|
|
auto Elements =
|
|
cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
|
|
auto *O0 = B.CreateZExtOrTrunc(
|
|
EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
|
|
NewI = B.CreateExtractElement(O0, EE->getOperand(2));
|
|
} else {
|
|
// If we don't know what to do, be conservative and don't do anything.
|
|
continue;
|
|
}
|
|
|
|
// Lastly, extend the result.
|
|
NewI->takeName(cast<Instruction>(I));
|
|
Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
|
|
I->replaceAllUsesWith(Res);
|
|
cast<Instruction>(I)->eraseFromParent();
|
|
Erased.insert(I);
|
|
State.reset(Def, Res, Part);
|
|
}
|
|
}
|
|
|
|
// We'll have created a bunch of ZExts that are now parentless. Clean up.
|
|
for (const auto &KV : Cost->getMinimalBitwidths()) {
|
|
// If the value wasn't vectorized, we must maintain the original scalar
|
|
// type. The absence of the value from State indicates that it
|
|
// wasn't vectorized.
|
|
// FIXME: Should not rely on getVPValue at this point.
|
|
VPValue *Def = State.Plan->getVPValue(KV.first, true);
|
|
if (!State.hasAnyVectorValue(Def))
|
|
continue;
|
|
unsigned UFToUse = OrigLoop->contains(KV.first) ? UF : 1;
|
|
for (unsigned Part = 0; Part < UFToUse; ++Part) {
|
|
Value *I = State.get(Def, Part);
|
|
ZExtInst *Inst = dyn_cast<ZExtInst>(I);
|
|
if (Inst && Inst->use_empty()) {
|
|
Value *NewI = Inst->getOperand(0);
|
|
Inst->eraseFromParent();
|
|
State.reset(Def, NewI, Part);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
|
|
VPlan &Plan) {
|
|
// Insert truncates and extends for any truncated instructions as hints to
|
|
// InstCombine.
|
|
if (VF.isVector())
|
|
truncateToMinimalBitwidths(State);
|
|
|
|
// Fix widened non-induction PHIs by setting up the PHI operands.
|
|
if (EnableVPlanNativePath)
|
|
fixNonInductionPHIs(Plan, State);
|
|
|
|
// At this point every instruction in the original loop is widened to a
|
|
// vector form. Now we need to fix the recurrences in the loop. These PHI
|
|
// nodes are currently empty because we did not want to introduce cycles.
|
|
// This is the second stage of vectorizing recurrences.
|
|
fixCrossIterationPHIs(State);
|
|
|
|
// Forget the original basic block.
|
|
PSE.getSE()->forgetLoop(OrigLoop);
|
|
|
|
// After vectorization, the exit blocks of the original loop will have
|
|
// additional predecessors. Invalidate SCEVs for the exit phis in case SE
|
|
// looked through single-entry phis.
|
|
SmallVector<BasicBlock *> ExitBlocks;
|
|
OrigLoop->getExitBlocks(ExitBlocks);
|
|
for (BasicBlock *Exit : ExitBlocks)
|
|
for (PHINode &PN : Exit->phis())
|
|
PSE.getSE()->forgetValue(&PN);
|
|
|
|
VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
|
|
Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
|
|
if (Cost->requiresScalarEpilogue(VF.isVector())) {
|
|
// No edge from the middle block to the unique exit block has been inserted
|
|
// and there is nothing to fix from vector loop; phis should have incoming
|
|
// from scalar loop only.
|
|
} else {
|
|
// TODO: Check VPLiveOuts to see if IV users need fixing instead of checking
|
|
// the cost model.
|
|
|
|
// If we inserted an edge from the middle block to the unique exit block,
|
|
// update uses outside the loop (phis) to account for the newly inserted
|
|
// edge.
|
|
|
|
// Fix-up external users of the induction variables.
|
|
for (const auto &Entry : Legal->getInductionVars())
|
|
fixupIVUsers(Entry.first, Entry.second,
|
|
getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
|
|
IVEndValues[Entry.first], LoopMiddleBlock,
|
|
VectorLoop->getHeader(), Plan, State);
|
|
}
|
|
|
|
// Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
|
|
// in the exit block, so update the builder.
|
|
State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
|
|
for (const auto &KV : Plan.getLiveOuts())
|
|
KV.second->fixPhi(Plan, State);
|
|
|
|
for (Instruction *PI : PredicatedInstructions)
|
|
sinkScalarOperands(&*PI);
|
|
|
|
// Remove redundant induction instructions.
|
|
cse(VectorLoop->getHeader());
|
|
|
|
// Set/update profile weights for the vector and remainder loops as original
|
|
// loop iterations are now distributed among them. Note that original loop
|
|
// represented by LoopScalarBody becomes remainder loop after vectorization.
|
|
//
|
|
// For cases like foldTailByMasking() and requiresScalarEpiloque() we may
|
|
// end up getting slightly roughened result but that should be OK since
|
|
// profile is not inherently precise anyway. Note also possible bypass of
|
|
// vector code caused by legality checks is ignored, assigning all the weight
|
|
// to the vector loop, optimistically.
|
|
//
|
|
// For scalable vectorization we can't know at compile time how many iterations
|
|
// of the loop are handled in one vector iteration, so instead assume a pessimistic
|
|
// vscale of '1'.
|
|
setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
|
|
LI->getLoopFor(LoopScalarBody),
|
|
VF.getKnownMinValue() * UF);
|
|
}
|
|
|
|
void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
|
|
// In order to support recurrences we need to be able to vectorize Phi nodes.
|
|
// Phi nodes have cycles, so we need to vectorize them in two stages. This is
|
|
// stage #2: We now need to fix the recurrences by adding incoming edges to
|
|
// the currently empty PHI nodes. At this point every instruction in the
|
|
// original loop is widened to a vector form so we can use them to construct
|
|
// the incoming edges.
|
|
VPBasicBlock *Header =
|
|
State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &R : Header->phis()) {
|
|
if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
|
|
fixReduction(ReductionPhi, State);
|
|
else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
|
|
fixFixedOrderRecurrence(FOR, State);
|
|
}
|
|
}
|
|
|
|
void InnerLoopVectorizer::fixFixedOrderRecurrence(
|
|
VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
|
|
// This is the second phase of vectorizing first-order recurrences. An
|
|
// overview of the transformation is described below. Suppose we have the
|
|
// following loop.
|
|
//
|
|
// for (int i = 0; i < n; ++i)
|
|
// b[i] = a[i] - a[i - 1];
|
|
//
|
|
// There is a first-order recurrence on "a". For this loop, the shorthand
|
|
// scalar IR looks like:
|
|
//
|
|
// scalar.ph:
|
|
// s_init = a[-1]
|
|
// br scalar.body
|
|
//
|
|
// scalar.body:
|
|
// i = phi [0, scalar.ph], [i+1, scalar.body]
|
|
// s1 = phi [s_init, scalar.ph], [s2, scalar.body]
|
|
// s2 = a[i]
|
|
// b[i] = s2 - s1
|
|
// br cond, scalar.body, ...
|
|
//
|
|
// In this example, s1 is a recurrence because it's value depends on the
|
|
// previous iteration. In the first phase of vectorization, we created a
|
|
// vector phi v1 for s1. We now complete the vectorization and produce the
|
|
// shorthand vector IR shown below (for VF = 4, UF = 1).
|
|
//
|
|
// vector.ph:
|
|
// v_init = vector(..., ..., ..., a[-1])
|
|
// br vector.body
|
|
//
|
|
// vector.body
|
|
// i = phi [0, vector.ph], [i+4, vector.body]
|
|
// v1 = phi [v_init, vector.ph], [v2, vector.body]
|
|
// v2 = a[i, i+1, i+2, i+3];
|
|
// v3 = vector(v1(3), v2(0, 1, 2))
|
|
// b[i, i+1, i+2, i+3] = v2 - v3
|
|
// br cond, vector.body, middle.block
|
|
//
|
|
// middle.block:
|
|
// x = v2(3)
|
|
// br scalar.ph
|
|
//
|
|
// scalar.ph:
|
|
// s_init = phi [x, middle.block], [a[-1], otherwise]
|
|
// br scalar.body
|
|
//
|
|
// After execution completes the vector loop, we extract the next value of
|
|
// the recurrence (x) to use as the initial value in the scalar loop.
|
|
|
|
// Extract the last vector element in the middle block. This will be the
|
|
// initial value for the recurrence when jumping to the scalar loop.
|
|
VPValue *PreviousDef = PhiR->getBackedgeValue();
|
|
Value *Incoming = State.get(PreviousDef, UF - 1);
|
|
auto *ExtractForScalar = Incoming;
|
|
auto *IdxTy = Builder.getInt32Ty();
|
|
Value *RuntimeVF = nullptr;
|
|
if (VF.isVector()) {
|
|
auto *One = ConstantInt::get(IdxTy, 1);
|
|
Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
|
|
RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
|
|
auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
|
|
ExtractForScalar =
|
|
Builder.CreateExtractElement(Incoming, LastIdx, "vector.recur.extract");
|
|
}
|
|
|
|
auto RecurSplice = cast<VPInstruction>(*PhiR->user_begin());
|
|
assert(PhiR->getNumUsers() == 1 &&
|
|
RecurSplice->getOpcode() ==
|
|
VPInstruction::FirstOrderRecurrenceSplice &&
|
|
"recurrence phi must have a single user: FirstOrderRecurrenceSplice");
|
|
SmallVector<VPLiveOut *> LiveOuts;
|
|
for (VPUser *U : RecurSplice->users())
|
|
if (auto *LiveOut = dyn_cast<VPLiveOut>(U))
|
|
LiveOuts.push_back(LiveOut);
|
|
|
|
if (!LiveOuts.empty()) {
|
|
// Extract the second last element in the middle block if the
|
|
// Phi is used outside the loop. We need to extract the phi itself
|
|
// and not the last element (the phi update in the current iteration). This
|
|
// will be the value when jumping to the exit block from the
|
|
// LoopMiddleBlock, when the scalar loop is not run at all.
|
|
Value *ExtractForPhiUsedOutsideLoop = nullptr;
|
|
if (VF.isVector()) {
|
|
auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
|
|
ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
|
|
Incoming, Idx, "vector.recur.extract.for.phi");
|
|
} else {
|
|
assert(UF > 1 && "VF and UF cannot both be 1");
|
|
// When loop is unrolled without vectorizing, initialize
|
|
// ExtractForPhiUsedOutsideLoop with the value just prior to unrolled
|
|
// value of `Incoming`. This is analogous to the vectorized case above:
|
|
// extracting the second last element when VF > 1.
|
|
ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
|
|
}
|
|
|
|
for (VPLiveOut *LiveOut : LiveOuts) {
|
|
assert(!Cost->requiresScalarEpilogue(VF.isVector()));
|
|
PHINode *LCSSAPhi = LiveOut->getPhi();
|
|
LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
|
|
State.Plan->removeLiveOut(LCSSAPhi);
|
|
}
|
|
}
|
|
|
|
// Fix the initial value of the original recurrence in the scalar loop.
|
|
Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
|
|
PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
|
|
auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
|
|
auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
|
|
for (auto *BB : predecessors(LoopScalarPreHeader)) {
|
|
auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
|
|
Start->addIncoming(Incoming, BB);
|
|
}
|
|
|
|
Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
|
|
Phi->setName("scalar.recur");
|
|
}
|
|
|
|
void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
|
|
VPTransformState &State) {
|
|
PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
|
|
// Get it's reduction variable descriptor.
|
|
assert(Legal->isReductionVariable(OrigPhi) &&
|
|
"Unable to find the reduction variable");
|
|
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
|
|
|
|
RecurKind RK = RdxDesc.getRecurrenceKind();
|
|
TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
|
|
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
|
|
State.setDebugLocFromInst(ReductionStartValue);
|
|
|
|
VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
|
|
// This is the vector-clone of the value that leaves the loop.
|
|
Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
|
|
|
|
// Before each round, move the insertion point right between
|
|
// the PHIs and the values we are going to write.
|
|
// This allows us to write both PHINodes and the extractelement
|
|
// instructions.
|
|
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
|
|
|
|
State.setDebugLocFromInst(LoopExitInst);
|
|
|
|
Type *PhiTy = OrigPhi->getType();
|
|
|
|
VPBasicBlock *LatchVPBB =
|
|
PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
|
|
BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
|
|
// If tail is folded by masking, the vector value to leave the loop should be
|
|
// a Select choosing between the vectorized LoopExitInst and vectorized Phi,
|
|
// instead of the former. For an inloop reduction the reduction will already
|
|
// be predicated, and does not need to be handled here.
|
|
if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
|
|
for (unsigned Part = 0; Part < UF; ++Part) {
|
|
Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
|
|
SelectInst *Sel = nullptr;
|
|
for (User *U : VecLoopExitInst->users()) {
|
|
if (isa<SelectInst>(U)) {
|
|
assert(!Sel && "Reduction exit feeding two selects");
|
|
Sel = cast<SelectInst>(U);
|
|
} else
|
|
assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
|
|
}
|
|
assert(Sel && "Reduction exit feeds no select");
|
|
State.reset(LoopExitInstDef, Sel, Part);
|
|
|
|
if (isa<FPMathOperator>(Sel))
|
|
Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
|
|
|
|
// If the target can create a predicated operator for the reduction at no
|
|
// extra cost in the loop (for example a predicated vadd), it can be
|
|
// cheaper for the select to remain in the loop than be sunk out of it,
|
|
// and so use the select value for the phi instead of the old
|
|
// LoopExitValue.
|
|
if (PreferPredicatedReductionSelect ||
|
|
TTI->preferPredicatedReductionSelect(
|
|
RdxDesc.getOpcode(), PhiTy,
|
|
TargetTransformInfo::ReductionFlags())) {
|
|
auto *VecRdxPhi =
|
|
cast<PHINode>(State.get(PhiR, Part));
|
|
VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the vector reduction can be performed in a smaller type, we truncate
|
|
// then extend the loop exit value to enable InstCombine to evaluate the
|
|
// entire expression in the smaller type.
|
|
if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
|
|
assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
|
|
Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
|
|
Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
|
|
VectorParts RdxParts(UF);
|
|
for (unsigned Part = 0; Part < UF; ++Part) {
|
|
RdxParts[Part] = State.get(LoopExitInstDef, Part);
|
|
Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
|
|
Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
|
|
: Builder.CreateZExt(Trunc, VecTy);
|
|
for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
|
|
if (U != Trunc) {
|
|
U->replaceUsesOfWith(RdxParts[Part], Extnd);
|
|
RdxParts[Part] = Extnd;
|
|
}
|
|
}
|
|
Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
|
|
for (unsigned Part = 0; Part < UF; ++Part) {
|
|
RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
|
|
State.reset(LoopExitInstDef, RdxParts[Part], Part);
|
|
}
|
|
}
|
|
|
|
// Reduce all of the unrolled parts into a single vector.
|
|
Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
|
|
unsigned Op = RecurrenceDescriptor::getOpcode(RK);
|
|
|
|
// The middle block terminator has already been assigned a DebugLoc here (the
|
|
// OrigLoop's single latch terminator). We want the whole middle block to
|
|
// appear to execute on this line because: (a) it is all compiler generated,
|
|
// (b) these instructions are always executed after evaluating the latch
|
|
// conditional branch, and (c) other passes may add new predecessors which
|
|
// terminate on this line. This is the easiest way to ensure we don't
|
|
// accidentally cause an extra step back into the loop while debugging.
|
|
State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
|
|
if (PhiR->isOrdered())
|
|
ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
|
|
else {
|
|
// Floating-point operations should have some FMF to enable the reduction.
|
|
IRBuilderBase::FastMathFlagGuard FMFG(Builder);
|
|
Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
|
|
for (unsigned Part = 1; Part < UF; ++Part) {
|
|
Value *RdxPart = State.get(LoopExitInstDef, Part);
|
|
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
|
|
ReducedPartRdx = Builder.CreateBinOp(
|
|
(Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
|
|
else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
|
|
ReducedPartRdx = createAnyOfOp(Builder, ReductionStartValue, RK,
|
|
ReducedPartRdx, RdxPart);
|
|
else
|
|
ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
|
|
}
|
|
}
|
|
|
|
// Create the reduction after the loop. Note that inloop reductions create the
|
|
// target reduction in the loop using a Reduction recipe.
|
|
if (VF.isVector() && !PhiR->isInLoop()) {
|
|
ReducedPartRdx =
|
|
createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
|
|
// If the reduction can be performed in a smaller type, we need to extend
|
|
// the reduction to the wider type before we branch to the original loop.
|
|
if (PhiTy != RdxDesc.getRecurrenceType())
|
|
ReducedPartRdx = RdxDesc.isSigned()
|
|
? Builder.CreateSExt(ReducedPartRdx, PhiTy)
|
|
: Builder.CreateZExt(ReducedPartRdx, PhiTy);
|
|
}
|
|
|
|
PHINode *ResumePhi =
|
|
dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
|
|
|
|
// Create a phi node that merges control-flow from the backedge-taken check
|
|
// block and the middle block.
|
|
PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
|
|
LoopScalarPreHeader->getTerminator());
|
|
|
|
// If we are fixing reductions in the epilogue loop then we should already
|
|
// have created a bc.merge.rdx Phi after the main vector body. Ensure that
|
|
// we carry over the incoming values correctly.
|
|
for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
|
|
if (Incoming == LoopMiddleBlock)
|
|
BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
|
|
else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
|
|
BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
|
|
Incoming);
|
|
else
|
|
BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
|
|
}
|
|
|
|
// Set the resume value for this reduction
|
|
ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
|
|
|
|
// If there were stores of the reduction value to a uniform memory address
|
|
// inside the loop, create the final store here.
|
|
if (StoreInst *SI = RdxDesc.IntermediateStore) {
|
|
StoreInst *NewSI =
|
|
Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
|
|
propagateMetadata(NewSI, SI);
|
|
|
|
// If the reduction value is used in other places,
|
|
// then let the code below create PHI's for that.
|
|
}
|
|
|
|
// Now, we need to fix the users of the reduction variable
|
|
// inside and outside of the scalar remainder loop.
|
|
|
|
// We know that the loop is in LCSSA form. We need to update the PHI nodes
|
|
// in the exit blocks. See comment on analogous loop in
|
|
// fixFixedOrderRecurrence for a more complete explaination of the logic.
|
|
if (!Cost->requiresScalarEpilogue(VF.isVector()))
|
|
for (PHINode &LCSSAPhi : LoopExitBlock->phis())
|
|
if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
|
|
LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
|
|
State.Plan->removeLiveOut(&LCSSAPhi);
|
|
}
|
|
|
|
// Fix the scalar loop reduction variable with the incoming reduction sum
|
|
// from the vector body and from the backedge value.
|
|
int IncomingEdgeBlockIdx =
|
|
OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
|
|
assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
|
|
// Pick the other block.
|
|
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
|
|
OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
|
|
OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
|
|
}
|
|
|
|
void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
|
|
// The basic block and loop containing the predicated instruction.
|
|
auto *PredBB = PredInst->getParent();
|
|
auto *VectorLoop = LI->getLoopFor(PredBB);
|
|
|
|
// Initialize a worklist with the operands of the predicated instruction.
|
|
SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
|
|
|
|
// Holds instructions that we need to analyze again. An instruction may be
|
|
// reanalyzed if we don't yet know if we can sink it or not.
|
|
SmallVector<Instruction *, 8> InstsToReanalyze;
|
|
|
|
// Returns true if a given use occurs in the predicated block. Phi nodes use
|
|
// their operands in their corresponding predecessor blocks.
|
|
auto isBlockOfUsePredicated = [&](Use &U) -> bool {
|
|
auto *I = cast<Instruction>(U.getUser());
|
|
BasicBlock *BB = I->getParent();
|
|
if (auto *Phi = dyn_cast<PHINode>(I))
|
|
BB = Phi->getIncomingBlock(
|
|
PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
|
|
return BB == PredBB;
|
|
};
|
|
|
|
// Iteratively sink the scalarized operands of the predicated instruction
|
|
// into the block we created for it. When an instruction is sunk, it's
|
|
// operands are then added to the worklist. The algorithm ends after one pass
|
|
// through the worklist doesn't sink a single instruction.
|
|
bool Changed;
|
|
do {
|
|
// Add the instructions that need to be reanalyzed to the worklist, and
|
|
// reset the changed indicator.
|
|
Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
|
|
InstsToReanalyze.clear();
|
|
Changed = false;
|
|
|
|
while (!Worklist.empty()) {
|
|
auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
|
|
|
|
// We can't sink an instruction if it is a phi node, is not in the loop,
|
|
// may have side effects or may read from memory.
|
|
// TODO Could dor more granular checking to allow sinking a load past non-store instructions.
|
|
if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
|
|
I->mayHaveSideEffects() || I->mayReadFromMemory())
|
|
continue;
|
|
|
|
// If the instruction is already in PredBB, check if we can sink its
|
|
// operands. In that case, VPlan's sinkScalarOperands() succeeded in
|
|
// sinking the scalar instruction I, hence it appears in PredBB; but it
|
|
// may have failed to sink I's operands (recursively), which we try
|
|
// (again) here.
|
|
if (I->getParent() == PredBB) {
|
|
Worklist.insert(I->op_begin(), I->op_end());
|
|
continue;
|
|
}
|
|
|
|
// It's legal to sink the instruction if all its uses occur in the
|
|
// predicated block. Otherwise, there's nothing to do yet, and we may
|
|
// need to reanalyze the instruction.
|
|
if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
|
|
InstsToReanalyze.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
// Move the instruction to the beginning of the predicated block, and add
|
|
// it's operands to the worklist.
|
|
I->moveBefore(&*PredBB->getFirstInsertionPt());
|
|
Worklist.insert(I->op_begin(), I->op_end());
|
|
|
|
// The sinking may have enabled other instructions to be sunk, so we will
|
|
// need to iterate.
|
|
Changed = true;
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
|
|
VPTransformState &State) {
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
|
|
for (VPRecipeBase &P : VPBB->phis()) {
|
|
VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
|
|
if (!VPPhi)
|
|
continue;
|
|
PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
|
|
// Make sure the builder has a valid insert point.
|
|
Builder.SetInsertPoint(NewPhi);
|
|
for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
|
|
VPValue *Inc = VPPhi->getIncomingValue(i);
|
|
VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
|
|
NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InnerLoopVectorizer::useOrderedReductions(
|
|
const RecurrenceDescriptor &RdxDesc) {
|
|
return Cost->useOrderedReductions(RdxDesc);
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
|
|
// We should not collect Scalars more than once per VF. Right now, this
|
|
// function is called from collectUniformsAndScalars(), which already does
|
|
// this check. Collecting Scalars for VF=1 does not make any sense.
|
|
assert(VF.isVector() && !Scalars.contains(VF) &&
|
|
"This function should not be visited twice for the same VF");
|
|
|
|
// This avoids any chances of creating a REPLICATE recipe during planning
|
|
// since that would result in generation of scalarized code during execution,
|
|
// which is not supported for scalable vectors.
|
|
if (VF.isScalable()) {
|
|
Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
|
|
return;
|
|
}
|
|
|
|
SmallSetVector<Instruction *, 8> Worklist;
|
|
|
|
// These sets are used to seed the analysis with pointers used by memory
|
|
// accesses that will remain scalar.
|
|
SmallSetVector<Instruction *, 8> ScalarPtrs;
|
|
SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
|
|
auto *Latch = TheLoop->getLoopLatch();
|
|
|
|
// A helper that returns true if the use of Ptr by MemAccess will be scalar.
|
|
// The pointer operands of loads and stores will be scalar as long as the
|
|
// memory access is not a gather or scatter operation. The value operand of a
|
|
// store will remain scalar if the store is scalarized.
|
|
auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
|
|
InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
|
|
assert(WideningDecision != CM_Unknown &&
|
|
"Widening decision should be ready at this moment");
|
|
if (auto *Store = dyn_cast<StoreInst>(MemAccess))
|
|
if (Ptr == Store->getValueOperand())
|
|
return WideningDecision == CM_Scalarize;
|
|
assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
|
|
"Ptr is neither a value or pointer operand");
|
|
return WideningDecision != CM_GatherScatter;
|
|
};
|
|
|
|
// A helper that returns true if the given value is a bitcast or
|
|
// getelementptr instruction contained in the loop.
|
|
auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
|
|
return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
|
|
isa<GetElementPtrInst>(V)) &&
|
|
!TheLoop->isLoopInvariant(V);
|
|
};
|
|
|
|
// A helper that evaluates a memory access's use of a pointer. If the use will
|
|
// be a scalar use and the pointer is only used by memory accesses, we place
|
|
// the pointer in ScalarPtrs. Otherwise, the pointer is placed in
|
|
// PossibleNonScalarPtrs.
|
|
auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
|
|
// We only care about bitcast and getelementptr instructions contained in
|
|
// the loop.
|
|
if (!isLoopVaryingBitCastOrGEP(Ptr))
|
|
return;
|
|
|
|
// If the pointer has already been identified as scalar (e.g., if it was
|
|
// also identified as uniform), there's nothing to do.
|
|
auto *I = cast<Instruction>(Ptr);
|
|
if (Worklist.count(I))
|
|
return;
|
|
|
|
// If the use of the pointer will be a scalar use, and all users of the
|
|
// pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
|
|
// place the pointer in PossibleNonScalarPtrs.
|
|
if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
|
|
return isa<LoadInst>(U) || isa<StoreInst>(U);
|
|
}))
|
|
ScalarPtrs.insert(I);
|
|
else
|
|
PossibleNonScalarPtrs.insert(I);
|
|
};
|
|
|
|
// We seed the scalars analysis with three classes of instructions: (1)
|
|
// instructions marked uniform-after-vectorization and (2) bitcast,
|
|
// getelementptr and (pointer) phi instructions used by memory accesses
|
|
// requiring a scalar use.
|
|
//
|
|
// (1) Add to the worklist all instructions that have been identified as
|
|
// uniform-after-vectorization.
|
|
Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
|
|
|
|
// (2) Add to the worklist all bitcast and getelementptr instructions used by
|
|
// memory accesses requiring a scalar use. The pointer operands of loads and
|
|
// stores will be scalar as long as the memory accesses is not a gather or
|
|
// scatter operation. The value operand of a store will remain scalar if the
|
|
// store is scalarized.
|
|
for (auto *BB : TheLoop->blocks())
|
|
for (auto &I : *BB) {
|
|
if (auto *Load = dyn_cast<LoadInst>(&I)) {
|
|
evaluatePtrUse(Load, Load->getPointerOperand());
|
|
} else if (auto *Store = dyn_cast<StoreInst>(&I)) {
|
|
evaluatePtrUse(Store, Store->getPointerOperand());
|
|
evaluatePtrUse(Store, Store->getValueOperand());
|
|
}
|
|
}
|
|
for (auto *I : ScalarPtrs)
|
|
if (!PossibleNonScalarPtrs.count(I)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
|
|
Worklist.insert(I);
|
|
}
|
|
|
|
// Insert the forced scalars.
|
|
// FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
|
|
// induction variable when the PHI user is scalarized.
|
|
auto ForcedScalar = ForcedScalars.find(VF);
|
|
if (ForcedScalar != ForcedScalars.end())
|
|
for (auto *I : ForcedScalar->second) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
|
|
Worklist.insert(I);
|
|
}
|
|
|
|
// Expand the worklist by looking through any bitcasts and getelementptr
|
|
// instructions we've already identified as scalar. This is similar to the
|
|
// expansion step in collectLoopUniforms(); however, here we're only
|
|
// expanding to include additional bitcasts and getelementptr instructions.
|
|
unsigned Idx = 0;
|
|
while (Idx != Worklist.size()) {
|
|
Instruction *Dst = Worklist[Idx++];
|
|
if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
|
|
continue;
|
|
auto *Src = cast<Instruction>(Dst->getOperand(0));
|
|
if (llvm::all_of(Src->users(), [&](User *U) -> bool {
|
|
auto *J = cast<Instruction>(U);
|
|
return !TheLoop->contains(J) || Worklist.count(J) ||
|
|
((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
|
|
isScalarUse(J, Src));
|
|
})) {
|
|
Worklist.insert(Src);
|
|
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
|
|
}
|
|
}
|
|
|
|
// An induction variable will remain scalar if all users of the induction
|
|
// variable and induction variable update remain scalar.
|
|
for (const auto &Induction : Legal->getInductionVars()) {
|
|
auto *Ind = Induction.first;
|
|
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
|
|
|
|
// If tail-folding is applied, the primary induction variable will be used
|
|
// to feed a vector compare.
|
|
if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
|
|
continue;
|
|
|
|
// Returns true if \p Indvar is a pointer induction that is used directly by
|
|
// load/store instruction \p I.
|
|
auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
|
|
Instruction *I) {
|
|
return Induction.second.getKind() ==
|
|
InductionDescriptor::IK_PtrInduction &&
|
|
(isa<LoadInst>(I) || isa<StoreInst>(I)) &&
|
|
Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
|
|
};
|
|
|
|
// Determine if all users of the induction variable are scalar after
|
|
// vectorization.
|
|
auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
|
|
auto *I = cast<Instruction>(U);
|
|
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
|
|
IsDirectLoadStoreFromPtrIndvar(Ind, I);
|
|
});
|
|
if (!ScalarInd)
|
|
continue;
|
|
|
|
// Determine if all users of the induction variable update instruction are
|
|
// scalar after vectorization.
|
|
auto ScalarIndUpdate =
|
|
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
|
|
auto *I = cast<Instruction>(U);
|
|
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
|
|
IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
|
|
});
|
|
if (!ScalarIndUpdate)
|
|
continue;
|
|
|
|
// The induction variable and its update instruction will remain scalar.
|
|
Worklist.insert(Ind);
|
|
Worklist.insert(IndUpdate);
|
|
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
|
|
LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
|
|
<< "\n");
|
|
}
|
|
|
|
Scalars[VF].insert(Worklist.begin(), Worklist.end());
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::isScalarWithPredication(
|
|
Instruction *I, ElementCount VF) const {
|
|
if (!isPredicatedInst(I))
|
|
return false;
|
|
|
|
// Do we have a non-scalar lowering for this predicated
|
|
// instruction? No - it is scalar with predication.
|
|
switch(I->getOpcode()) {
|
|
default:
|
|
return true;
|
|
case Instruction::Call:
|
|
return !VFDatabase::hasMaskedVariant(*(cast<CallInst>(I)), VF);
|
|
case Instruction::Load:
|
|
case Instruction::Store: {
|
|
auto *Ptr = getLoadStorePointerOperand(I);
|
|
auto *Ty = getLoadStoreType(I);
|
|
Type *VTy = Ty;
|
|
if (VF.isVector())
|
|
VTy = VectorType::get(Ty, VF);
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
|
|
TTI.isLegalMaskedGather(VTy, Alignment))
|
|
: !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
|
|
TTI.isLegalMaskedScatter(VTy, Alignment));
|
|
}
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem: {
|
|
// We have the option to use the safe-divisor idiom to avoid predication.
|
|
// The cost based decision here will always select safe-divisor for
|
|
// scalable vectors as scalarization isn't legal.
|
|
const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
|
|
return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const {
|
|
if (!blockNeedsPredicationForAnyReason(I->getParent()))
|
|
return false;
|
|
|
|
// Can we prove this instruction is safe to unconditionally execute?
|
|
// If not, we must use some form of predication.
|
|
switch(I->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case Instruction::Load:
|
|
case Instruction::Store: {
|
|
if (!Legal->isMaskRequired(I))
|
|
return false;
|
|
// When we know the load's address is loop invariant and the instruction
|
|
// in the original scalar loop was unconditionally executed then we
|
|
// don't need to mark it as a predicated instruction. Tail folding may
|
|
// introduce additional predication, but we're guaranteed to always have
|
|
// at least one active lane. We call Legal->blockNeedsPredication here
|
|
// because it doesn't query tail-folding. For stores, we need to prove
|
|
// both speculation safety (which follows from the same argument as loads),
|
|
// but also must prove the value being stored is correct. The easiest
|
|
// form of the later is to require that all values stored are the same.
|
|
if (Legal->isInvariant(getLoadStorePointerOperand(I)) &&
|
|
(isa<LoadInst>(I) ||
|
|
(isa<StoreInst>(I) &&
|
|
TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) &&
|
|
!Legal->blockNeedsPredication(I->getParent()))
|
|
return false;
|
|
return true;
|
|
}
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
// TODO: We can use the loop-preheader as context point here and get
|
|
// context sensitive reasoning
|
|
return !isSafeToSpeculativelyExecute(I);
|
|
case Instruction::Call:
|
|
return Legal->isMaskRequired(I);
|
|
}
|
|
}
|
|
|
|
std::pair<InstructionCost, InstructionCost>
|
|
LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I,
|
|
ElementCount VF) const {
|
|
assert(I->getOpcode() == Instruction::UDiv ||
|
|
I->getOpcode() == Instruction::SDiv ||
|
|
I->getOpcode() == Instruction::SRem ||
|
|
I->getOpcode() == Instruction::URem);
|
|
assert(!isSafeToSpeculativelyExecute(I));
|
|
|
|
const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
// Scalarization isn't legal for scalable vector types
|
|
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
|
|
if (!VF.isScalable()) {
|
|
// Get the scalarization cost and scale this amount by the probability of
|
|
// executing the predicated block. If the instruction is not predicated,
|
|
// we fall through to the next case.
|
|
ScalarizationCost = 0;
|
|
|
|
// These instructions have a non-void type, so account for the phi nodes
|
|
// that we will create. This cost is likely to be zero. The phi node
|
|
// cost, if any, should be scaled by the block probability because it
|
|
// models a copy at the end of each predicated block.
|
|
ScalarizationCost += VF.getKnownMinValue() *
|
|
TTI.getCFInstrCost(Instruction::PHI, CostKind);
|
|
|
|
// The cost of the non-predicated instruction.
|
|
ScalarizationCost += VF.getKnownMinValue() *
|
|
TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
|
|
|
|
// The cost of insertelement and extractelement instructions needed for
|
|
// scalarization.
|
|
ScalarizationCost += getScalarizationOverhead(I, VF, CostKind);
|
|
|
|
// Scale the cost by the probability of executing the predicated blocks.
|
|
// This assumes the predicated block for each vector lane is equally
|
|
// likely.
|
|
ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb();
|
|
}
|
|
InstructionCost SafeDivisorCost = 0;
|
|
|
|
auto *VecTy = ToVectorTy(I->getType(), VF);
|
|
|
|
// The cost of the select guard to ensure all lanes are well defined
|
|
// after we speculate above any internal control flow.
|
|
SafeDivisorCost += TTI.getCmpSelInstrCost(
|
|
Instruction::Select, VecTy,
|
|
ToVectorTy(Type::getInt1Ty(I->getContext()), VF),
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
|
|
// Certain instructions can be cheaper to vectorize if they have a constant
|
|
// second vector operand. One example of this are shifts on x86.
|
|
Value *Op2 = I->getOperand(1);
|
|
auto Op2Info = TTI.getOperandInfo(Op2);
|
|
if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
|
|
Legal->isInvariant(Op2))
|
|
Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
|
|
|
|
SmallVector<const Value *, 4> Operands(I->operand_values());
|
|
SafeDivisorCost += TTI.getArithmeticInstrCost(
|
|
I->getOpcode(), VecTy, CostKind,
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
Op2Info, Operands, I);
|
|
return {ScalarizationCost, SafeDivisorCost};
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
|
|
Instruction *I, ElementCount VF) {
|
|
assert(isAccessInterleaved(I) && "Expecting interleaved access.");
|
|
assert(getWideningDecision(I, VF) == CM_Unknown &&
|
|
"Decision should not be set yet.");
|
|
auto *Group = getInterleavedAccessGroup(I);
|
|
assert(Group && "Must have a group.");
|
|
|
|
// If the instruction's allocated size doesn't equal it's type size, it
|
|
// requires padding and will be scalarized.
|
|
auto &DL = I->getModule()->getDataLayout();
|
|
auto *ScalarTy = getLoadStoreType(I);
|
|
if (hasIrregularType(ScalarTy, DL))
|
|
return false;
|
|
|
|
// If the group involves a non-integral pointer, we may not be able to
|
|
// losslessly cast all values to a common type.
|
|
unsigned InterleaveFactor = Group->getFactor();
|
|
bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
|
|
for (unsigned i = 0; i < InterleaveFactor; i++) {
|
|
Instruction *Member = Group->getMember(i);
|
|
if (!Member)
|
|
continue;
|
|
auto *MemberTy = getLoadStoreType(Member);
|
|
bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
|
|
// Don't coerce non-integral pointers to integers or vice versa.
|
|
if (MemberNI != ScalarNI) {
|
|
// TODO: Consider adding special nullptr value case here
|
|
return false;
|
|
} else if (MemberNI && ScalarNI &&
|
|
ScalarTy->getPointerAddressSpace() !=
|
|
MemberTy->getPointerAddressSpace()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check if masking is required.
|
|
// A Group may need masking for one of two reasons: it resides in a block that
|
|
// needs predication, or it was decided to use masking to deal with gaps
|
|
// (either a gap at the end of a load-access that may result in a speculative
|
|
// load, or any gaps in a store-access).
|
|
bool PredicatedAccessRequiresMasking =
|
|
blockNeedsPredicationForAnyReason(I->getParent()) &&
|
|
Legal->isMaskRequired(I);
|
|
bool LoadAccessWithGapsRequiresEpilogMasking =
|
|
isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
|
|
!isScalarEpilogueAllowed();
|
|
bool StoreAccessWithGapsRequiresMasking =
|
|
isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
|
|
if (!PredicatedAccessRequiresMasking &&
|
|
!LoadAccessWithGapsRequiresEpilogMasking &&
|
|
!StoreAccessWithGapsRequiresMasking)
|
|
return true;
|
|
|
|
// If masked interleaving is required, we expect that the user/target had
|
|
// enabled it, because otherwise it either wouldn't have been created or
|
|
// it should have been invalidated by the CostModel.
|
|
assert(useMaskedInterleavedAccesses(TTI) &&
|
|
"Masked interleave-groups for predicated accesses are not enabled.");
|
|
|
|
if (Group->isReverse())
|
|
return false;
|
|
|
|
auto *Ty = getLoadStoreType(I);
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
|
|
: TTI.isLegalMaskedStore(Ty, Alignment);
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
|
|
Instruction *I, ElementCount VF) {
|
|
// Get and ensure we have a valid memory instruction.
|
|
assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
|
|
|
|
auto *Ptr = getLoadStorePointerOperand(I);
|
|
auto *ScalarTy = getLoadStoreType(I);
|
|
|
|
// In order to be widened, the pointer should be consecutive, first of all.
|
|
if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
|
|
return false;
|
|
|
|
// If the instruction is a store located in a predicated block, it will be
|
|
// scalarized.
|
|
if (isScalarWithPredication(I, VF))
|
|
return false;
|
|
|
|
// If the instruction's allocated size doesn't equal it's type size, it
|
|
// requires padding and will be scalarized.
|
|
auto &DL = I->getModule()->getDataLayout();
|
|
if (hasIrregularType(ScalarTy, DL))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
|
|
// We should not collect Uniforms more than once per VF. Right now,
|
|
// this function is called from collectUniformsAndScalars(), which
|
|
// already does this check. Collecting Uniforms for VF=1 does not make any
|
|
// sense.
|
|
|
|
assert(VF.isVector() && !Uniforms.contains(VF) &&
|
|
"This function should not be visited twice for the same VF");
|
|
|
|
// Visit the list of Uniforms. If we'll not find any uniform value, we'll
|
|
// not analyze again. Uniforms.count(VF) will return 1.
|
|
Uniforms[VF].clear();
|
|
|
|
// We now know that the loop is vectorizable!
|
|
// Collect instructions inside the loop that will remain uniform after
|
|
// vectorization.
|
|
|
|
// Global values, params and instructions outside of current loop are out of
|
|
// scope.
|
|
auto isOutOfScope = [&](Value *V) -> bool {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
return (!I || !TheLoop->contains(I));
|
|
};
|
|
|
|
// Worklist containing uniform instructions demanding lane 0.
|
|
SetVector<Instruction *> Worklist;
|
|
BasicBlock *Latch = TheLoop->getLoopLatch();
|
|
|
|
// Add uniform instructions demanding lane 0 to the worklist. Instructions
|
|
// that are scalar with predication must not be considered uniform after
|
|
// vectorization, because that would create an erroneous replicating region
|
|
// where only a single instance out of VF should be formed.
|
|
// TODO: optimize such seldom cases if found important, see PR40816.
|
|
auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
|
|
if (isOutOfScope(I)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
|
|
<< *I << "\n");
|
|
return;
|
|
}
|
|
if (isScalarWithPredication(I, VF)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
|
|
<< *I << "\n");
|
|
return;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
|
|
Worklist.insert(I);
|
|
};
|
|
|
|
// Start with the conditional branch. If the branch condition is an
|
|
// instruction contained in the loop that is only used by the branch, it is
|
|
// uniform.
|
|
auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
|
|
if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
|
|
addToWorklistIfAllowed(Cmp);
|
|
|
|
auto PrevVF = VF.divideCoefficientBy(2);
|
|
// Return true if all lanes perform the same memory operation, and we can
|
|
// thus chose to execute only one.
|
|
auto isUniformMemOpUse = [&](Instruction *I) {
|
|
// If the value was already known to not be uniform for the previous
|
|
// (smaller VF), it cannot be uniform for the larger VF.
|
|
if (PrevVF.isVector()) {
|
|
auto Iter = Uniforms.find(PrevVF);
|
|
if (Iter != Uniforms.end() && !Iter->second.contains(I))
|
|
return false;
|
|
}
|
|
if (!Legal->isUniformMemOp(*I, VF))
|
|
return false;
|
|
if (isa<LoadInst>(I))
|
|
// Loading the same address always produces the same result - at least
|
|
// assuming aliasing and ordering which have already been checked.
|
|
return true;
|
|
// Storing the same value on every iteration.
|
|
return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
|
|
};
|
|
|
|
auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
|
|
InstWidening WideningDecision = getWideningDecision(I, VF);
|
|
assert(WideningDecision != CM_Unknown &&
|
|
"Widening decision should be ready at this moment");
|
|
|
|
if (isUniformMemOpUse(I))
|
|
return true;
|
|
|
|
return (WideningDecision == CM_Widen ||
|
|
WideningDecision == CM_Widen_Reverse ||
|
|
WideningDecision == CM_Interleave);
|
|
};
|
|
|
|
// Returns true if Ptr is the pointer operand of a memory access instruction
|
|
// I, I is known to not require scalarization, and the pointer is not also
|
|
// stored.
|
|
auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
|
|
if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
|
|
return false;
|
|
return getLoadStorePointerOperand(I) == Ptr &&
|
|
(isUniformDecision(I, VF) || Legal->isInvariant(Ptr));
|
|
};
|
|
|
|
// Holds a list of values which are known to have at least one uniform use.
|
|
// Note that there may be other uses which aren't uniform. A "uniform use"
|
|
// here is something which only demands lane 0 of the unrolled iterations;
|
|
// it does not imply that all lanes produce the same value (e.g. this is not
|
|
// the usual meaning of uniform)
|
|
SetVector<Value *> HasUniformUse;
|
|
|
|
// Scan the loop for instructions which are either a) known to have only
|
|
// lane 0 demanded or b) are uses which demand only lane 0 of their operand.
|
|
for (auto *BB : TheLoop->blocks())
|
|
for (auto &I : *BB) {
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::sideeffect:
|
|
case Intrinsic::experimental_noalias_scope_decl:
|
|
case Intrinsic::assume:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
if (TheLoop->hasLoopInvariantOperands(&I))
|
|
addToWorklistIfAllowed(&I);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ExtractValue instructions must be uniform, because the operands are
|
|
// known to be loop-invariant.
|
|
if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
|
|
assert(isOutOfScope(EVI->getAggregateOperand()) &&
|
|
"Expected aggregate value to be loop invariant");
|
|
addToWorklistIfAllowed(EVI);
|
|
continue;
|
|
}
|
|
|
|
// If there's no pointer operand, there's nothing to do.
|
|
auto *Ptr = getLoadStorePointerOperand(&I);
|
|
if (!Ptr)
|
|
continue;
|
|
|
|
if (isUniformMemOpUse(&I))
|
|
addToWorklistIfAllowed(&I);
|
|
|
|
if (isVectorizedMemAccessUse(&I, Ptr))
|
|
HasUniformUse.insert(Ptr);
|
|
}
|
|
|
|
// Add to the worklist any operands which have *only* uniform (e.g. lane 0
|
|
// demanding) users. Since loops are assumed to be in LCSSA form, this
|
|
// disallows uses outside the loop as well.
|
|
for (auto *V : HasUniformUse) {
|
|
if (isOutOfScope(V))
|
|
continue;
|
|
auto *I = cast<Instruction>(V);
|
|
auto UsersAreMemAccesses =
|
|
llvm::all_of(I->users(), [&](User *U) -> bool {
|
|
return isVectorizedMemAccessUse(cast<Instruction>(U), V);
|
|
});
|
|
if (UsersAreMemAccesses)
|
|
addToWorklistIfAllowed(I);
|
|
}
|
|
|
|
// Expand Worklist in topological order: whenever a new instruction
|
|
// is added , its users should be already inside Worklist. It ensures
|
|
// a uniform instruction will only be used by uniform instructions.
|
|
unsigned idx = 0;
|
|
while (idx != Worklist.size()) {
|
|
Instruction *I = Worklist[idx++];
|
|
|
|
for (auto *OV : I->operand_values()) {
|
|
// isOutOfScope operands cannot be uniform instructions.
|
|
if (isOutOfScope(OV))
|
|
continue;
|
|
// First order recurrence Phi's should typically be considered
|
|
// non-uniform.
|
|
auto *OP = dyn_cast<PHINode>(OV);
|
|
if (OP && Legal->isFixedOrderRecurrence(OP))
|
|
continue;
|
|
// If all the users of the operand are uniform, then add the
|
|
// operand into the uniform worklist.
|
|
auto *OI = cast<Instruction>(OV);
|
|
if (llvm::all_of(OI->users(), [&](User *U) -> bool {
|
|
auto *J = cast<Instruction>(U);
|
|
return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
|
|
}))
|
|
addToWorklistIfAllowed(OI);
|
|
}
|
|
}
|
|
|
|
// For an instruction to be added into Worklist above, all its users inside
|
|
// the loop should also be in Worklist. However, this condition cannot be
|
|
// true for phi nodes that form a cyclic dependence. We must process phi
|
|
// nodes separately. An induction variable will remain uniform if all users
|
|
// of the induction variable and induction variable update remain uniform.
|
|
// The code below handles both pointer and non-pointer induction variables.
|
|
for (const auto &Induction : Legal->getInductionVars()) {
|
|
auto *Ind = Induction.first;
|
|
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
|
|
|
|
// Determine if all users of the induction variable are uniform after
|
|
// vectorization.
|
|
auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
|
|
auto *I = cast<Instruction>(U);
|
|
return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
|
|
isVectorizedMemAccessUse(I, Ind);
|
|
});
|
|
if (!UniformInd)
|
|
continue;
|
|
|
|
// Determine if all users of the induction variable update instruction are
|
|
// uniform after vectorization.
|
|
auto UniformIndUpdate =
|
|
llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
|
|
auto *I = cast<Instruction>(U);
|
|
return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
|
|
isVectorizedMemAccessUse(I, IndUpdate);
|
|
});
|
|
if (!UniformIndUpdate)
|
|
continue;
|
|
|
|
// The induction variable and its update instruction will remain uniform.
|
|
addToWorklistIfAllowed(Ind);
|
|
addToWorklistIfAllowed(IndUpdate);
|
|
}
|
|
|
|
Uniforms[VF].insert(Worklist.begin(), Worklist.end());
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::runtimeChecksRequired() {
|
|
LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
|
|
|
|
if (Legal->getRuntimePointerChecking()->Need) {
|
|
reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
|
|
"runtime pointer checks needed. Enable vectorization of this "
|
|
"loop with '#pragma clang loop vectorize(enable)' when "
|
|
"compiling with -Os/-Oz",
|
|
"CantVersionLoopWithOptForSize", ORE, TheLoop);
|
|
return true;
|
|
}
|
|
|
|
if (!PSE.getPredicate().isAlwaysTrue()) {
|
|
reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
|
|
"runtime SCEV checks needed. Enable vectorization of this "
|
|
"loop with '#pragma clang loop vectorize(enable)' when "
|
|
"compiling with -Os/-Oz",
|
|
"CantVersionLoopWithOptForSize", ORE, TheLoop);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Avoid specializing for stride==1 instead of bailing out.
|
|
if (!Legal->getLAI()->getSymbolicStrides().empty()) {
|
|
reportVectorizationFailure("Runtime stride check for small trip count",
|
|
"runtime stride == 1 checks needed. Enable vectorization of "
|
|
"this loop without such check by compiling with -Os/-Oz",
|
|
"CantVersionLoopWithOptForSize", ORE, TheLoop);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ElementCount
|
|
LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
|
|
if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
|
|
return ElementCount::getScalable(0);
|
|
|
|
if (Hints->isScalableVectorizationDisabled()) {
|
|
reportVectorizationInfo("Scalable vectorization is explicitly disabled",
|
|
"ScalableVectorizationDisabled", ORE, TheLoop);
|
|
return ElementCount::getScalable(0);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
|
|
|
|
auto MaxScalableVF = ElementCount::getScalable(
|
|
std::numeric_limits<ElementCount::ScalarTy>::max());
|
|
|
|
// Test that the loop-vectorizer can legalize all operations for this MaxVF.
|
|
// FIXME: While for scalable vectors this is currently sufficient, this should
|
|
// be replaced by a more detailed mechanism that filters out specific VFs,
|
|
// instead of invalidating vectorization for a whole set of VFs based on the
|
|
// MaxVF.
|
|
|
|
// Disable scalable vectorization if the loop contains unsupported reductions.
|
|
if (!canVectorizeReductions(MaxScalableVF)) {
|
|
reportVectorizationInfo(
|
|
"Scalable vectorization not supported for the reduction "
|
|
"operations found in this loop.",
|
|
"ScalableVFUnfeasible", ORE, TheLoop);
|
|
return ElementCount::getScalable(0);
|
|
}
|
|
|
|
// Disable scalable vectorization if the loop contains any instructions
|
|
// with element types not supported for scalable vectors.
|
|
if (any_of(ElementTypesInLoop, [&](Type *Ty) {
|
|
return !Ty->isVoidTy() &&
|
|
!this->TTI.isElementTypeLegalForScalableVector(Ty);
|
|
})) {
|
|
reportVectorizationInfo("Scalable vectorization is not supported "
|
|
"for all element types found in this loop.",
|
|
"ScalableVFUnfeasible", ORE, TheLoop);
|
|
return ElementCount::getScalable(0);
|
|
}
|
|
|
|
if (Legal->isSafeForAnyVectorWidth())
|
|
return MaxScalableVF;
|
|
|
|
// Limit MaxScalableVF by the maximum safe dependence distance.
|
|
if (std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI))
|
|
MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
|
|
else
|
|
MaxScalableVF = ElementCount::getScalable(0);
|
|
|
|
if (!MaxScalableVF)
|
|
reportVectorizationInfo(
|
|
"Max legal vector width too small, scalable vectorization "
|
|
"unfeasible.",
|
|
"ScalableVFUnfeasible", ORE, TheLoop);
|
|
|
|
return MaxScalableVF;
|
|
}
|
|
|
|
FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
|
|
unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
|
|
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
|
|
unsigned SmallestType, WidestType;
|
|
std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
|
|
|
|
// Get the maximum safe dependence distance in bits computed by LAA.
|
|
// It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
|
|
// the memory accesses that is most restrictive (involved in the smallest
|
|
// dependence distance).
|
|
unsigned MaxSafeElements =
|
|
llvm::bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
|
|
|
|
auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
|
|
auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
|
|
<< ".\n");
|
|
LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
|
|
<< ".\n");
|
|
|
|
// First analyze the UserVF, fall back if the UserVF should be ignored.
|
|
if (UserVF) {
|
|
auto MaxSafeUserVF =
|
|
UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
|
|
|
|
if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
|
|
// If `VF=vscale x N` is safe, then so is `VF=N`
|
|
if (UserVF.isScalable())
|
|
return FixedScalableVFPair(
|
|
ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
|
|
else
|
|
return UserVF;
|
|
}
|
|
|
|
assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
|
|
|
|
// Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
|
|
// is better to ignore the hint and let the compiler choose a suitable VF.
|
|
if (!UserVF.isScalable()) {
|
|
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
|
|
<< " is unsafe, clamping to max safe VF="
|
|
<< MaxSafeFixedVF << ".\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
|
|
TheLoop->getStartLoc(),
|
|
TheLoop->getHeader())
|
|
<< "User-specified vectorization factor "
|
|
<< ore::NV("UserVectorizationFactor", UserVF)
|
|
<< " is unsafe, clamping to maximum safe vectorization factor "
|
|
<< ore::NV("VectorizationFactor", MaxSafeFixedVF);
|
|
});
|
|
return MaxSafeFixedVF;
|
|
}
|
|
|
|
if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
|
|
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
|
|
<< " is ignored because scalable vectors are not "
|
|
"available.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
|
|
TheLoop->getStartLoc(),
|
|
TheLoop->getHeader())
|
|
<< "User-specified vectorization factor "
|
|
<< ore::NV("UserVectorizationFactor", UserVF)
|
|
<< " is ignored because the target does not support scalable "
|
|
"vectors. The compiler will pick a more suitable value.";
|
|
});
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
|
|
<< " is unsafe. Ignoring scalable UserVF.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
|
|
TheLoop->getStartLoc(),
|
|
TheLoop->getHeader())
|
|
<< "User-specified vectorization factor "
|
|
<< ore::NV("UserVectorizationFactor", UserVF)
|
|
<< " is unsafe. Ignoring the hint to let the compiler pick a "
|
|
"more suitable value.";
|
|
});
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
|
|
<< " / " << WidestType << " bits.\n");
|
|
|
|
FixedScalableVFPair Result(ElementCount::getFixed(1),
|
|
ElementCount::getScalable(0));
|
|
if (auto MaxVF =
|
|
getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
|
|
MaxSafeFixedVF, FoldTailByMasking))
|
|
Result.FixedVF = MaxVF;
|
|
|
|
if (auto MaxVF =
|
|
getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
|
|
MaxSafeScalableVF, FoldTailByMasking))
|
|
if (MaxVF.isScalable()) {
|
|
Result.ScalableVF = MaxVF;
|
|
LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
|
|
<< "\n");
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
FixedScalableVFPair
|
|
LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
|
|
if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
|
|
// TODO: It may by useful to do since it's still likely to be dynamically
|
|
// uniform if the target can skip.
|
|
reportVectorizationFailure(
|
|
"Not inserting runtime ptr check for divergent target",
|
|
"runtime pointer checks needed. Not enabled for divergent target",
|
|
"CantVersionLoopWithDivergentTarget", ORE, TheLoop);
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
|
|
LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
|
|
if (TC == 1) {
|
|
reportVectorizationFailure("Single iteration (non) loop",
|
|
"loop trip count is one, irrelevant for vectorization",
|
|
"SingleIterationLoop", ORE, TheLoop);
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
switch (ScalarEpilogueStatus) {
|
|
case CM_ScalarEpilogueAllowed:
|
|
return computeFeasibleMaxVF(TC, UserVF, false);
|
|
case CM_ScalarEpilogueNotAllowedUsePredicate:
|
|
[[fallthrough]];
|
|
case CM_ScalarEpilogueNotNeededUsePredicate:
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: vector predicate hint/switch found.\n"
|
|
<< "LV: Not allowing scalar epilogue, creating predicated "
|
|
<< "vector loop.\n");
|
|
break;
|
|
case CM_ScalarEpilogueNotAllowedLowTripLoop:
|
|
// fallthrough as a special case of OptForSize
|
|
case CM_ScalarEpilogueNotAllowedOptSize:
|
|
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
|
|
else
|
|
LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
|
|
<< "count.\n");
|
|
|
|
// Bail if runtime checks are required, which are not good when optimising
|
|
// for size.
|
|
if (runtimeChecksRequired())
|
|
return FixedScalableVFPair::getNone();
|
|
|
|
break;
|
|
}
|
|
|
|
// The only loops we can vectorize without a scalar epilogue, are loops with
|
|
// a bottom-test and a single exiting block. We'd have to handle the fact
|
|
// that not every instruction executes on the last iteration. This will
|
|
// require a lane mask which varies through the vector loop body. (TODO)
|
|
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
|
|
// If there was a tail-folding hint/switch, but we can't fold the tail by
|
|
// masking, fallback to a vectorization with a scalar epilogue.
|
|
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
|
|
"scalar epilogue instead.\n");
|
|
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
|
|
return computeFeasibleMaxVF(TC, UserVF, false);
|
|
}
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
// Now try the tail folding
|
|
|
|
// Invalidate interleave groups that require an epilogue if we can't mask
|
|
// the interleave-group.
|
|
if (!useMaskedInterleavedAccesses(TTI)) {
|
|
assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
|
|
"No decisions should have been taken at this point");
|
|
// Note: There is no need to invalidate any cost modeling decisions here, as
|
|
// non where taken so far.
|
|
InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
|
|
}
|
|
|
|
FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
|
|
|
|
// Avoid tail folding if the trip count is known to be a multiple of any VF
|
|
// we choose.
|
|
std::optional<unsigned> MaxPowerOf2RuntimeVF =
|
|
MaxFactors.FixedVF.getFixedValue();
|
|
if (MaxFactors.ScalableVF) {
|
|
std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
|
|
if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
|
|
MaxPowerOf2RuntimeVF = std::max<unsigned>(
|
|
*MaxPowerOf2RuntimeVF,
|
|
*MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
|
|
} else
|
|
MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
|
|
}
|
|
|
|
if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
|
|
assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
|
|
"MaxFixedVF must be a power of 2");
|
|
unsigned MaxVFtimesIC =
|
|
UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
|
|
ScalarEvolution *SE = PSE.getSE();
|
|
const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
|
|
const SCEV *ExitCount = SE->getAddExpr(
|
|
BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
|
|
const SCEV *Rem = SE->getURemExpr(
|
|
SE->applyLoopGuards(ExitCount, TheLoop),
|
|
SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
|
|
if (Rem->isZero()) {
|
|
// Accept MaxFixedVF if we do not have a tail.
|
|
LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
|
|
return MaxFactors;
|
|
}
|
|
}
|
|
|
|
// If we don't know the precise trip count, or if the trip count that we
|
|
// found modulo the vectorization factor is not zero, try to fold the tail
|
|
// by masking.
|
|
// FIXME: look for a smaller MaxVF that does divide TC rather than masking.
|
|
if (Legal->prepareToFoldTailByMasking()) {
|
|
CanFoldTailByMasking = true;
|
|
return MaxFactors;
|
|
}
|
|
|
|
// If there was a tail-folding hint/switch, but we can't fold the tail by
|
|
// masking, fallback to a vectorization with a scalar epilogue.
|
|
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
|
|
"scalar epilogue instead.\n");
|
|
ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
|
|
return MaxFactors;
|
|
}
|
|
|
|
if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
if (TC == 0) {
|
|
reportVectorizationFailure(
|
|
"Unable to calculate the loop count due to complex control flow",
|
|
"unable to calculate the loop count due to complex control flow",
|
|
"UnknownLoopCountComplexCFG", ORE, TheLoop);
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
reportVectorizationFailure(
|
|
"Cannot optimize for size and vectorize at the same time.",
|
|
"cannot optimize for size and vectorize at the same time. "
|
|
"Enable vectorization of this loop with '#pragma clang loop "
|
|
"vectorize(enable)' when compiling with -Os/-Oz",
|
|
"NoTailLoopWithOptForSize", ORE, TheLoop);
|
|
return FixedScalableVFPair::getNone();
|
|
}
|
|
|
|
ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
|
|
unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
|
|
ElementCount MaxSafeVF, bool FoldTailByMasking) {
|
|
bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
|
|
const TypeSize WidestRegister = TTI.getRegisterBitWidth(
|
|
ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
|
|
: TargetTransformInfo::RGK_FixedWidthVector);
|
|
|
|
// Convenience function to return the minimum of two ElementCounts.
|
|
auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
|
|
assert((LHS.isScalable() == RHS.isScalable()) &&
|
|
"Scalable flags must match");
|
|
return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
|
|
};
|
|
|
|
// Ensure MaxVF is a power of 2; the dependence distance bound may not be.
|
|
// Note that both WidestRegister and WidestType may not be a powers of 2.
|
|
auto MaxVectorElementCount = ElementCount::get(
|
|
llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
|
|
ComputeScalableMaxVF);
|
|
MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
|
|
LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
|
|
<< (MaxVectorElementCount * WidestType) << " bits.\n");
|
|
|
|
if (!MaxVectorElementCount) {
|
|
LLVM_DEBUG(dbgs() << "LV: The target has no "
|
|
<< (ComputeScalableMaxVF ? "scalable" : "fixed")
|
|
<< " vector registers.\n");
|
|
return ElementCount::getFixed(1);
|
|
}
|
|
|
|
unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
|
|
if (MaxVectorElementCount.isScalable() &&
|
|
TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
|
|
auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
|
|
auto Min = Attr.getVScaleRangeMin();
|
|
WidestRegisterMinEC *= Min;
|
|
}
|
|
|
|
// When a scalar epilogue is required, at least one iteration of the scalar
|
|
// loop has to execute. Adjust ConstTripCount accordingly to avoid picking a
|
|
// max VF that results in a dead vector loop.
|
|
if (ConstTripCount > 0 && requiresScalarEpilogue(true))
|
|
ConstTripCount -= 1;
|
|
|
|
if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC &&
|
|
(!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
|
|
// If loop trip count (TC) is known at compile time there is no point in
|
|
// choosing VF greater than TC (as done in the loop below). Select maximum
|
|
// power of two which doesn't exceed TC.
|
|
// If MaxVectorElementCount is scalable, we only fall back on a fixed VF
|
|
// when the TC is less than or equal to the known number of lanes.
|
|
auto ClampedConstTripCount = llvm::bit_floor(ConstTripCount);
|
|
LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
|
|
"exceeding the constant trip count: "
|
|
<< ClampedConstTripCount << "\n");
|
|
return ElementCount::getFixed(ClampedConstTripCount);
|
|
}
|
|
|
|
TargetTransformInfo::RegisterKind RegKind =
|
|
ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
|
|
: TargetTransformInfo::RGK_FixedWidthVector;
|
|
ElementCount MaxVF = MaxVectorElementCount;
|
|
if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
|
|
TTI.shouldMaximizeVectorBandwidth(RegKind))) {
|
|
auto MaxVectorElementCountMaxBW = ElementCount::get(
|
|
llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
|
|
ComputeScalableMaxVF);
|
|
MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
|
|
|
|
// Collect all viable vectorization factors larger than the default MaxVF
|
|
// (i.e. MaxVectorElementCount).
|
|
SmallVector<ElementCount, 8> VFs;
|
|
for (ElementCount VS = MaxVectorElementCount * 2;
|
|
ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
|
|
VFs.push_back(VS);
|
|
|
|
// For each VF calculate its register usage.
|
|
auto RUs = calculateRegisterUsage(VFs);
|
|
|
|
// Select the largest VF which doesn't require more registers than existing
|
|
// ones.
|
|
for (int i = RUs.size() - 1; i >= 0; --i) {
|
|
bool Selected = true;
|
|
for (auto &pair : RUs[i].MaxLocalUsers) {
|
|
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
|
|
if (pair.second > TargetNumRegisters)
|
|
Selected = false;
|
|
}
|
|
if (Selected) {
|
|
MaxVF = VFs[i];
|
|
break;
|
|
}
|
|
}
|
|
if (ElementCount MinVF =
|
|
TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
|
|
if (ElementCount::isKnownLT(MaxVF, MinVF)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
|
|
<< ") with target's minimum: " << MinVF << '\n');
|
|
MaxVF = MinVF;
|
|
}
|
|
}
|
|
|
|
// Invalidate any widening decisions we might have made, in case the loop
|
|
// requires prediction (decided later), but we have already made some
|
|
// load/store widening decisions.
|
|
invalidateCostModelingDecisions();
|
|
}
|
|
return MaxVF;
|
|
}
|
|
|
|
/// Convenience function that returns the value of vscale_range iff
|
|
/// vscale_range.min == vscale_range.max or otherwise returns the value
|
|
/// returned by the corresponding TTI method.
|
|
static std::optional<unsigned>
|
|
getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI) {
|
|
const Function *Fn = L->getHeader()->getParent();
|
|
if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
|
|
auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
|
|
auto Min = Attr.getVScaleRangeMin();
|
|
auto Max = Attr.getVScaleRangeMax();
|
|
if (Max && Min == Max)
|
|
return Max;
|
|
}
|
|
|
|
return TTI.getVScaleForTuning();
|
|
}
|
|
|
|
bool LoopVectorizationPlanner::isMoreProfitable(
|
|
const VectorizationFactor &A, const VectorizationFactor &B) const {
|
|
InstructionCost CostA = A.Cost;
|
|
InstructionCost CostB = B.Cost;
|
|
|
|
unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(OrigLoop);
|
|
|
|
if (!A.Width.isScalable() && !B.Width.isScalable() && MaxTripCount) {
|
|
// If the trip count is a known (possibly small) constant, the trip count
|
|
// will be rounded up to an integer number of iterations under
|
|
// FoldTailByMasking. The total cost in that case will be
|
|
// VecCost*ceil(TripCount/VF). When not folding the tail, the total
|
|
// cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
|
|
// some extra overheads, but for the purpose of comparing the costs of
|
|
// different VFs we can use this to compare the total loop-body cost
|
|
// expected after vectorization.
|
|
auto GetCostForTC = [MaxTripCount, this](unsigned VF,
|
|
InstructionCost VectorCost,
|
|
InstructionCost ScalarCost) {
|
|
return CM.foldTailByMasking() ? VectorCost * divideCeil(MaxTripCount, VF)
|
|
: VectorCost * (MaxTripCount / VF) +
|
|
ScalarCost * (MaxTripCount % VF);
|
|
};
|
|
auto RTCostA = GetCostForTC(A.Width.getFixedValue(), CostA, A.ScalarCost);
|
|
auto RTCostB = GetCostForTC(B.Width.getFixedValue(), CostB, B.ScalarCost);
|
|
|
|
return RTCostA < RTCostB;
|
|
}
|
|
|
|
// Improve estimate for the vector width if it is scalable.
|
|
unsigned EstimatedWidthA = A.Width.getKnownMinValue();
|
|
unsigned EstimatedWidthB = B.Width.getKnownMinValue();
|
|
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) {
|
|
if (A.Width.isScalable())
|
|
EstimatedWidthA *= *VScale;
|
|
if (B.Width.isScalable())
|
|
EstimatedWidthB *= *VScale;
|
|
}
|
|
|
|
// Assume vscale may be larger than 1 (or the value being tuned for),
|
|
// so that scalable vectorization is slightly favorable over fixed-width
|
|
// vectorization.
|
|
if (A.Width.isScalable() && !B.Width.isScalable())
|
|
return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
|
|
|
|
// To avoid the need for FP division:
|
|
// (CostA / A.Width) < (CostB / B.Width)
|
|
// <=> (CostA * B.Width) < (CostB * A.Width)
|
|
return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
|
|
}
|
|
|
|
static void emitInvalidCostRemarks(SmallVector<InstructionVFPair> InvalidCosts,
|
|
OptimizationRemarkEmitter *ORE,
|
|
Loop *TheLoop) {
|
|
if (InvalidCosts.empty())
|
|
return;
|
|
|
|
// Emit a report of VFs with invalid costs in the loop.
|
|
|
|
// Group the remarks per instruction, keeping the instruction order from
|
|
// InvalidCosts.
|
|
std::map<Instruction *, unsigned> Numbering;
|
|
unsigned I = 0;
|
|
for (auto &Pair : InvalidCosts)
|
|
if (!Numbering.count(Pair.first))
|
|
Numbering[Pair.first] = I++;
|
|
|
|
// Sort the list, first on instruction(number) then on VF.
|
|
sort(InvalidCosts, [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
|
|
if (Numbering[A.first] != Numbering[B.first])
|
|
return Numbering[A.first] < Numbering[B.first];
|
|
ElementCountComparator ECC;
|
|
return ECC(A.second, B.second);
|
|
});
|
|
|
|
// For a list of ordered instruction-vf pairs:
|
|
// [(load, vf1), (load, vf2), (store, vf1)]
|
|
// Group the instructions together to emit separate remarks for:
|
|
// load (vf1, vf2)
|
|
// store (vf1)
|
|
auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
|
|
auto Subset = ArrayRef<InstructionVFPair>();
|
|
do {
|
|
if (Subset.empty())
|
|
Subset = Tail.take_front(1);
|
|
|
|
Instruction *I = Subset.front().first;
|
|
|
|
// If the next instruction is different, or if there are no other pairs,
|
|
// emit a remark for the collated subset. e.g.
|
|
// [(load, vf1), (load, vf2))]
|
|
// to emit:
|
|
// remark: invalid costs for 'load' at VF=(vf, vf2)
|
|
if (Subset == Tail || Tail[Subset.size()].first != I) {
|
|
std::string OutString;
|
|
raw_string_ostream OS(OutString);
|
|
assert(!Subset.empty() && "Unexpected empty range");
|
|
OS << "Instruction with invalid costs prevented vectorization at VF=(";
|
|
for (const auto &Pair : Subset)
|
|
OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
|
|
OS << "):";
|
|
if (auto *CI = dyn_cast<CallInst>(I))
|
|
OS << " call to " << CI->getCalledFunction()->getName();
|
|
else
|
|
OS << " " << I->getOpcodeName();
|
|
OS.flush();
|
|
reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
|
|
Tail = Tail.drop_front(Subset.size());
|
|
Subset = {};
|
|
} else
|
|
// Grow the subset by one element
|
|
Subset = Tail.take_front(Subset.size() + 1);
|
|
} while (!Tail.empty());
|
|
}
|
|
|
|
VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor(
|
|
const ElementCountSet &VFCandidates) {
|
|
InstructionCost ExpectedCost =
|
|
CM.expectedCost(ElementCount::getFixed(1)).first;
|
|
LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
|
|
assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
|
|
assert(VFCandidates.count(ElementCount::getFixed(1)) &&
|
|
"Expected Scalar VF to be a candidate");
|
|
|
|
const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
|
|
ExpectedCost);
|
|
VectorizationFactor ChosenFactor = ScalarCost;
|
|
|
|
bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
|
|
if (ForceVectorization && VFCandidates.size() > 1) {
|
|
// Ignore scalar width, because the user explicitly wants vectorization.
|
|
// Initialize cost to max so that VF = 2 is, at least, chosen during cost
|
|
// evaluation.
|
|
ChosenFactor.Cost = InstructionCost::getMax();
|
|
}
|
|
|
|
SmallVector<InstructionVFPair> InvalidCosts;
|
|
for (const auto &i : VFCandidates) {
|
|
// The cost for scalar VF=1 is already calculated, so ignore it.
|
|
if (i.isScalar())
|
|
continue;
|
|
|
|
LoopVectorizationCostModel::VectorizationCostTy C =
|
|
CM.expectedCost(i, &InvalidCosts);
|
|
VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
|
|
|
|
#ifndef NDEBUG
|
|
unsigned AssumedMinimumVscale = 1;
|
|
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI))
|
|
AssumedMinimumVscale = *VScale;
|
|
unsigned Width =
|
|
Candidate.Width.isScalable()
|
|
? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
|
|
: Candidate.Width.getFixedValue();
|
|
LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
|
|
<< " costs: " << (Candidate.Cost / Width));
|
|
if (i.isScalable())
|
|
LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
|
|
<< AssumedMinimumVscale << ")");
|
|
LLVM_DEBUG(dbgs() << ".\n");
|
|
#endif
|
|
|
|
if (!C.second && !ForceVectorization) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Not considering vector loop of width " << i
|
|
<< " because it will not generate any vector instructions.\n");
|
|
continue;
|
|
}
|
|
|
|
// If profitable add it to ProfitableVF list.
|
|
if (isMoreProfitable(Candidate, ScalarCost))
|
|
ProfitableVFs.push_back(Candidate);
|
|
|
|
if (isMoreProfitable(Candidate, ChosenFactor))
|
|
ChosenFactor = Candidate;
|
|
}
|
|
|
|
emitInvalidCostRemarks(InvalidCosts, ORE, OrigLoop);
|
|
|
|
if (!EnableCondStoresVectorization && CM.hasPredStores()) {
|
|
reportVectorizationFailure(
|
|
"There are conditional stores.",
|
|
"store that is conditionally executed prevents vectorization",
|
|
"ConditionalStore", ORE, OrigLoop);
|
|
ChosenFactor = ScalarCost;
|
|
}
|
|
|
|
LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
|
|
!isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
|
|
<< "LV: Vectorization seems to be not beneficial, "
|
|
<< "but was forced by a user.\n");
|
|
LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
|
|
return ChosenFactor;
|
|
}
|
|
|
|
bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
|
|
ElementCount VF) const {
|
|
// Cross iteration phis such as reductions need special handling and are
|
|
// currently unsupported.
|
|
if (any_of(OrigLoop->getHeader()->phis(),
|
|
[&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
|
|
return false;
|
|
|
|
// Phis with uses outside of the loop require special handling and are
|
|
// currently unsupported.
|
|
for (const auto &Entry : Legal->getInductionVars()) {
|
|
// Look for uses of the value of the induction at the last iteration.
|
|
Value *PostInc =
|
|
Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
|
|
for (User *U : PostInc->users())
|
|
if (!OrigLoop->contains(cast<Instruction>(U)))
|
|
return false;
|
|
// Look for uses of penultimate value of the induction.
|
|
for (User *U : Entry.first->users())
|
|
if (!OrigLoop->contains(cast<Instruction>(U)))
|
|
return false;
|
|
}
|
|
|
|
// Epilogue vectorization code has not been auditted to ensure it handles
|
|
// non-latch exits properly. It may be fine, but it needs auditted and
|
|
// tested.
|
|
if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
|
|
const ElementCount VF) const {
|
|
// FIXME: We need a much better cost-model to take different parameters such
|
|
// as register pressure, code size increase and cost of extra branches into
|
|
// account. For now we apply a very crude heuristic and only consider loops
|
|
// with vectorization factors larger than a certain value.
|
|
|
|
// Allow the target to opt out entirely.
|
|
if (!TTI.preferEpilogueVectorization())
|
|
return false;
|
|
|
|
// We also consider epilogue vectorization unprofitable for targets that don't
|
|
// consider interleaving beneficial (eg. MVE).
|
|
if (TTI.getMaxInterleaveFactor(VF) <= 1)
|
|
return false;
|
|
|
|
unsigned Multiplier = 1;
|
|
if (VF.isScalable())
|
|
Multiplier = getVScaleForTuning(TheLoop, TTI).value_or(1);
|
|
if ((Multiplier * VF.getKnownMinValue()) >= EpilogueVectorizationMinVF)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
VectorizationFactor LoopVectorizationPlanner::selectEpilogueVectorizationFactor(
|
|
const ElementCount MainLoopVF, unsigned IC) {
|
|
VectorizationFactor Result = VectorizationFactor::Disabled();
|
|
if (!EnableEpilogueVectorization) {
|
|
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
|
|
return Result;
|
|
}
|
|
|
|
if (!CM.isScalarEpilogueAllowed()) {
|
|
LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
|
|
"epilogue is allowed.\n");
|
|
return Result;
|
|
}
|
|
|
|
// Not really a cost consideration, but check for unsupported cases here to
|
|
// simplify the logic.
|
|
if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
|
|
LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
|
|
"is not a supported candidate.\n");
|
|
return Result;
|
|
}
|
|
|
|
if (EpilogueVectorizationForceVF > 1) {
|
|
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
|
|
ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
|
|
if (hasPlanWithVF(ForcedEC))
|
|
return {ForcedEC, 0, 0};
|
|
else {
|
|
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
|
|
"viable.\n");
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
if (OrigLoop->getHeader()->getParent()->hasOptSize() ||
|
|
OrigLoop->getHeader()->getParent()->hasMinSize()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
|
|
return Result;
|
|
}
|
|
|
|
if (!CM.isEpilogueVectorizationProfitable(MainLoopVF)) {
|
|
LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
|
|
"this loop\n");
|
|
return Result;
|
|
}
|
|
|
|
// If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
|
|
// the main loop handles 8 lanes per iteration. We could still benefit from
|
|
// vectorizing the epilogue loop with VF=4.
|
|
ElementCount EstimatedRuntimeVF = MainLoopVF;
|
|
if (MainLoopVF.isScalable()) {
|
|
EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
|
|
if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI))
|
|
EstimatedRuntimeVF *= *VScale;
|
|
}
|
|
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
Type *TCType = Legal->getWidestInductionType();
|
|
const SCEV *RemainingIterations = nullptr;
|
|
for (auto &NextVF : ProfitableVFs) {
|
|
// Skip candidate VFs without a corresponding VPlan.
|
|
if (!hasPlanWithVF(NextVF.Width))
|
|
continue;
|
|
|
|
// Skip candidate VFs with widths >= the estimate runtime VF (scalable
|
|
// vectors) or the VF of the main loop (fixed vectors).
|
|
if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
|
|
ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
|
|
ElementCount::isKnownGE(NextVF.Width, MainLoopVF))
|
|
continue;
|
|
|
|
// If NextVF is greater than the number of remaining iterations, the
|
|
// epilogue loop would be dead. Skip such factors.
|
|
if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) {
|
|
// TODO: extend to support scalable VFs.
|
|
if (!RemainingIterations) {
|
|
const SCEV *TC = createTripCountSCEV(TCType, PSE, OrigLoop);
|
|
RemainingIterations = SE.getURemExpr(
|
|
TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC));
|
|
}
|
|
if (SE.isKnownPredicate(
|
|
CmpInst::ICMP_UGT,
|
|
SE.getConstant(TCType, NextVF.Width.getKnownMinValue()),
|
|
RemainingIterations))
|
|
continue;
|
|
}
|
|
|
|
if (Result.Width.isScalar() || isMoreProfitable(NextVF, Result))
|
|
Result = NextVF;
|
|
}
|
|
|
|
if (Result != VectorizationFactor::Disabled())
|
|
LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
|
|
<< Result.Width << "\n");
|
|
return Result;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
|
|
unsigned MinWidth = -1U;
|
|
unsigned MaxWidth = 8;
|
|
const DataLayout &DL = TheFunction->getParent()->getDataLayout();
|
|
// For in-loop reductions, no element types are added to ElementTypesInLoop
|
|
// if there are no loads/stores in the loop. In this case, check through the
|
|
// reduction variables to determine the maximum width.
|
|
if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
|
|
// Reset MaxWidth so that we can find the smallest type used by recurrences
|
|
// in the loop.
|
|
MaxWidth = -1U;
|
|
for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
|
|
const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
|
|
// When finding the min width used by the recurrence we need to account
|
|
// for casts on the input operands of the recurrence.
|
|
MaxWidth = std::min<unsigned>(
|
|
MaxWidth, std::min<unsigned>(
|
|
RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
|
|
RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
|
|
}
|
|
} else {
|
|
for (Type *T : ElementTypesInLoop) {
|
|
MinWidth = std::min<unsigned>(
|
|
MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
|
|
MaxWidth = std::max<unsigned>(
|
|
MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
|
|
}
|
|
}
|
|
return {MinWidth, MaxWidth};
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectElementTypesForWidening() {
|
|
ElementTypesInLoop.clear();
|
|
// For each block.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// For each instruction in the loop.
|
|
for (Instruction &I : BB->instructionsWithoutDebug()) {
|
|
Type *T = I.getType();
|
|
|
|
// Skip ignored values.
|
|
if (ValuesToIgnore.count(&I))
|
|
continue;
|
|
|
|
// Only examine Loads, Stores and PHINodes.
|
|
if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
|
|
continue;
|
|
|
|
// Examine PHI nodes that are reduction variables. Update the type to
|
|
// account for the recurrence type.
|
|
if (auto *PN = dyn_cast<PHINode>(&I)) {
|
|
if (!Legal->isReductionVariable(PN))
|
|
continue;
|
|
const RecurrenceDescriptor &RdxDesc =
|
|
Legal->getReductionVars().find(PN)->second;
|
|
if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
|
|
TTI.preferInLoopReduction(RdxDesc.getOpcode(),
|
|
RdxDesc.getRecurrenceType(),
|
|
TargetTransformInfo::ReductionFlags()))
|
|
continue;
|
|
T = RdxDesc.getRecurrenceType();
|
|
}
|
|
|
|
// Examine the stored values.
|
|
if (auto *ST = dyn_cast<StoreInst>(&I))
|
|
T = ST->getValueOperand()->getType();
|
|
|
|
assert(T->isSized() &&
|
|
"Expected the load/store/recurrence type to be sized");
|
|
|
|
ElementTypesInLoop.insert(T);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
|
|
InstructionCost LoopCost) {
|
|
// -- The interleave heuristics --
|
|
// We interleave the loop in order to expose ILP and reduce the loop overhead.
|
|
// There are many micro-architectural considerations that we can't predict
|
|
// at this level. For example, frontend pressure (on decode or fetch) due to
|
|
// code size, or the number and capabilities of the execution ports.
|
|
//
|
|
// We use the following heuristics to select the interleave count:
|
|
// 1. If the code has reductions, then we interleave to break the cross
|
|
// iteration dependency.
|
|
// 2. If the loop is really small, then we interleave to reduce the loop
|
|
// overhead.
|
|
// 3. We don't interleave if we think that we will spill registers to memory
|
|
// due to the increased register pressure.
|
|
|
|
if (!isScalarEpilogueAllowed())
|
|
return 1;
|
|
|
|
// We used the distance for the interleave count.
|
|
if (!Legal->isSafeForAnyVectorWidth())
|
|
return 1;
|
|
|
|
auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
|
|
const bool HasReductions = !Legal->getReductionVars().empty();
|
|
// Do not interleave loops with a relatively small known or estimated trip
|
|
// count. But we will interleave when InterleaveSmallLoopScalarReduction is
|
|
// enabled, and the code has scalar reductions(HasReductions && VF = 1),
|
|
// because with the above conditions interleaving can expose ILP and break
|
|
// cross iteration dependences for reductions.
|
|
if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
|
|
!(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
|
|
return 1;
|
|
|
|
// If we did not calculate the cost for VF (because the user selected the VF)
|
|
// then we calculate the cost of VF here.
|
|
if (LoopCost == 0) {
|
|
LoopCost = expectedCost(VF).first;
|
|
assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
|
|
|
|
// Loop body is free and there is no need for interleaving.
|
|
if (LoopCost == 0)
|
|
return 1;
|
|
}
|
|
|
|
RegisterUsage R = calculateRegisterUsage({VF})[0];
|
|
// We divide by these constants so assume that we have at least one
|
|
// instruction that uses at least one register.
|
|
for (auto& pair : R.MaxLocalUsers) {
|
|
pair.second = std::max(pair.second, 1U);
|
|
}
|
|
|
|
// We calculate the interleave count using the following formula.
|
|
// Subtract the number of loop invariants from the number of available
|
|
// registers. These registers are used by all of the interleaved instances.
|
|
// Next, divide the remaining registers by the number of registers that is
|
|
// required by the loop, in order to estimate how many parallel instances
|
|
// fit without causing spills. All of this is rounded down if necessary to be
|
|
// a power of two. We want power of two interleave count to simplify any
|
|
// addressing operations or alignment considerations.
|
|
// We also want power of two interleave counts to ensure that the induction
|
|
// variable of the vector loop wraps to zero, when tail is folded by masking;
|
|
// this currently happens when OptForSize, in which case IC is set to 1 above.
|
|
unsigned IC = UINT_MAX;
|
|
|
|
for (auto& pair : R.MaxLocalUsers) {
|
|
unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
|
|
LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
|
|
<< " registers of "
|
|
<< TTI.getRegisterClassName(pair.first) << " register class\n");
|
|
if (VF.isScalar()) {
|
|
if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
|
|
TargetNumRegisters = ForceTargetNumScalarRegs;
|
|
} else {
|
|
if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
|
|
TargetNumRegisters = ForceTargetNumVectorRegs;
|
|
}
|
|
unsigned MaxLocalUsers = pair.second;
|
|
unsigned LoopInvariantRegs = 0;
|
|
if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
|
|
LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
|
|
|
|
unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
|
|
MaxLocalUsers);
|
|
// Don't count the induction variable as interleaved.
|
|
if (EnableIndVarRegisterHeur) {
|
|
TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
|
|
std::max(1U, (MaxLocalUsers - 1)));
|
|
}
|
|
|
|
IC = std::min(IC, TmpIC);
|
|
}
|
|
|
|
// Clamp the interleave ranges to reasonable counts.
|
|
unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
|
|
|
|
// Check if the user has overridden the max.
|
|
if (VF.isScalar()) {
|
|
if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
|
|
MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
|
|
} else {
|
|
if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
|
|
MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
|
|
}
|
|
|
|
// If trip count is known or estimated compile time constant, limit the
|
|
// interleave count to be less than the trip count divided by VF, provided it
|
|
// is at least 1.
|
|
//
|
|
// For scalable vectors we can't know if interleaving is beneficial. It may
|
|
// not be beneficial for small loops if none of the lanes in the second vector
|
|
// iterations is enabled. However, for larger loops, there is likely to be a
|
|
// similar benefit as for fixed-width vectors. For now, we choose to leave
|
|
// the InterleaveCount as if vscale is '1', although if some information about
|
|
// the vector is known (e.g. min vector size), we can make a better decision.
|
|
if (BestKnownTC) {
|
|
MaxInterleaveCount =
|
|
std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
|
|
// Make sure MaxInterleaveCount is greater than 0.
|
|
MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
|
|
}
|
|
|
|
assert(MaxInterleaveCount > 0 &&
|
|
"Maximum interleave count must be greater than 0");
|
|
|
|
// Clamp the calculated IC to be between the 1 and the max interleave count
|
|
// that the target and trip count allows.
|
|
if (IC > MaxInterleaveCount)
|
|
IC = MaxInterleaveCount;
|
|
else
|
|
// Make sure IC is greater than 0.
|
|
IC = std::max(1u, IC);
|
|
|
|
assert(IC > 0 && "Interleave count must be greater than 0.");
|
|
|
|
// Interleave if we vectorized this loop and there is a reduction that could
|
|
// benefit from interleaving.
|
|
if (VF.isVector() && HasReductions) {
|
|
LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
|
|
return IC;
|
|
}
|
|
|
|
// For any scalar loop that either requires runtime checks or predication we
|
|
// are better off leaving this to the unroller. Note that if we've already
|
|
// vectorized the loop we will have done the runtime check and so interleaving
|
|
// won't require further checks.
|
|
bool ScalarInterleavingRequiresPredication =
|
|
(VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
|
|
return Legal->blockNeedsPredication(BB);
|
|
}));
|
|
bool ScalarInterleavingRequiresRuntimePointerCheck =
|
|
(VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
|
|
|
|
// We want to interleave small loops in order to reduce the loop overhead and
|
|
// potentially expose ILP opportunities.
|
|
LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
|
|
<< "LV: IC is " << IC << '\n'
|
|
<< "LV: VF is " << VF << '\n');
|
|
const bool AggressivelyInterleaveReductions =
|
|
TTI.enableAggressiveInterleaving(HasReductions);
|
|
if (!ScalarInterleavingRequiresRuntimePointerCheck &&
|
|
!ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
|
|
// We assume that the cost overhead is 1 and we use the cost model
|
|
// to estimate the cost of the loop and interleave until the cost of the
|
|
// loop overhead is about 5% of the cost of the loop.
|
|
unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
|
|
SmallLoopCost / *LoopCost.getValue()));
|
|
|
|
// Interleave until store/load ports (estimated by max interleave count) are
|
|
// saturated.
|
|
unsigned NumStores = Legal->getNumStores();
|
|
unsigned NumLoads = Legal->getNumLoads();
|
|
unsigned StoresIC = IC / (NumStores ? NumStores : 1);
|
|
unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
|
|
|
|
// There is little point in interleaving for reductions containing selects
|
|
// and compares when VF=1 since it may just create more overhead than it's
|
|
// worth for loops with small trip counts. This is because we still have to
|
|
// do the final reduction after the loop.
|
|
bool HasSelectCmpReductions =
|
|
HasReductions &&
|
|
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
return RecurrenceDescriptor::isAnyOfRecurrenceKind(
|
|
RdxDesc.getRecurrenceKind());
|
|
});
|
|
if (HasSelectCmpReductions) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
|
|
return 1;
|
|
}
|
|
|
|
// If we have a scalar reduction (vector reductions are already dealt with
|
|
// by this point), we can increase the critical path length if the loop
|
|
// we're interleaving is inside another loop. For tree-wise reductions
|
|
// set the limit to 2, and for ordered reductions it's best to disable
|
|
// interleaving entirely.
|
|
if (HasReductions && TheLoop->getLoopDepth() > 1) {
|
|
bool HasOrderedReductions =
|
|
any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
return RdxDesc.isOrdered();
|
|
});
|
|
if (HasOrderedReductions) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
|
|
return 1;
|
|
}
|
|
|
|
unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
|
|
SmallIC = std::min(SmallIC, F);
|
|
StoresIC = std::min(StoresIC, F);
|
|
LoadsIC = std::min(LoadsIC, F);
|
|
}
|
|
|
|
if (EnableLoadStoreRuntimeInterleave &&
|
|
std::max(StoresIC, LoadsIC) > SmallIC) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Interleaving to saturate store or load ports.\n");
|
|
return std::max(StoresIC, LoadsIC);
|
|
}
|
|
|
|
// If there are scalar reductions and TTI has enabled aggressive
|
|
// interleaving for reductions, we will interleave to expose ILP.
|
|
if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
|
|
AggressivelyInterleaveReductions) {
|
|
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
|
|
// Interleave no less than SmallIC but not as aggressive as the normal IC
|
|
// to satisfy the rare situation when resources are too limited.
|
|
return std::max(IC / 2, SmallIC);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
|
|
return SmallIC;
|
|
}
|
|
}
|
|
|
|
// Interleave if this is a large loop (small loops are already dealt with by
|
|
// this point) that could benefit from interleaving.
|
|
if (AggressivelyInterleaveReductions) {
|
|
LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
|
|
return IC;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
|
|
return 1;
|
|
}
|
|
|
|
SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
|
|
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
|
|
// This function calculates the register usage by measuring the highest number
|
|
// of values that are alive at a single location. Obviously, this is a very
|
|
// rough estimation. We scan the loop in a topological order in order and
|
|
// assign a number to each instruction. We use RPO to ensure that defs are
|
|
// met before their users. We assume that each instruction that has in-loop
|
|
// users starts an interval. We record every time that an in-loop value is
|
|
// used, so we have a list of the first and last occurrences of each
|
|
// instruction. Next, we transpose this data structure into a multi map that
|
|
// holds the list of intervals that *end* at a specific location. This multi
|
|
// map allows us to perform a linear search. We scan the instructions linearly
|
|
// and record each time that a new interval starts, by placing it in a set.
|
|
// If we find this value in the multi-map then we remove it from the set.
|
|
// The max register usage is the maximum size of the set.
|
|
// We also search for instructions that are defined outside the loop, but are
|
|
// used inside the loop. We need this number separately from the max-interval
|
|
// usage number because when we unroll, loop-invariant values do not take
|
|
// more register.
|
|
LoopBlocksDFS DFS(TheLoop);
|
|
DFS.perform(LI);
|
|
|
|
RegisterUsage RU;
|
|
|
|
// Each 'key' in the map opens a new interval. The values
|
|
// of the map are the index of the 'last seen' usage of the
|
|
// instruction that is the key.
|
|
using IntervalMap = DenseMap<Instruction *, unsigned>;
|
|
|
|
// Maps instruction to its index.
|
|
SmallVector<Instruction *, 64> IdxToInstr;
|
|
// Marks the end of each interval.
|
|
IntervalMap EndPoint;
|
|
// Saves the list of instruction indices that are used in the loop.
|
|
SmallPtrSet<Instruction *, 8> Ends;
|
|
// Saves the list of values that are used in the loop but are defined outside
|
|
// the loop (not including non-instruction values such as arguments and
|
|
// constants).
|
|
SmallSetVector<Instruction *, 8> LoopInvariants;
|
|
|
|
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
|
|
for (Instruction &I : BB->instructionsWithoutDebug()) {
|
|
IdxToInstr.push_back(&I);
|
|
|
|
// Save the end location of each USE.
|
|
for (Value *U : I.operands()) {
|
|
auto *Instr = dyn_cast<Instruction>(U);
|
|
|
|
// Ignore non-instruction values such as arguments, constants, etc.
|
|
// FIXME: Might need some motivation why these values are ignored. If
|
|
// for example an argument is used inside the loop it will increase the
|
|
// register pressure (so shouldn't we add it to LoopInvariants).
|
|
if (!Instr)
|
|
continue;
|
|
|
|
// If this instruction is outside the loop then record it and continue.
|
|
if (!TheLoop->contains(Instr)) {
|
|
LoopInvariants.insert(Instr);
|
|
continue;
|
|
}
|
|
|
|
// Overwrite previous end points.
|
|
EndPoint[Instr] = IdxToInstr.size();
|
|
Ends.insert(Instr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Saves the list of intervals that end with the index in 'key'.
|
|
using InstrList = SmallVector<Instruction *, 2>;
|
|
DenseMap<unsigned, InstrList> TransposeEnds;
|
|
|
|
// Transpose the EndPoints to a list of values that end at each index.
|
|
for (auto &Interval : EndPoint)
|
|
TransposeEnds[Interval.second].push_back(Interval.first);
|
|
|
|
SmallPtrSet<Instruction *, 8> OpenIntervals;
|
|
SmallVector<RegisterUsage, 8> RUs(VFs.size());
|
|
SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
|
|
|
|
LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
|
|
|
|
const auto &TTICapture = TTI;
|
|
auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
|
|
if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
|
|
return 0;
|
|
return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
|
|
};
|
|
|
|
for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
|
|
Instruction *I = IdxToInstr[i];
|
|
|
|
// Remove all of the instructions that end at this location.
|
|
InstrList &List = TransposeEnds[i];
|
|
for (Instruction *ToRemove : List)
|
|
OpenIntervals.erase(ToRemove);
|
|
|
|
// Ignore instructions that are never used within the loop.
|
|
if (!Ends.count(I))
|
|
continue;
|
|
|
|
// Skip ignored values.
|
|
if (ValuesToIgnore.count(I))
|
|
continue;
|
|
|
|
// For each VF find the maximum usage of registers.
|
|
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
|
|
// Count the number of registers used, per register class, given all open
|
|
// intervals.
|
|
// Note that elements in this SmallMapVector will be default constructed
|
|
// as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
|
|
// there is no previous entry for ClassID.
|
|
SmallMapVector<unsigned, unsigned, 4> RegUsage;
|
|
|
|
if (VFs[j].isScalar()) {
|
|
for (auto *Inst : OpenIntervals) {
|
|
unsigned ClassID =
|
|
TTI.getRegisterClassForType(false, Inst->getType());
|
|
// FIXME: The target might use more than one register for the type
|
|
// even in the scalar case.
|
|
RegUsage[ClassID] += 1;
|
|
}
|
|
} else {
|
|
collectUniformsAndScalars(VFs[j]);
|
|
for (auto *Inst : OpenIntervals) {
|
|
// Skip ignored values for VF > 1.
|
|
if (VecValuesToIgnore.count(Inst))
|
|
continue;
|
|
if (isScalarAfterVectorization(Inst, VFs[j])) {
|
|
unsigned ClassID =
|
|
TTI.getRegisterClassForType(false, Inst->getType());
|
|
// FIXME: The target might use more than one register for the type
|
|
// even in the scalar case.
|
|
RegUsage[ClassID] += 1;
|
|
} else {
|
|
unsigned ClassID =
|
|
TTI.getRegisterClassForType(true, Inst->getType());
|
|
RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& pair : RegUsage) {
|
|
auto &Entry = MaxUsages[j][pair.first];
|
|
Entry = std::max(Entry, pair.second);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
|
|
<< OpenIntervals.size() << '\n');
|
|
|
|
// Add the current instruction to the list of open intervals.
|
|
OpenIntervals.insert(I);
|
|
}
|
|
|
|
for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
|
|
// Note that elements in this SmallMapVector will be default constructed
|
|
// as 0. So we can use "Invariant[ClassID] += n" in the code below even if
|
|
// there is no previous entry for ClassID.
|
|
SmallMapVector<unsigned, unsigned, 4> Invariant;
|
|
|
|
for (auto *Inst : LoopInvariants) {
|
|
// FIXME: The target might use more than one register for the type
|
|
// even in the scalar case.
|
|
bool IsScalar = all_of(Inst->users(), [&](User *U) {
|
|
auto *I = cast<Instruction>(U);
|
|
return TheLoop != LI->getLoopFor(I->getParent()) ||
|
|
isScalarAfterVectorization(I, VFs[i]);
|
|
});
|
|
|
|
ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[i];
|
|
unsigned ClassID =
|
|
TTI.getRegisterClassForType(VF.isVector(), Inst->getType());
|
|
Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
|
|
dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
|
|
<< " item\n";
|
|
for (const auto &pair : MaxUsages[i]) {
|
|
dbgs() << "LV(REG): RegisterClass: "
|
|
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
|
|
<< " registers\n";
|
|
}
|
|
dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
|
|
<< " item\n";
|
|
for (const auto &pair : Invariant) {
|
|
dbgs() << "LV(REG): RegisterClass: "
|
|
<< TTI.getRegisterClassName(pair.first) << ", " << pair.second
|
|
<< " registers\n";
|
|
}
|
|
});
|
|
|
|
RU.LoopInvariantRegs = Invariant;
|
|
RU.MaxLocalUsers = MaxUsages[i];
|
|
RUs[i] = RU;
|
|
}
|
|
|
|
return RUs;
|
|
}
|
|
|
|
bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
|
|
ElementCount VF) {
|
|
// TODO: Cost model for emulated masked load/store is completely
|
|
// broken. This hack guides the cost model to use an artificially
|
|
// high enough value to practically disable vectorization with such
|
|
// operations, except where previously deployed legality hack allowed
|
|
// using very low cost values. This is to avoid regressions coming simply
|
|
// from moving "masked load/store" check from legality to cost model.
|
|
// Masked Load/Gather emulation was previously never allowed.
|
|
// Limited number of Masked Store/Scatter emulation was allowed.
|
|
assert((isPredicatedInst(I)) &&
|
|
"Expecting a scalar emulated instruction");
|
|
return isa<LoadInst>(I) ||
|
|
(isa<StoreInst>(I) &&
|
|
NumPredStores > NumberOfStoresToPredicate);
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
|
|
// If we aren't vectorizing the loop, or if we've already collected the
|
|
// instructions to scalarize, there's nothing to do. Collection may already
|
|
// have occurred if we have a user-selected VF and are now computing the
|
|
// expected cost for interleaving.
|
|
if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF))
|
|
return;
|
|
|
|
// Initialize a mapping for VF in InstsToScalalarize. If we find that it's
|
|
// not profitable to scalarize any instructions, the presence of VF in the
|
|
// map will indicate that we've analyzed it already.
|
|
ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
|
|
|
|
PredicatedBBsAfterVectorization[VF].clear();
|
|
|
|
// Find all the instructions that are scalar with predication in the loop and
|
|
// determine if it would be better to not if-convert the blocks they are in.
|
|
// If so, we also record the instructions to scalarize.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
if (!blockNeedsPredicationForAnyReason(BB))
|
|
continue;
|
|
for (Instruction &I : *BB)
|
|
if (isScalarWithPredication(&I, VF)) {
|
|
ScalarCostsTy ScalarCosts;
|
|
// Do not apply discount if scalable, because that would lead to
|
|
// invalid scalarization costs.
|
|
// Do not apply discount logic if hacked cost is needed
|
|
// for emulated masked memrefs.
|
|
if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
|
|
computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
|
|
ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
|
|
// Remember that BB will remain after vectorization.
|
|
PredicatedBBsAfterVectorization[VF].insert(BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
|
|
Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
|
|
assert(!isUniformAfterVectorization(PredInst, VF) &&
|
|
"Instruction marked uniform-after-vectorization will be predicated");
|
|
|
|
// Initialize the discount to zero, meaning that the scalar version and the
|
|
// vector version cost the same.
|
|
InstructionCost Discount = 0;
|
|
|
|
// Holds instructions to analyze. The instructions we visit are mapped in
|
|
// ScalarCosts. Those instructions are the ones that would be scalarized if
|
|
// we find that the scalar version costs less.
|
|
SmallVector<Instruction *, 8> Worklist;
|
|
|
|
// Returns true if the given instruction can be scalarized.
|
|
auto canBeScalarized = [&](Instruction *I) -> bool {
|
|
// We only attempt to scalarize instructions forming a single-use chain
|
|
// from the original predicated block that would otherwise be vectorized.
|
|
// Although not strictly necessary, we give up on instructions we know will
|
|
// already be scalar to avoid traversing chains that are unlikely to be
|
|
// beneficial.
|
|
if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
|
|
isScalarAfterVectorization(I, VF))
|
|
return false;
|
|
|
|
// If the instruction is scalar with predication, it will be analyzed
|
|
// separately. We ignore it within the context of PredInst.
|
|
if (isScalarWithPredication(I, VF))
|
|
return false;
|
|
|
|
// If any of the instruction's operands are uniform after vectorization,
|
|
// the instruction cannot be scalarized. This prevents, for example, a
|
|
// masked load from being scalarized.
|
|
//
|
|
// We assume we will only emit a value for lane zero of an instruction
|
|
// marked uniform after vectorization, rather than VF identical values.
|
|
// Thus, if we scalarize an instruction that uses a uniform, we would
|
|
// create uses of values corresponding to the lanes we aren't emitting code
|
|
// for. This behavior can be changed by allowing getScalarValue to clone
|
|
// the lane zero values for uniforms rather than asserting.
|
|
for (Use &U : I->operands())
|
|
if (auto *J = dyn_cast<Instruction>(U.get()))
|
|
if (isUniformAfterVectorization(J, VF))
|
|
return false;
|
|
|
|
// Otherwise, we can scalarize the instruction.
|
|
return true;
|
|
};
|
|
|
|
// Compute the expected cost discount from scalarizing the entire expression
|
|
// feeding the predicated instruction. We currently only consider expressions
|
|
// that are single-use instruction chains.
|
|
Worklist.push_back(PredInst);
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.pop_back_val();
|
|
|
|
// If we've already analyzed the instruction, there's nothing to do.
|
|
if (ScalarCosts.contains(I))
|
|
continue;
|
|
|
|
// Compute the cost of the vector instruction. Note that this cost already
|
|
// includes the scalarization overhead of the predicated instruction.
|
|
InstructionCost VectorCost = getInstructionCost(I, VF).first;
|
|
|
|
// Compute the cost of the scalarized instruction. This cost is the cost of
|
|
// the instruction as if it wasn't if-converted and instead remained in the
|
|
// predicated block. We will scale this cost by block probability after
|
|
// computing the scalarization overhead.
|
|
InstructionCost ScalarCost =
|
|
VF.getFixedValue() *
|
|
getInstructionCost(I, ElementCount::getFixed(1)).first;
|
|
|
|
// Compute the scalarization overhead of needed insertelement instructions
|
|
// and phi nodes.
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
|
|
ScalarCost += TTI.getScalarizationOverhead(
|
|
cast<VectorType>(ToVectorTy(I->getType(), VF)),
|
|
APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true,
|
|
/*Extract*/ false, CostKind);
|
|
ScalarCost +=
|
|
VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
|
|
}
|
|
|
|
// Compute the scalarization overhead of needed extractelement
|
|
// instructions. For each of the instruction's operands, if the operand can
|
|
// be scalarized, add it to the worklist; otherwise, account for the
|
|
// overhead.
|
|
for (Use &U : I->operands())
|
|
if (auto *J = dyn_cast<Instruction>(U.get())) {
|
|
assert(VectorType::isValidElementType(J->getType()) &&
|
|
"Instruction has non-scalar type");
|
|
if (canBeScalarized(J))
|
|
Worklist.push_back(J);
|
|
else if (needsExtract(J, VF)) {
|
|
ScalarCost += TTI.getScalarizationOverhead(
|
|
cast<VectorType>(ToVectorTy(J->getType(), VF)),
|
|
APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
|
|
/*Extract*/ true, CostKind);
|
|
}
|
|
}
|
|
|
|
// Scale the total scalar cost by block probability.
|
|
ScalarCost /= getReciprocalPredBlockProb();
|
|
|
|
// Compute the discount. A non-negative discount means the vector version
|
|
// of the instruction costs more, and scalarizing would be beneficial.
|
|
Discount += VectorCost - ScalarCost;
|
|
ScalarCosts[I] = ScalarCost;
|
|
}
|
|
|
|
return Discount;
|
|
}
|
|
|
|
LoopVectorizationCostModel::VectorizationCostTy
|
|
LoopVectorizationCostModel::expectedCost(
|
|
ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
|
|
VectorizationCostTy Cost;
|
|
|
|
// For each block.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
VectorizationCostTy BlockCost;
|
|
|
|
// For each instruction in the old loop.
|
|
for (Instruction &I : BB->instructionsWithoutDebug()) {
|
|
// Skip ignored values.
|
|
if (ValuesToIgnore.count(&I) ||
|
|
(VF.isVector() && VecValuesToIgnore.count(&I)))
|
|
continue;
|
|
|
|
VectorizationCostTy C = getInstructionCost(&I, VF);
|
|
|
|
// Check if we should override the cost.
|
|
if (C.first.isValid() &&
|
|
ForceTargetInstructionCost.getNumOccurrences() > 0)
|
|
C.first = InstructionCost(ForceTargetInstructionCost);
|
|
|
|
// Keep a list of instructions with invalid costs.
|
|
if (Invalid && !C.first.isValid())
|
|
Invalid->emplace_back(&I, VF);
|
|
|
|
BlockCost.first += C.first;
|
|
BlockCost.second |= C.second;
|
|
LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
|
|
<< " for VF " << VF << " For instruction: " << I
|
|
<< '\n');
|
|
}
|
|
|
|
// If we are vectorizing a predicated block, it will have been
|
|
// if-converted. This means that the block's instructions (aside from
|
|
// stores and instructions that may divide by zero) will now be
|
|
// unconditionally executed. For the scalar case, we may not always execute
|
|
// the predicated block, if it is an if-else block. Thus, scale the block's
|
|
// cost by the probability of executing it. blockNeedsPredication from
|
|
// Legal is used so as to not include all blocks in tail folded loops.
|
|
if (VF.isScalar() && Legal->blockNeedsPredication(BB))
|
|
BlockCost.first /= getReciprocalPredBlockProb();
|
|
|
|
Cost.first += BlockCost.first;
|
|
Cost.second |= BlockCost.second;
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Gets Address Access SCEV after verifying that the access pattern
|
|
/// is loop invariant except the induction variable dependence.
|
|
///
|
|
/// This SCEV can be sent to the Target in order to estimate the address
|
|
/// calculation cost.
|
|
static const SCEV *getAddressAccessSCEV(
|
|
Value *Ptr,
|
|
LoopVectorizationLegality *Legal,
|
|
PredicatedScalarEvolution &PSE,
|
|
const Loop *TheLoop) {
|
|
|
|
auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
|
|
if (!Gep)
|
|
return nullptr;
|
|
|
|
// We are looking for a gep with all loop invariant indices except for one
|
|
// which should be an induction variable.
|
|
auto SE = PSE.getSE();
|
|
unsigned NumOperands = Gep->getNumOperands();
|
|
for (unsigned i = 1; i < NumOperands; ++i) {
|
|
Value *Opd = Gep->getOperand(i);
|
|
if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
|
|
!Legal->isInductionVariable(Opd))
|
|
return nullptr;
|
|
}
|
|
|
|
// Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
|
|
return PSE.getSCEV(Ptr);
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
|
|
ElementCount VF) {
|
|
assert(VF.isVector() &&
|
|
"Scalarization cost of instruction implies vectorization.");
|
|
if (VF.isScalable())
|
|
return InstructionCost::getInvalid();
|
|
|
|
Type *ValTy = getLoadStoreType(I);
|
|
auto SE = PSE.getSE();
|
|
|
|
unsigned AS = getLoadStoreAddressSpace(I);
|
|
Value *Ptr = getLoadStorePointerOperand(I);
|
|
Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
|
|
// NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
|
|
// that it is being called from this specific place.
|
|
|
|
// Figure out whether the access is strided and get the stride value
|
|
// if it's known in compile time
|
|
const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
|
|
|
|
// Get the cost of the scalar memory instruction and address computation.
|
|
InstructionCost Cost =
|
|
VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
|
|
|
|
// Don't pass *I here, since it is scalar but will actually be part of a
|
|
// vectorized loop where the user of it is a vectorized instruction.
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(),
|
|
ValTy->getScalarType(),
|
|
Alignment, AS, CostKind);
|
|
|
|
// Get the overhead of the extractelement and insertelement instructions
|
|
// we might create due to scalarization.
|
|
Cost += getScalarizationOverhead(I, VF, CostKind);
|
|
|
|
// If we have a predicated load/store, it will need extra i1 extracts and
|
|
// conditional branches, but may not be executed for each vector lane. Scale
|
|
// the cost by the probability of executing the predicated block.
|
|
if (isPredicatedInst(I)) {
|
|
Cost /= getReciprocalPredBlockProb();
|
|
|
|
// Add the cost of an i1 extract and a branch
|
|
auto *Vec_i1Ty =
|
|
VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
|
|
Cost += TTI.getScalarizationOverhead(
|
|
Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
|
|
/*Insert=*/false, /*Extract=*/true, CostKind);
|
|
Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
|
|
|
|
if (useEmulatedMaskMemRefHack(I, VF))
|
|
// Artificially setting to a high enough value to practically disable
|
|
// vectorization with such operations.
|
|
Cost = 3000000;
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
|
|
ElementCount VF) {
|
|
Type *ValTy = getLoadStoreType(I);
|
|
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
|
|
Value *Ptr = getLoadStorePointerOperand(I);
|
|
unsigned AS = getLoadStoreAddressSpace(I);
|
|
int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
|
|
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
|
|
"Stride should be 1 or -1 for consecutive memory access");
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
InstructionCost Cost = 0;
|
|
if (Legal->isMaskRequired(I)) {
|
|
Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
|
|
CostKind);
|
|
} else {
|
|
TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
|
|
Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
|
|
CostKind, OpInfo, I);
|
|
}
|
|
|
|
bool Reverse = ConsecutiveStride < 0;
|
|
if (Reverse)
|
|
Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
|
|
std::nullopt, CostKind, 0);
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
|
|
ElementCount VF) {
|
|
assert(Legal->isUniformMemOp(*I, VF));
|
|
|
|
Type *ValTy = getLoadStoreType(I);
|
|
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
unsigned AS = getLoadStoreAddressSpace(I);
|
|
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
if (isa<LoadInst>(I)) {
|
|
return TTI.getAddressComputationCost(ValTy) +
|
|
TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
|
|
CostKind) +
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
|
|
}
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
|
|
bool isLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
|
|
return TTI.getAddressComputationCost(ValTy) +
|
|
TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
|
|
CostKind) +
|
|
(isLoopInvariantStoreValue
|
|
? 0
|
|
: TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
|
|
CostKind, VF.getKnownMinValue() - 1));
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
|
|
ElementCount VF) {
|
|
Type *ValTy = getLoadStoreType(I);
|
|
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
const Value *Ptr = getLoadStorePointerOperand(I);
|
|
|
|
return TTI.getAddressComputationCost(VectorTy) +
|
|
TTI.getGatherScatterOpCost(
|
|
I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
|
|
TargetTransformInfo::TCK_RecipThroughput, I);
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
|
|
ElementCount VF) {
|
|
Type *ValTy = getLoadStoreType(I);
|
|
auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
|
|
unsigned AS = getLoadStoreAddressSpace(I);
|
|
enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
auto Group = getInterleavedAccessGroup(I);
|
|
assert(Group && "Fail to get an interleaved access group.");
|
|
|
|
unsigned InterleaveFactor = Group->getFactor();
|
|
auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
|
|
|
|
// Holds the indices of existing members in the interleaved group.
|
|
SmallVector<unsigned, 4> Indices;
|
|
for (unsigned IF = 0; IF < InterleaveFactor; IF++)
|
|
if (Group->getMember(IF))
|
|
Indices.push_back(IF);
|
|
|
|
// Calculate the cost of the whole interleaved group.
|
|
bool UseMaskForGaps =
|
|
(Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
|
|
(isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
|
|
InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
|
|
I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
|
|
AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps);
|
|
|
|
if (Group->isReverse()) {
|
|
// TODO: Add support for reversed masked interleaved access.
|
|
assert(!Legal->isMaskRequired(I) &&
|
|
"Reverse masked interleaved access not supported.");
|
|
Cost += Group->getNumMembers() *
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy,
|
|
std::nullopt, CostKind, 0);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
std::optional<InstructionCost>
|
|
LoopVectorizationCostModel::getReductionPatternCost(
|
|
Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
|
|
using namespace llvm::PatternMatch;
|
|
// Early exit for no inloop reductions
|
|
if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
|
|
return std::nullopt;
|
|
auto *VectorTy = cast<VectorType>(Ty);
|
|
|
|
// We are looking for a pattern of, and finding the minimal acceptable cost:
|
|
// reduce(mul(ext(A), ext(B))) or
|
|
// reduce(mul(A, B)) or
|
|
// reduce(ext(A)) or
|
|
// reduce(A).
|
|
// The basic idea is that we walk down the tree to do that, finding the root
|
|
// reduction instruction in InLoopReductionImmediateChains. From there we find
|
|
// the pattern of mul/ext and test the cost of the entire pattern vs the cost
|
|
// of the components. If the reduction cost is lower then we return it for the
|
|
// reduction instruction and 0 for the other instructions in the pattern. If
|
|
// it is not we return an invalid cost specifying the orignal cost method
|
|
// should be used.
|
|
Instruction *RetI = I;
|
|
if (match(RetI, m_ZExtOrSExt(m_Value()))) {
|
|
if (!RetI->hasOneUser())
|
|
return std::nullopt;
|
|
RetI = RetI->user_back();
|
|
}
|
|
|
|
if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
|
|
RetI->user_back()->getOpcode() == Instruction::Add) {
|
|
RetI = RetI->user_back();
|
|
}
|
|
|
|
// Test if the found instruction is a reduction, and if not return an invalid
|
|
// cost specifying the parent to use the original cost modelling.
|
|
if (!InLoopReductionImmediateChains.count(RetI))
|
|
return std::nullopt;
|
|
|
|
// Find the reduction this chain is a part of and calculate the basic cost of
|
|
// the reduction on its own.
|
|
Instruction *LastChain = InLoopReductionImmediateChains[RetI];
|
|
Instruction *ReductionPhi = LastChain;
|
|
while (!isa<PHINode>(ReductionPhi))
|
|
ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
|
|
|
|
const RecurrenceDescriptor &RdxDesc =
|
|
Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
|
|
|
|
InstructionCost BaseCost = TTI.getArithmeticReductionCost(
|
|
RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
|
|
|
|
// For a call to the llvm.fmuladd intrinsic we need to add the cost of a
|
|
// normal fmul instruction to the cost of the fadd reduction.
|
|
if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
|
|
BaseCost +=
|
|
TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
|
|
|
|
// If we're using ordered reductions then we can just return the base cost
|
|
// here, since getArithmeticReductionCost calculates the full ordered
|
|
// reduction cost when FP reassociation is not allowed.
|
|
if (useOrderedReductions(RdxDesc))
|
|
return BaseCost;
|
|
|
|
// Get the operand that was not the reduction chain and match it to one of the
|
|
// patterns, returning the better cost if it is found.
|
|
Instruction *RedOp = RetI->getOperand(1) == LastChain
|
|
? dyn_cast<Instruction>(RetI->getOperand(0))
|
|
: dyn_cast<Instruction>(RetI->getOperand(1));
|
|
|
|
VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
|
|
|
|
Instruction *Op0, *Op1;
|
|
if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
|
|
match(RedOp,
|
|
m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
|
|
match(Op0, m_ZExtOrSExt(m_Value())) &&
|
|
Op0->getOpcode() == Op1->getOpcode() &&
|
|
Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
|
|
!TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
|
|
(Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
|
|
|
|
// Matched reduce.add(ext(mul(ext(A), ext(B)))
|
|
// Note that the extend opcodes need to all match, or if A==B they will have
|
|
// been converted to zext(mul(sext(A), sext(A))) as it is known positive,
|
|
// which is equally fine.
|
|
bool IsUnsigned = isa<ZExtInst>(Op0);
|
|
auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
|
|
auto *MulType = VectorType::get(Op0->getType(), VectorTy);
|
|
|
|
InstructionCost ExtCost =
|
|
TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
|
|
TTI::CastContextHint::None, CostKind, Op0);
|
|
InstructionCost MulCost =
|
|
TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
|
|
InstructionCost Ext2Cost =
|
|
TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
|
|
TTI::CastContextHint::None, CostKind, RedOp);
|
|
|
|
InstructionCost RedCost = TTI.getMulAccReductionCost(
|
|
IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
|
|
|
|
if (RedCost.isValid() &&
|
|
RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
|
|
return I == RetI ? RedCost : 0;
|
|
} else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
|
|
!TheLoop->isLoopInvariant(RedOp)) {
|
|
// Matched reduce(ext(A))
|
|
bool IsUnsigned = isa<ZExtInst>(RedOp);
|
|
auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
|
|
InstructionCost RedCost = TTI.getExtendedReductionCost(
|
|
RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
|
|
RdxDesc.getFastMathFlags(), CostKind);
|
|
|
|
InstructionCost ExtCost =
|
|
TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
|
|
TTI::CastContextHint::None, CostKind, RedOp);
|
|
if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
|
|
return I == RetI ? RedCost : 0;
|
|
} else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
|
|
match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
|
|
if (match(Op0, m_ZExtOrSExt(m_Value())) &&
|
|
Op0->getOpcode() == Op1->getOpcode() &&
|
|
!TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
|
|
bool IsUnsigned = isa<ZExtInst>(Op0);
|
|
Type *Op0Ty = Op0->getOperand(0)->getType();
|
|
Type *Op1Ty = Op1->getOperand(0)->getType();
|
|
Type *LargestOpTy =
|
|
Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
|
|
: Op0Ty;
|
|
auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
|
|
|
|
// Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
|
|
// different sizes. We take the largest type as the ext to reduce, and add
|
|
// the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
|
|
InstructionCost ExtCost0 = TTI.getCastInstrCost(
|
|
Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
|
|
TTI::CastContextHint::None, CostKind, Op0);
|
|
InstructionCost ExtCost1 = TTI.getCastInstrCost(
|
|
Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
|
|
TTI::CastContextHint::None, CostKind, Op1);
|
|
InstructionCost MulCost =
|
|
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
|
|
|
|
InstructionCost RedCost = TTI.getMulAccReductionCost(
|
|
IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
|
|
InstructionCost ExtraExtCost = 0;
|
|
if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
|
|
Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
|
|
ExtraExtCost = TTI.getCastInstrCost(
|
|
ExtraExtOp->getOpcode(), ExtType,
|
|
VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
|
|
TTI::CastContextHint::None, CostKind, ExtraExtOp);
|
|
}
|
|
|
|
if (RedCost.isValid() &&
|
|
(RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
|
|
return I == RetI ? RedCost : 0;
|
|
} else if (!match(I, m_ZExtOrSExt(m_Value()))) {
|
|
// Matched reduce.add(mul())
|
|
InstructionCost MulCost =
|
|
TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
|
|
|
|
InstructionCost RedCost = TTI.getMulAccReductionCost(
|
|
true, RdxDesc.getRecurrenceType(), VectorTy, CostKind);
|
|
|
|
if (RedCost.isValid() && RedCost < MulCost + BaseCost)
|
|
return I == RetI ? RedCost : 0;
|
|
}
|
|
}
|
|
|
|
return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
|
|
ElementCount VF) {
|
|
// Calculate scalar cost only. Vectorization cost should be ready at this
|
|
// moment.
|
|
if (VF.isScalar()) {
|
|
Type *ValTy = getLoadStoreType(I);
|
|
const Align Alignment = getLoadStoreAlignment(I);
|
|
unsigned AS = getLoadStoreAddressSpace(I);
|
|
|
|
TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
|
|
return TTI.getAddressComputationCost(ValTy) +
|
|
TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
|
|
TTI::TCK_RecipThroughput, OpInfo, I);
|
|
}
|
|
return getWideningCost(I, VF);
|
|
}
|
|
|
|
LoopVectorizationCostModel::VectorizationCostTy
|
|
LoopVectorizationCostModel::getInstructionCost(Instruction *I,
|
|
ElementCount VF) {
|
|
// If we know that this instruction will remain uniform, check the cost of
|
|
// the scalar version.
|
|
if (isUniformAfterVectorization(I, VF))
|
|
VF = ElementCount::getFixed(1);
|
|
|
|
if (VF.isVector() && isProfitableToScalarize(I, VF))
|
|
return VectorizationCostTy(InstsToScalarize[VF][I], false);
|
|
|
|
// Forced scalars do not have any scalarization overhead.
|
|
auto ForcedScalar = ForcedScalars.find(VF);
|
|
if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
|
|
auto InstSet = ForcedScalar->second;
|
|
if (InstSet.count(I))
|
|
return VectorizationCostTy(
|
|
(getInstructionCost(I, ElementCount::getFixed(1)).first *
|
|
VF.getKnownMinValue()),
|
|
false);
|
|
}
|
|
|
|
Type *VectorTy;
|
|
InstructionCost C = getInstructionCost(I, VF, VectorTy);
|
|
|
|
bool TypeNotScalarized = false;
|
|
if (VF.isVector() && VectorTy->isVectorTy()) {
|
|
if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
|
|
if (VF.isScalable())
|
|
// <vscale x 1 x iN> is assumed to be profitable over iN because
|
|
// scalable registers are a distinct register class from scalar ones.
|
|
// If we ever find a target which wants to lower scalable vectors
|
|
// back to scalars, we'll need to update this code to explicitly
|
|
// ask TTI about the register class uses for each part.
|
|
TypeNotScalarized = NumParts <= VF.getKnownMinValue();
|
|
else
|
|
TypeNotScalarized = NumParts < VF.getKnownMinValue();
|
|
} else
|
|
C = InstructionCost::getInvalid();
|
|
}
|
|
return VectorizationCostTy(C, TypeNotScalarized);
|
|
}
|
|
|
|
InstructionCost LoopVectorizationCostModel::getScalarizationOverhead(
|
|
Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const {
|
|
|
|
// There is no mechanism yet to create a scalable scalarization loop,
|
|
// so this is currently Invalid.
|
|
if (VF.isScalable())
|
|
return InstructionCost::getInvalid();
|
|
|
|
if (VF.isScalar())
|
|
return 0;
|
|
|
|
InstructionCost Cost = 0;
|
|
Type *RetTy = ToVectorTy(I->getType(), VF);
|
|
if (!RetTy->isVoidTy() &&
|
|
(!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
|
|
Cost += TTI.getScalarizationOverhead(
|
|
cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()),
|
|
/*Insert*/ true,
|
|
/*Extract*/ false, CostKind);
|
|
|
|
// Some targets keep addresses scalar.
|
|
if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
|
|
return Cost;
|
|
|
|
// Some targets support efficient element stores.
|
|
if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
|
|
return Cost;
|
|
|
|
// Collect operands to consider.
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
Instruction::op_range Ops = CI ? CI->args() : I->operands();
|
|
|
|
// Skip operands that do not require extraction/scalarization and do not incur
|
|
// any overhead.
|
|
SmallVector<Type *> Tys;
|
|
for (auto *V : filterExtractingOperands(Ops, VF))
|
|
Tys.push_back(MaybeVectorizeType(V->getType(), VF));
|
|
return Cost + TTI.getOperandsScalarizationOverhead(
|
|
filterExtractingOperands(Ops, VF), Tys, CostKind);
|
|
}
|
|
|
|
void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
|
|
if (VF.isScalar())
|
|
return;
|
|
NumPredStores = 0;
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// For each instruction in the old loop.
|
|
for (Instruction &I : *BB) {
|
|
Value *Ptr = getLoadStorePointerOperand(&I);
|
|
if (!Ptr)
|
|
continue;
|
|
|
|
// TODO: We should generate better code and update the cost model for
|
|
// predicated uniform stores. Today they are treated as any other
|
|
// predicated store (see added test cases in
|
|
// invariant-store-vectorization.ll).
|
|
if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
|
|
NumPredStores++;
|
|
|
|
if (Legal->isUniformMemOp(I, VF)) {
|
|
auto isLegalToScalarize = [&]() {
|
|
if (!VF.isScalable())
|
|
// Scalarization of fixed length vectors "just works".
|
|
return true;
|
|
|
|
// We have dedicated lowering for unpredicated uniform loads and
|
|
// stores. Note that even with tail folding we know that at least
|
|
// one lane is active (i.e. generalized predication is not possible
|
|
// here), and the logic below depends on this fact.
|
|
if (!foldTailByMasking())
|
|
return true;
|
|
|
|
// For scalable vectors, a uniform memop load is always
|
|
// uniform-by-parts and we know how to scalarize that.
|
|
if (isa<LoadInst>(I))
|
|
return true;
|
|
|
|
// A uniform store isn't neccessarily uniform-by-part
|
|
// and we can't assume scalarization.
|
|
auto &SI = cast<StoreInst>(I);
|
|
return TheLoop->isLoopInvariant(SI.getValueOperand());
|
|
};
|
|
|
|
const InstructionCost GatherScatterCost =
|
|
isLegalGatherOrScatter(&I, VF) ?
|
|
getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
|
|
|
|
// Load: Scalar load + broadcast
|
|
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
|
|
// FIXME: This cost is a significant under-estimate for tail folded
|
|
// memory ops.
|
|
const InstructionCost ScalarizationCost = isLegalToScalarize() ?
|
|
getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid();
|
|
|
|
// Choose better solution for the current VF, Note that Invalid
|
|
// costs compare as maximumal large. If both are invalid, we get
|
|
// scalable invalid which signals a failure and a vectorization abort.
|
|
if (GatherScatterCost < ScalarizationCost)
|
|
setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
|
|
else
|
|
setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
|
|
continue;
|
|
}
|
|
|
|
// We assume that widening is the best solution when possible.
|
|
if (memoryInstructionCanBeWidened(&I, VF)) {
|
|
InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
|
|
int ConsecutiveStride = Legal->isConsecutivePtr(
|
|
getLoadStoreType(&I), getLoadStorePointerOperand(&I));
|
|
assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
|
|
"Expected consecutive stride.");
|
|
InstWidening Decision =
|
|
ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
|
|
setWideningDecision(&I, VF, Decision, Cost);
|
|
continue;
|
|
}
|
|
|
|
// Choose between Interleaving, Gather/Scatter or Scalarization.
|
|
InstructionCost InterleaveCost = InstructionCost::getInvalid();
|
|
unsigned NumAccesses = 1;
|
|
if (isAccessInterleaved(&I)) {
|
|
auto Group = getInterleavedAccessGroup(&I);
|
|
assert(Group && "Fail to get an interleaved access group.");
|
|
|
|
// Make one decision for the whole group.
|
|
if (getWideningDecision(&I, VF) != CM_Unknown)
|
|
continue;
|
|
|
|
NumAccesses = Group->getNumMembers();
|
|
if (interleavedAccessCanBeWidened(&I, VF))
|
|
InterleaveCost = getInterleaveGroupCost(&I, VF);
|
|
}
|
|
|
|
InstructionCost GatherScatterCost =
|
|
isLegalGatherOrScatter(&I, VF)
|
|
? getGatherScatterCost(&I, VF) * NumAccesses
|
|
: InstructionCost::getInvalid();
|
|
|
|
InstructionCost ScalarizationCost =
|
|
getMemInstScalarizationCost(&I, VF) * NumAccesses;
|
|
|
|
// Choose better solution for the current VF,
|
|
// write down this decision and use it during vectorization.
|
|
InstructionCost Cost;
|
|
InstWidening Decision;
|
|
if (InterleaveCost <= GatherScatterCost &&
|
|
InterleaveCost < ScalarizationCost) {
|
|
Decision = CM_Interleave;
|
|
Cost = InterleaveCost;
|
|
} else if (GatherScatterCost < ScalarizationCost) {
|
|
Decision = CM_GatherScatter;
|
|
Cost = GatherScatterCost;
|
|
} else {
|
|
Decision = CM_Scalarize;
|
|
Cost = ScalarizationCost;
|
|
}
|
|
// If the instructions belongs to an interleave group, the whole group
|
|
// receives the same decision. The whole group receives the cost, but
|
|
// the cost will actually be assigned to one instruction.
|
|
if (auto Group = getInterleavedAccessGroup(&I))
|
|
setWideningDecision(Group, VF, Decision, Cost);
|
|
else
|
|
setWideningDecision(&I, VF, Decision, Cost);
|
|
}
|
|
}
|
|
|
|
// Make sure that any load of address and any other address computation
|
|
// remains scalar unless there is gather/scatter support. This avoids
|
|
// inevitable extracts into address registers, and also has the benefit of
|
|
// activating LSR more, since that pass can't optimize vectorized
|
|
// addresses.
|
|
if (TTI.prefersVectorizedAddressing())
|
|
return;
|
|
|
|
// Start with all scalar pointer uses.
|
|
SmallPtrSet<Instruction *, 8> AddrDefs;
|
|
for (BasicBlock *BB : TheLoop->blocks())
|
|
for (Instruction &I : *BB) {
|
|
Instruction *PtrDef =
|
|
dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
|
|
if (PtrDef && TheLoop->contains(PtrDef) &&
|
|
getWideningDecision(&I, VF) != CM_GatherScatter)
|
|
AddrDefs.insert(PtrDef);
|
|
}
|
|
|
|
// Add all instructions used to generate the addresses.
|
|
SmallVector<Instruction *, 4> Worklist;
|
|
append_range(Worklist, AddrDefs);
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.pop_back_val();
|
|
for (auto &Op : I->operands())
|
|
if (auto *InstOp = dyn_cast<Instruction>(Op))
|
|
if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
|
|
AddrDefs.insert(InstOp).second)
|
|
Worklist.push_back(InstOp);
|
|
}
|
|
|
|
for (auto *I : AddrDefs) {
|
|
if (isa<LoadInst>(I)) {
|
|
// Setting the desired widening decision should ideally be handled in
|
|
// by cost functions, but since this involves the task of finding out
|
|
// if the loaded register is involved in an address computation, it is
|
|
// instead changed here when we know this is the case.
|
|
InstWidening Decision = getWideningDecision(I, VF);
|
|
if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
|
|
// Scalarize a widened load of address.
|
|
setWideningDecision(
|
|
I, VF, CM_Scalarize,
|
|
(VF.getKnownMinValue() *
|
|
getMemoryInstructionCost(I, ElementCount::getFixed(1))));
|
|
else if (auto Group = getInterleavedAccessGroup(I)) {
|
|
// Scalarize an interleave group of address loads.
|
|
for (unsigned I = 0; I < Group->getFactor(); ++I) {
|
|
if (Instruction *Member = Group->getMember(I))
|
|
setWideningDecision(
|
|
Member, VF, CM_Scalarize,
|
|
(VF.getKnownMinValue() *
|
|
getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
|
|
}
|
|
}
|
|
} else
|
|
// Make sure I gets scalarized and a cost estimate without
|
|
// scalarization overhead.
|
|
ForcedScalars[VF].insert(I);
|
|
}
|
|
}
|
|
|
|
InstructionCost
|
|
LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
|
|
Type *&VectorTy) {
|
|
Type *RetTy = I->getType();
|
|
if (canTruncateToMinimalBitwidth(I, VF))
|
|
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
|
|
auto SE = PSE.getSE();
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
auto hasSingleCopyAfterVectorization = [this](Instruction *I,
|
|
ElementCount VF) -> bool {
|
|
if (VF.isScalar())
|
|
return true;
|
|
|
|
auto Scalarized = InstsToScalarize.find(VF);
|
|
assert(Scalarized != InstsToScalarize.end() &&
|
|
"VF not yet analyzed for scalarization profitability");
|
|
return !Scalarized->second.count(I) &&
|
|
llvm::all_of(I->users(), [&](User *U) {
|
|
auto *UI = cast<Instruction>(U);
|
|
return !Scalarized->second.count(UI);
|
|
});
|
|
};
|
|
(void) hasSingleCopyAfterVectorization;
|
|
|
|
if (isScalarAfterVectorization(I, VF)) {
|
|
// With the exception of GEPs and PHIs, after scalarization there should
|
|
// only be one copy of the instruction generated in the loop. This is
|
|
// because the VF is either 1, or any instructions that need scalarizing
|
|
// have already been dealt with by the the time we get here. As a result,
|
|
// it means we don't have to multiply the instruction cost by VF.
|
|
assert(I->getOpcode() == Instruction::GetElementPtr ||
|
|
I->getOpcode() == Instruction::PHI ||
|
|
(I->getOpcode() == Instruction::BitCast &&
|
|
I->getType()->isPointerTy()) ||
|
|
hasSingleCopyAfterVectorization(I, VF));
|
|
VectorTy = RetTy;
|
|
} else
|
|
VectorTy = ToVectorTy(RetTy, VF);
|
|
|
|
// TODO: We need to estimate the cost of intrinsic calls.
|
|
switch (I->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
// We mark this instruction as zero-cost because the cost of GEPs in
|
|
// vectorized code depends on whether the corresponding memory instruction
|
|
// is scalarized or not. Therefore, we handle GEPs with the memory
|
|
// instruction cost.
|
|
return 0;
|
|
case Instruction::Br: {
|
|
// In cases of scalarized and predicated instructions, there will be VF
|
|
// predicated blocks in the vectorized loop. Each branch around these
|
|
// blocks requires also an extract of its vector compare i1 element.
|
|
bool ScalarPredicatedBB = false;
|
|
BranchInst *BI = cast<BranchInst>(I);
|
|
if (VF.isVector() && BI->isConditional() &&
|
|
(PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
|
|
PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
|
|
ScalarPredicatedBB = true;
|
|
|
|
if (ScalarPredicatedBB) {
|
|
// Not possible to scalarize scalable vector with predicated instructions.
|
|
if (VF.isScalable())
|
|
return InstructionCost::getInvalid();
|
|
// Return cost for branches around scalarized and predicated blocks.
|
|
auto *Vec_i1Ty =
|
|
VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
|
|
return (
|
|
TTI.getScalarizationOverhead(
|
|
Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()),
|
|
/*Insert*/ false, /*Extract*/ true, CostKind) +
|
|
(TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
|
|
} else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
|
|
// The back-edge branch will remain, as will all scalar branches.
|
|
return TTI.getCFInstrCost(Instruction::Br, CostKind);
|
|
else
|
|
// This branch will be eliminated by if-conversion.
|
|
return 0;
|
|
// Note: We currently assume zero cost for an unconditional branch inside
|
|
// a predicated block since it will become a fall-through, although we
|
|
// may decide in the future to call TTI for all branches.
|
|
}
|
|
case Instruction::PHI: {
|
|
auto *Phi = cast<PHINode>(I);
|
|
|
|
// First-order recurrences are replaced by vector shuffles inside the loop.
|
|
if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
|
|
SmallVector<int> Mask(VF.getKnownMinValue());
|
|
std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
|
|
return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
|
|
cast<VectorType>(VectorTy), Mask, CostKind,
|
|
VF.getKnownMinValue() - 1);
|
|
}
|
|
|
|
// Phi nodes in non-header blocks (not inductions, reductions, etc.) are
|
|
// converted into select instructions. We require N - 1 selects per phi
|
|
// node, where N is the number of incoming values.
|
|
if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
|
|
return (Phi->getNumIncomingValues() - 1) *
|
|
TTI.getCmpSelInstrCost(
|
|
Instruction::Select, ToVectorTy(Phi->getType(), VF),
|
|
ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
|
|
return TTI.getCFInstrCost(Instruction::PHI, CostKind);
|
|
}
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
if (VF.isVector() && isPredicatedInst(I)) {
|
|
const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
|
|
return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
|
|
ScalarCost : SafeDivisorCost;
|
|
}
|
|
// We've proven all lanes safe to speculate, fall through.
|
|
[[fallthrough]];
|
|
case Instruction::Add:
|
|
case Instruction::FAdd:
|
|
case Instruction::Sub:
|
|
case Instruction::FSub:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
// If we're speculating on the stride being 1, the multiplication may
|
|
// fold away. We can generalize this for all operations using the notion
|
|
// of neutral elements. (TODO)
|
|
if (I->getOpcode() == Instruction::Mul &&
|
|
(PSE.getSCEV(I->getOperand(0))->isOne() ||
|
|
PSE.getSCEV(I->getOperand(1))->isOne()))
|
|
return 0;
|
|
|
|
// Detect reduction patterns
|
|
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
|
|
return *RedCost;
|
|
|
|
// Certain instructions can be cheaper to vectorize if they have a constant
|
|
// second vector operand. One example of this are shifts on x86.
|
|
Value *Op2 = I->getOperand(1);
|
|
auto Op2Info = TTI.getOperandInfo(Op2);
|
|
if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
|
|
Legal->isInvariant(Op2))
|
|
Op2Info.Kind = TargetTransformInfo::OK_UniformValue;
|
|
|
|
SmallVector<const Value *, 4> Operands(I->operand_values());
|
|
return TTI.getArithmeticInstrCost(
|
|
I->getOpcode(), VectorTy, CostKind,
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
Op2Info, Operands, I);
|
|
}
|
|
case Instruction::FNeg: {
|
|
return TTI.getArithmeticInstrCost(
|
|
I->getOpcode(), VectorTy, CostKind,
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
I->getOperand(0), I);
|
|
}
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(I);
|
|
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
|
|
bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
|
|
|
|
const Value *Op0, *Op1;
|
|
using namespace llvm::PatternMatch;
|
|
if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
|
|
match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
|
|
// select x, y, false --> x & y
|
|
// select x, true, y --> x | y
|
|
const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
|
|
const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
|
|
assert(Op0->getType()->getScalarSizeInBits() == 1 &&
|
|
Op1->getType()->getScalarSizeInBits() == 1);
|
|
|
|
SmallVector<const Value *, 2> Operands{Op0, Op1};
|
|
return TTI.getArithmeticInstrCost(
|
|
match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
|
|
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I);
|
|
}
|
|
|
|
Type *CondTy = SI->getCondition()->getType();
|
|
if (!ScalarCond)
|
|
CondTy = VectorType::get(CondTy, VF);
|
|
|
|
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
|
if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
|
|
Pred = Cmp->getPredicate();
|
|
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
|
|
CostKind, I);
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp: {
|
|
Type *ValTy = I->getOperand(0)->getType();
|
|
Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
|
|
if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
|
|
ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
|
|
VectorTy = ToVectorTy(ValTy, VF);
|
|
return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
|
|
cast<CmpInst>(I)->getPredicate(), CostKind,
|
|
I);
|
|
}
|
|
case Instruction::Store:
|
|
case Instruction::Load: {
|
|
ElementCount Width = VF;
|
|
if (Width.isVector()) {
|
|
InstWidening Decision = getWideningDecision(I, Width);
|
|
assert(Decision != CM_Unknown &&
|
|
"CM decision should be taken at this point");
|
|
if (getWideningCost(I, VF) == InstructionCost::getInvalid())
|
|
return InstructionCost::getInvalid();
|
|
if (Decision == CM_Scalarize)
|
|
Width = ElementCount::getFixed(1);
|
|
}
|
|
VectorTy = ToVectorTy(getLoadStoreType(I), Width);
|
|
return getMemoryInstructionCost(I, VF);
|
|
}
|
|
case Instruction::BitCast:
|
|
if (I->getType()->isPointerTy())
|
|
return 0;
|
|
[[fallthrough]];
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::FPExt:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::SIToFP:
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::FPTrunc: {
|
|
// Computes the CastContextHint from a Load/Store instruction.
|
|
auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
|
|
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
|
|
"Expected a load or a store!");
|
|
|
|
if (VF.isScalar() || !TheLoop->contains(I))
|
|
return TTI::CastContextHint::Normal;
|
|
|
|
switch (getWideningDecision(I, VF)) {
|
|
case LoopVectorizationCostModel::CM_GatherScatter:
|
|
return TTI::CastContextHint::GatherScatter;
|
|
case LoopVectorizationCostModel::CM_Interleave:
|
|
return TTI::CastContextHint::Interleave;
|
|
case LoopVectorizationCostModel::CM_Scalarize:
|
|
case LoopVectorizationCostModel::CM_Widen:
|
|
return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
|
|
: TTI::CastContextHint::Normal;
|
|
case LoopVectorizationCostModel::CM_Widen_Reverse:
|
|
return TTI::CastContextHint::Reversed;
|
|
case LoopVectorizationCostModel::CM_Unknown:
|
|
llvm_unreachable("Instr did not go through cost modelling?");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled case!");
|
|
};
|
|
|
|
unsigned Opcode = I->getOpcode();
|
|
TTI::CastContextHint CCH = TTI::CastContextHint::None;
|
|
// For Trunc, the context is the only user, which must be a StoreInst.
|
|
if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
|
|
if (I->hasOneUse())
|
|
if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
|
|
CCH = ComputeCCH(Store);
|
|
}
|
|
// For Z/Sext, the context is the operand, which must be a LoadInst.
|
|
else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
|
|
Opcode == Instruction::FPExt) {
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
|
|
CCH = ComputeCCH(Load);
|
|
}
|
|
|
|
// We optimize the truncation of induction variables having constant
|
|
// integer steps. The cost of these truncations is the same as the scalar
|
|
// operation.
|
|
if (isOptimizableIVTruncate(I, VF)) {
|
|
auto *Trunc = cast<TruncInst>(I);
|
|
return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
|
|
Trunc->getSrcTy(), CCH, CostKind, Trunc);
|
|
}
|
|
|
|
// Detect reduction patterns
|
|
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
|
|
return *RedCost;
|
|
|
|
Type *SrcScalarTy = I->getOperand(0)->getType();
|
|
Type *SrcVecTy =
|
|
VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
|
|
if (canTruncateToMinimalBitwidth(I, VF)) {
|
|
// This cast is going to be shrunk. This may remove the cast or it might
|
|
// turn it into slightly different cast. For example, if MinBW == 16,
|
|
// "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
|
|
//
|
|
// Calculate the modified src and dest types.
|
|
Type *MinVecTy = VectorTy;
|
|
if (Opcode == Instruction::Trunc) {
|
|
SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
|
|
VectorTy =
|
|
largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
|
|
} else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
|
|
// Leave SrcVecTy unchanged - we only shrink the destination element
|
|
// type.
|
|
VectorTy =
|
|
smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
|
|
}
|
|
}
|
|
|
|
return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
|
|
}
|
|
case Instruction::Call: {
|
|
if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
|
|
if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
|
|
return *RedCost;
|
|
Function *Variant;
|
|
CallInst *CI = cast<CallInst>(I);
|
|
InstructionCost CallCost = getVectorCallCost(CI, VF, &Variant);
|
|
if (getVectorIntrinsicIDForCall(CI, TLI)) {
|
|
InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
|
|
return std::min(CallCost, IntrinsicCost);
|
|
}
|
|
return CallCost;
|
|
}
|
|
case Instruction::ExtractValue:
|
|
return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
|
|
case Instruction::Alloca:
|
|
// We cannot easily widen alloca to a scalable alloca, as
|
|
// the result would need to be a vector of pointers.
|
|
if (VF.isScalable())
|
|
return InstructionCost::getInvalid();
|
|
[[fallthrough]];
|
|
default:
|
|
// This opcode is unknown. Assume that it is the same as 'mul'.
|
|
return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
|
|
} // end of switch.
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectValuesToIgnore() {
|
|
// Ignore ephemeral values.
|
|
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
|
|
|
|
// Find all stores to invariant variables. Since they are going to sink
|
|
// outside the loop we do not need calculate cost for them.
|
|
for (BasicBlock *BB : TheLoop->blocks())
|
|
for (Instruction &I : *BB) {
|
|
StoreInst *SI;
|
|
if ((SI = dyn_cast<StoreInst>(&I)) &&
|
|
Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
|
|
ValuesToIgnore.insert(&I);
|
|
}
|
|
|
|
// Ignore type-promoting instructions we identified during reduction
|
|
// detection.
|
|
for (const auto &Reduction : Legal->getReductionVars()) {
|
|
const RecurrenceDescriptor &RedDes = Reduction.second;
|
|
const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
|
|
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
|
|
}
|
|
// Ignore type-casting instructions we identified during induction
|
|
// detection.
|
|
for (const auto &Induction : Legal->getInductionVars()) {
|
|
const InductionDescriptor &IndDes = Induction.second;
|
|
const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
|
|
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
|
|
}
|
|
}
|
|
|
|
void LoopVectorizationCostModel::collectInLoopReductions() {
|
|
for (const auto &Reduction : Legal->getReductionVars()) {
|
|
PHINode *Phi = Reduction.first;
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
|
|
// We don't collect reductions that are type promoted (yet).
|
|
if (RdxDesc.getRecurrenceType() != Phi->getType())
|
|
continue;
|
|
|
|
// If the target would prefer this reduction to happen "in-loop", then we
|
|
// want to record it as such.
|
|
unsigned Opcode = RdxDesc.getOpcode();
|
|
if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
|
|
!TTI.preferInLoopReduction(Opcode, Phi->getType(),
|
|
TargetTransformInfo::ReductionFlags()))
|
|
continue;
|
|
|
|
// Check that we can correctly put the reductions into the loop, by
|
|
// finding the chain of operations that leads from the phi to the loop
|
|
// exit value.
|
|
SmallVector<Instruction *, 4> ReductionOperations =
|
|
RdxDesc.getReductionOpChain(Phi, TheLoop);
|
|
bool InLoop = !ReductionOperations.empty();
|
|
|
|
if (InLoop) {
|
|
InLoopReductions.insert(Phi);
|
|
// Add the elements to InLoopReductionImmediateChains for cost modelling.
|
|
Instruction *LastChain = Phi;
|
|
for (auto *I : ReductionOperations) {
|
|
InLoopReductionImmediateChains[I] = LastChain;
|
|
LastChain = I;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
|
|
<< " reduction for phi: " << *Phi << "\n");
|
|
}
|
|
}
|
|
|
|
// TODO: we could return a pair of values that specify the max VF and
|
|
// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
|
|
// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
|
|
// doesn't have a cost model that can choose which plan to execute if
|
|
// more than one is generated.
|
|
static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
|
|
LoopVectorizationCostModel &CM) {
|
|
unsigned WidestType;
|
|
std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
|
|
return WidestVectorRegBits / WidestType;
|
|
}
|
|
|
|
VectorizationFactor
|
|
LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
|
|
assert(!UserVF.isScalable() && "scalable vectors not yet supported");
|
|
ElementCount VF = UserVF;
|
|
// Outer loop handling: They may require CFG and instruction level
|
|
// transformations before even evaluating whether vectorization is profitable.
|
|
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
|
|
// the vectorization pipeline.
|
|
if (!OrigLoop->isInnermost()) {
|
|
// If the user doesn't provide a vectorization factor, determine a
|
|
// reasonable one.
|
|
if (UserVF.isZero()) {
|
|
VF = ElementCount::getFixed(determineVPlanVF(
|
|
TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
|
|
.getFixedValue(),
|
|
CM));
|
|
LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
|
|
|
|
// Make sure we have a VF > 1 for stress testing.
|
|
if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
|
|
LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
|
|
<< "overriding computed VF.\n");
|
|
VF = ElementCount::getFixed(4);
|
|
}
|
|
}
|
|
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
|
|
assert(isPowerOf2_32(VF.getKnownMinValue()) &&
|
|
"VF needs to be a power of two");
|
|
LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
|
|
<< "VF " << VF << " to build VPlans.\n");
|
|
buildVPlans(VF, VF);
|
|
|
|
// For VPlan build stress testing, we bail out after VPlan construction.
|
|
if (VPlanBuildStressTest)
|
|
return VectorizationFactor::Disabled();
|
|
|
|
return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
|
|
"VPlan-native path.\n");
|
|
return VectorizationFactor::Disabled();
|
|
}
|
|
|
|
std::optional<VectorizationFactor>
|
|
LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
|
|
assert(OrigLoop->isInnermost() && "Inner loop expected.");
|
|
CM.collectValuesToIgnore();
|
|
CM.collectElementTypesForWidening();
|
|
|
|
FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
|
|
if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
|
|
return std::nullopt;
|
|
|
|
// Invalidate interleave groups if all blocks of loop will be predicated.
|
|
if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
|
|
!useMaskedInterleavedAccesses(TTI)) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "LV: Invalidate all interleaved groups due to fold-tail by masking "
|
|
"which requires masked-interleaved support.\n");
|
|
if (CM.InterleaveInfo.invalidateGroups())
|
|
// Invalidating interleave groups also requires invalidating all decisions
|
|
// based on them, which includes widening decisions and uniform and scalar
|
|
// values.
|
|
CM.invalidateCostModelingDecisions();
|
|
}
|
|
|
|
ElementCount MaxUserVF =
|
|
UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
|
|
bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
|
|
if (!UserVF.isZero() && UserVFIsLegal) {
|
|
assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
|
|
"VF needs to be a power of two");
|
|
// Collect the instructions (and their associated costs) that will be more
|
|
// profitable to scalarize.
|
|
if (CM.selectUserVectorizationFactor(UserVF)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
|
|
CM.collectInLoopReductions();
|
|
buildVPlansWithVPRecipes(UserVF, UserVF);
|
|
if (!hasPlanWithVF(UserVF)) {
|
|
LLVM_DEBUG(dbgs() << "LV: No VPlan could be built for " << UserVF
|
|
<< ".\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
LLVM_DEBUG(printPlans(dbgs()));
|
|
return {{UserVF, 0, 0}};
|
|
} else
|
|
reportVectorizationInfo("UserVF ignored because of invalid costs.",
|
|
"InvalidCost", ORE, OrigLoop);
|
|
}
|
|
|
|
// Populate the set of Vectorization Factor Candidates.
|
|
ElementCountSet VFCandidates;
|
|
for (auto VF = ElementCount::getFixed(1);
|
|
ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
|
|
VFCandidates.insert(VF);
|
|
for (auto VF = ElementCount::getScalable(1);
|
|
ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
|
|
VFCandidates.insert(VF);
|
|
|
|
for (const auto &VF : VFCandidates) {
|
|
// Collect Uniform and Scalar instructions after vectorization with VF.
|
|
CM.collectUniformsAndScalars(VF);
|
|
|
|
// Collect the instructions (and their associated costs) that will be more
|
|
// profitable to scalarize.
|
|
if (VF.isVector())
|
|
CM.collectInstsToScalarize(VF);
|
|
}
|
|
|
|
CM.collectInLoopReductions();
|
|
buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
|
|
buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
|
|
|
|
LLVM_DEBUG(printPlans(dbgs()));
|
|
if (!MaxFactors.hasVector())
|
|
return VectorizationFactor::Disabled();
|
|
|
|
// Select the optimal vectorization factor.
|
|
VectorizationFactor VF = selectVectorizationFactor(VFCandidates);
|
|
assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
|
|
if (!hasPlanWithVF(VF.Width)) {
|
|
LLVM_DEBUG(dbgs() << "LV: No VPlan could be built for " << VF.Width
|
|
<< ".\n");
|
|
return std::nullopt;
|
|
}
|
|
return VF;
|
|
}
|
|
|
|
VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
|
|
assert(count_if(VPlans,
|
|
[VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
|
|
1 &&
|
|
"Best VF has not a single VPlan.");
|
|
|
|
for (const VPlanPtr &Plan : VPlans) {
|
|
if (Plan->hasVF(VF))
|
|
return *Plan.get();
|
|
}
|
|
llvm_unreachable("No plan found!");
|
|
}
|
|
|
|
static void AddRuntimeUnrollDisableMetaData(Loop *L) {
|
|
SmallVector<Metadata *, 4> MDs;
|
|
// Reserve first location for self reference to the LoopID metadata node.
|
|
MDs.push_back(nullptr);
|
|
bool IsUnrollMetadata = false;
|
|
MDNode *LoopID = L->getLoopID();
|
|
if (LoopID) {
|
|
// First find existing loop unrolling disable metadata.
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
|
|
if (MD) {
|
|
const auto *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
IsUnrollMetadata =
|
|
S && S->getString().startswith("llvm.loop.unroll.disable");
|
|
}
|
|
MDs.push_back(LoopID->getOperand(i));
|
|
}
|
|
}
|
|
|
|
if (!IsUnrollMetadata) {
|
|
// Add runtime unroll disable metadata.
|
|
LLVMContext &Context = L->getHeader()->getContext();
|
|
SmallVector<Metadata *, 1> DisableOperands;
|
|
DisableOperands.push_back(
|
|
MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
|
|
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
|
|
MDs.push_back(DisableNode);
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
L->setLoopID(NewLoopID);
|
|
}
|
|
}
|
|
|
|
SCEV2ValueTy LoopVectorizationPlanner::executePlan(
|
|
ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
|
|
InnerLoopVectorizer &ILV, DominatorTree *DT, bool IsEpilogueVectorization,
|
|
DenseMap<const SCEV *, Value *> *ExpandedSCEVs) {
|
|
assert(BestVPlan.hasVF(BestVF) &&
|
|
"Trying to execute plan with unsupported VF");
|
|
assert(BestVPlan.hasUF(BestUF) &&
|
|
"Trying to execute plan with unsupported UF");
|
|
assert(
|
|
(IsEpilogueVectorization || !ExpandedSCEVs) &&
|
|
"expanded SCEVs to reuse can only be used during epilogue vectorization");
|
|
|
|
LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
|
|
<< '\n');
|
|
|
|
if (!IsEpilogueVectorization)
|
|
VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
|
|
|
|
// Perform the actual loop transformation.
|
|
VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
|
|
|
|
// 0. Generate SCEV-dependent code into the preheader, including TripCount,
|
|
// before making any changes to the CFG.
|
|
if (!BestVPlan.getPreheader()->empty()) {
|
|
State.CFG.PrevBB = OrigLoop->getLoopPreheader();
|
|
State.Builder.SetInsertPoint(OrigLoop->getLoopPreheader()->getTerminator());
|
|
BestVPlan.getPreheader()->execute(&State);
|
|
}
|
|
if (!ILV.getTripCount())
|
|
ILV.setTripCount(State.get(BestVPlan.getTripCount(), {0, 0}));
|
|
else
|
|
assert(IsEpilogueVectorization && "should only re-use the existing trip "
|
|
"count during epilogue vectorization");
|
|
|
|
// 1. Set up the skeleton for vectorization, including vector pre-header and
|
|
// middle block. The vector loop is created during VPlan execution.
|
|
Value *CanonicalIVStartValue;
|
|
std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
|
|
ILV.createVectorizedLoopSkeleton(ExpandedSCEVs ? *ExpandedSCEVs
|
|
: State.ExpandedSCEVs);
|
|
|
|
// Only use noalias metadata when using memory checks guaranteeing no overlap
|
|
// across all iterations.
|
|
const LoopAccessInfo *LAI = ILV.Legal->getLAI();
|
|
std::unique_ptr<LoopVersioning> LVer = nullptr;
|
|
if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
|
|
!LAI->getRuntimePointerChecking()->getDiffChecks()) {
|
|
|
|
// We currently don't use LoopVersioning for the actual loop cloning but we
|
|
// still use it to add the noalias metadata.
|
|
// TODO: Find a better way to re-use LoopVersioning functionality to add
|
|
// metadata.
|
|
LVer = std::make_unique<LoopVersioning>(
|
|
*LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
|
|
PSE.getSE());
|
|
State.LVer = &*LVer;
|
|
State.LVer->prepareNoAliasMetadata();
|
|
}
|
|
|
|
ILV.collectPoisonGeneratingRecipes(State);
|
|
|
|
ILV.printDebugTracesAtStart();
|
|
|
|
//===------------------------------------------------===//
|
|
//
|
|
// Notice: any optimization or new instruction that go
|
|
// into the code below should also be implemented in
|
|
// the cost-model.
|
|
//
|
|
//===------------------------------------------------===//
|
|
|
|
// 2. Copy and widen instructions from the old loop into the new loop.
|
|
BestVPlan.prepareToExecute(
|
|
ILV.getTripCount(), ILV.getOrCreateVectorTripCount(nullptr),
|
|
CanonicalIVStartValue, State, IsEpilogueVectorization);
|
|
|
|
BestVPlan.execute(&State);
|
|
|
|
// Keep all loop hints from the original loop on the vector loop (we'll
|
|
// replace the vectorizer-specific hints below).
|
|
MDNode *OrigLoopID = OrigLoop->getLoopID();
|
|
|
|
std::optional<MDNode *> VectorizedLoopID =
|
|
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
|
|
LLVMLoopVectorizeFollowupVectorized});
|
|
|
|
VPBasicBlock *HeaderVPBB =
|
|
BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
|
|
if (VectorizedLoopID)
|
|
L->setLoopID(*VectorizedLoopID);
|
|
else {
|
|
// Keep all loop hints from the original loop on the vector loop (we'll
|
|
// replace the vectorizer-specific hints below).
|
|
if (MDNode *LID = OrigLoop->getLoopID())
|
|
L->setLoopID(LID);
|
|
|
|
LoopVectorizeHints Hints(L, true, *ORE);
|
|
Hints.setAlreadyVectorized();
|
|
}
|
|
TargetTransformInfo::UnrollingPreferences UP;
|
|
TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE);
|
|
if (!UP.UnrollVectorizedLoop || CanonicalIVStartValue)
|
|
AddRuntimeUnrollDisableMetaData(L);
|
|
|
|
// 3. Fix the vectorized code: take care of header phi's, live-outs,
|
|
// predication, updating analyses.
|
|
ILV.fixVectorizedLoop(State, BestVPlan);
|
|
|
|
ILV.printDebugTracesAtEnd();
|
|
|
|
return State.ExpandedSCEVs;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
|
|
for (const auto &Plan : VPlans)
|
|
if (PrintVPlansInDotFormat)
|
|
Plan->printDOT(O);
|
|
else
|
|
Plan->print(O);
|
|
}
|
|
#endif
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// EpilogueVectorizerMainLoop
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// This function is partially responsible for generating the control flow
|
|
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
|
|
std::pair<BasicBlock *, Value *>
|
|
EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton(
|
|
const SCEV2ValueTy &ExpandedSCEVs) {
|
|
createVectorLoopSkeleton("");
|
|
|
|
// Generate the code to check the minimum iteration count of the vector
|
|
// epilogue (see below).
|
|
EPI.EpilogueIterationCountCheck =
|
|
emitIterationCountCheck(LoopScalarPreHeader, true);
|
|
EPI.EpilogueIterationCountCheck->setName("iter.check");
|
|
|
|
// Generate the code to check any assumptions that we've made for SCEV
|
|
// expressions.
|
|
EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
|
|
|
|
// Generate the code that checks at runtime if arrays overlap. We put the
|
|
// checks into a separate block to make the more common case of few elements
|
|
// faster.
|
|
EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
|
|
|
|
// Generate the iteration count check for the main loop, *after* the check
|
|
// for the epilogue loop, so that the path-length is shorter for the case
|
|
// that goes directly through the vector epilogue. The longer-path length for
|
|
// the main loop is compensated for, by the gain from vectorizing the larger
|
|
// trip count. Note: the branch will get updated later on when we vectorize
|
|
// the epilogue.
|
|
EPI.MainLoopIterationCountCheck =
|
|
emitIterationCountCheck(LoopScalarPreHeader, false);
|
|
|
|
// Generate the induction variable.
|
|
EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
|
|
|
|
// Skip induction resume value creation here because they will be created in
|
|
// the second pass for the scalar loop. The induction resume values for the
|
|
// inductions in the epilogue loop are created before executing the plan for
|
|
// the epilogue loop.
|
|
|
|
return {completeLoopSkeleton(), nullptr};
|
|
}
|
|
|
|
void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
|
|
<< "Main Loop VF:" << EPI.MainLoopVF
|
|
<< ", Main Loop UF:" << EPI.MainLoopUF
|
|
<< ", Epilogue Loop VF:" << EPI.EpilogueVF
|
|
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
|
|
});
|
|
}
|
|
|
|
void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
|
|
DEBUG_WITH_TYPE(VerboseDebug, {
|
|
dbgs() << "intermediate fn:\n"
|
|
<< *OrigLoop->getHeader()->getParent() << "\n";
|
|
});
|
|
}
|
|
|
|
BasicBlock *
|
|
EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
|
|
bool ForEpilogue) {
|
|
assert(Bypass && "Expected valid bypass basic block.");
|
|
ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
|
|
unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
|
|
Value *Count = getTripCount();
|
|
// Reuse existing vector loop preheader for TC checks.
|
|
// Note that new preheader block is generated for vector loop.
|
|
BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
|
|
IRBuilder<> Builder(TCCheckBlock->getTerminator());
|
|
|
|
// Generate code to check if the loop's trip count is less than VF * UF of the
|
|
// main vector loop.
|
|
auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector()
|
|
: VF.isVector())
|
|
? ICmpInst::ICMP_ULE
|
|
: ICmpInst::ICMP_ULT;
|
|
|
|
Value *CheckMinIters = Builder.CreateICmp(
|
|
P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
|
|
"min.iters.check");
|
|
|
|
if (!ForEpilogue)
|
|
TCCheckBlock->setName("vector.main.loop.iter.check");
|
|
|
|
// Create new preheader for vector loop.
|
|
LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
|
|
DT, LI, nullptr, "vector.ph");
|
|
|
|
if (ForEpilogue) {
|
|
assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
|
|
DT->getNode(Bypass)->getIDom()) &&
|
|
"TC check is expected to dominate Bypass");
|
|
|
|
// Update dominator for Bypass & LoopExit.
|
|
DT->changeImmediateDominator(Bypass, TCCheckBlock);
|
|
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()))
|
|
// For loops with multiple exits, there's no edge from the middle block
|
|
// to exit blocks (as the epilogue must run) and thus no need to update
|
|
// the immediate dominator of the exit blocks.
|
|
DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
|
|
|
|
LoopBypassBlocks.push_back(TCCheckBlock);
|
|
|
|
// Save the trip count so we don't have to regenerate it in the
|
|
// vec.epilog.iter.check. This is safe to do because the trip count
|
|
// generated here dominates the vector epilog iter check.
|
|
EPI.TripCount = Count;
|
|
}
|
|
|
|
ReplaceInstWithInst(
|
|
TCCheckBlock->getTerminator(),
|
|
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
|
|
|
|
return TCCheckBlock;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// EpilogueVectorizerEpilogueLoop
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// This function is partially responsible for generating the control flow
|
|
/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
|
|
std::pair<BasicBlock *, Value *>
|
|
EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton(
|
|
const SCEV2ValueTy &ExpandedSCEVs) {
|
|
createVectorLoopSkeleton("vec.epilog.");
|
|
|
|
// Now, compare the remaining count and if there aren't enough iterations to
|
|
// execute the vectorized epilogue skip to the scalar part.
|
|
BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
|
|
VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
|
|
LoopVectorPreHeader =
|
|
SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
|
|
LI, nullptr, "vec.epilog.ph");
|
|
emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
|
|
VecEpilogueIterationCountCheck);
|
|
|
|
// Adjust the control flow taking the state info from the main loop
|
|
// vectorization into account.
|
|
assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
|
|
"expected this to be saved from the previous pass.");
|
|
EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
|
|
VecEpilogueIterationCountCheck, LoopVectorPreHeader);
|
|
|
|
DT->changeImmediateDominator(LoopVectorPreHeader,
|
|
EPI.MainLoopIterationCountCheck);
|
|
|
|
EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
|
|
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
|
|
|
|
if (EPI.SCEVSafetyCheck)
|
|
EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
|
|
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
|
|
if (EPI.MemSafetyCheck)
|
|
EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
|
|
VecEpilogueIterationCountCheck, LoopScalarPreHeader);
|
|
|
|
DT->changeImmediateDominator(
|
|
VecEpilogueIterationCountCheck,
|
|
VecEpilogueIterationCountCheck->getSinglePredecessor());
|
|
|
|
DT->changeImmediateDominator(LoopScalarPreHeader,
|
|
EPI.EpilogueIterationCountCheck);
|
|
if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector()))
|
|
// If there is an epilogue which must run, there's no edge from the
|
|
// middle block to exit blocks and thus no need to update the immediate
|
|
// dominator of the exit blocks.
|
|
DT->changeImmediateDominator(LoopExitBlock,
|
|
EPI.EpilogueIterationCountCheck);
|
|
|
|
// Keep track of bypass blocks, as they feed start values to the induction and
|
|
// reduction phis in the scalar loop preheader.
|
|
if (EPI.SCEVSafetyCheck)
|
|
LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
|
|
if (EPI.MemSafetyCheck)
|
|
LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
|
|
LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
|
|
|
|
// The vec.epilog.iter.check block may contain Phi nodes from inductions or
|
|
// reductions which merge control-flow from the latch block and the middle
|
|
// block. Update the incoming values here and move the Phi into the preheader.
|
|
SmallVector<PHINode *, 4> PhisInBlock;
|
|
for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
|
|
PhisInBlock.push_back(&Phi);
|
|
|
|
for (PHINode *Phi : PhisInBlock) {
|
|
Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
|
|
Phi->replaceIncomingBlockWith(
|
|
VecEpilogueIterationCountCheck->getSinglePredecessor(),
|
|
VecEpilogueIterationCountCheck);
|
|
|
|
// If the phi doesn't have an incoming value from the
|
|
// EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
|
|
// value and also those from other check blocks. This is needed for
|
|
// reduction phis only.
|
|
if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
|
|
return EPI.EpilogueIterationCountCheck == IncB;
|
|
}))
|
|
continue;
|
|
Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
|
|
if (EPI.SCEVSafetyCheck)
|
|
Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
|
|
if (EPI.MemSafetyCheck)
|
|
Phi->removeIncomingValue(EPI.MemSafetyCheck);
|
|
}
|
|
|
|
// Generate a resume induction for the vector epilogue and put it in the
|
|
// vector epilogue preheader
|
|
Type *IdxTy = Legal->getWidestInductionType();
|
|
PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
|
|
LoopVectorPreHeader->getFirstNonPHI());
|
|
EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
|
|
EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
|
|
EPI.MainLoopIterationCountCheck);
|
|
|
|
// Generate induction resume values. These variables save the new starting
|
|
// indexes for the scalar loop. They are used to test if there are any tail
|
|
// iterations left once the vector loop has completed.
|
|
// Note that when the vectorized epilogue is skipped due to iteration count
|
|
// check, then the resume value for the induction variable comes from
|
|
// the trip count of the main vector loop, hence passing the AdditionalBypass
|
|
// argument.
|
|
createInductionResumeValues(ExpandedSCEVs,
|
|
{VecEpilogueIterationCountCheck,
|
|
EPI.VectorTripCount} /* AdditionalBypass */);
|
|
|
|
return {completeLoopSkeleton(), EPResumeVal};
|
|
}
|
|
|
|
BasicBlock *
|
|
EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
|
|
BasicBlock *Bypass, BasicBlock *Insert) {
|
|
|
|
assert(EPI.TripCount &&
|
|
"Expected trip count to have been safed in the first pass.");
|
|
assert(
|
|
(!isa<Instruction>(EPI.TripCount) ||
|
|
DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
|
|
"saved trip count does not dominate insertion point.");
|
|
Value *TC = EPI.TripCount;
|
|
IRBuilder<> Builder(Insert->getTerminator());
|
|
Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
|
|
|
|
// Generate code to check if the loop's trip count is less than VF * UF of the
|
|
// vector epilogue loop.
|
|
auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector())
|
|
? ICmpInst::ICMP_ULE
|
|
: ICmpInst::ICMP_ULT;
|
|
|
|
Value *CheckMinIters =
|
|
Builder.CreateICmp(P, Count,
|
|
createStepForVF(Builder, Count->getType(),
|
|
EPI.EpilogueVF, EPI.EpilogueUF),
|
|
"min.epilog.iters.check");
|
|
|
|
ReplaceInstWithInst(
|
|
Insert->getTerminator(),
|
|
BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
|
|
|
|
LoopBypassBlocks.push_back(Insert);
|
|
return Insert;
|
|
}
|
|
|
|
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
|
|
<< "Epilogue Loop VF:" << EPI.EpilogueVF
|
|
<< ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
|
|
});
|
|
}
|
|
|
|
void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
|
|
DEBUG_WITH_TYPE(VerboseDebug, {
|
|
dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
|
|
});
|
|
}
|
|
|
|
bool LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
|
|
assert(!Range.isEmpty() && "Trying to test an empty VF range.");
|
|
bool PredicateAtRangeStart = Predicate(Range.Start);
|
|
|
|
for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
|
|
if (Predicate(TmpVF) != PredicateAtRangeStart) {
|
|
Range.End = TmpVF;
|
|
break;
|
|
}
|
|
|
|
return PredicateAtRangeStart;
|
|
}
|
|
|
|
/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
|
|
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
|
|
/// of VF's starting at a given VF and extending it as much as possible. Each
|
|
/// vectorization decision can potentially shorten this sub-range during
|
|
/// buildVPlan().
|
|
void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
|
|
ElementCount MaxVF) {
|
|
auto MaxVFTimes2 = MaxVF * 2;
|
|
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
|
|
VFRange SubRange = {VF, MaxVFTimes2};
|
|
VPlans.push_back(buildVPlan(SubRange));
|
|
VF = SubRange.End;
|
|
}
|
|
}
|
|
|
|
VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
|
|
VPlan &Plan) {
|
|
assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
|
|
|
|
// Look for cached value.
|
|
std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
|
|
EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
|
|
if (ECEntryIt != EdgeMaskCache.end())
|
|
return ECEntryIt->second;
|
|
|
|
VPValue *SrcMask = createBlockInMask(Src, Plan);
|
|
|
|
// The terminator has to be a branch inst!
|
|
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
|
|
assert(BI && "Unexpected terminator found");
|
|
|
|
if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
|
|
return EdgeMaskCache[Edge] = SrcMask;
|
|
|
|
// If source is an exiting block, we know the exit edge is dynamically dead
|
|
// in the vector loop, and thus we don't need to restrict the mask. Avoid
|
|
// adding uses of an otherwise potentially dead instruction.
|
|
if (OrigLoop->isLoopExiting(Src))
|
|
return EdgeMaskCache[Edge] = SrcMask;
|
|
|
|
VPValue *EdgeMask = Plan.getVPValueOrAddLiveIn(BI->getCondition());
|
|
assert(EdgeMask && "No Edge Mask found for condition");
|
|
|
|
if (BI->getSuccessor(0) != Dst)
|
|
EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
|
|
|
|
if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
|
|
// The condition is 'SrcMask && EdgeMask', which is equivalent to
|
|
// 'select i1 SrcMask, i1 EdgeMask, i1 false'.
|
|
// The select version does not introduce new UB if SrcMask is false and
|
|
// EdgeMask is poison. Using 'and' here introduces undefined behavior.
|
|
VPValue *False = Plan.getVPValueOrAddLiveIn(
|
|
ConstantInt::getFalse(BI->getCondition()->getType()));
|
|
EdgeMask =
|
|
Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
|
|
}
|
|
|
|
return EdgeMaskCache[Edge] = EdgeMask;
|
|
}
|
|
|
|
VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlan &Plan) {
|
|
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
|
|
|
|
// Look for cached value.
|
|
BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
|
|
if (BCEntryIt != BlockMaskCache.end())
|
|
return BCEntryIt->second;
|
|
|
|
// All-one mask is modelled as no-mask following the convention for masked
|
|
// load/store/gather/scatter. Initialize BlockMask to no-mask.
|
|
VPValue *BlockMask = nullptr;
|
|
|
|
if (OrigLoop->getHeader() == BB) {
|
|
if (!CM.blockNeedsPredicationForAnyReason(BB))
|
|
return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
|
|
|
|
assert(CM.foldTailByMasking() && "must fold the tail");
|
|
|
|
// If we're using the active lane mask for control flow, then we get the
|
|
// mask from the active lane mask PHI that is cached in the VPlan.
|
|
TailFoldingStyle TFStyle = CM.getTailFoldingStyle();
|
|
if (useActiveLaneMaskForControlFlow(TFStyle))
|
|
return BlockMaskCache[BB] = Plan.getActiveLaneMaskPhi();
|
|
|
|
// Introduce the early-exit compare IV <= BTC to form header block mask.
|
|
// This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
|
|
// constructing the desired canonical IV in the header block as its first
|
|
// non-phi instructions.
|
|
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
|
|
auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV());
|
|
HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
|
|
|
|
VPBuilder::InsertPointGuard Guard(Builder);
|
|
Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
|
|
if (useActiveLaneMask(TFStyle)) {
|
|
VPValue *TC = Plan.getTripCount();
|
|
BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
|
|
nullptr, "active.lane.mask");
|
|
} else {
|
|
VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
|
|
BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
|
|
}
|
|
return BlockMaskCache[BB] = BlockMask;
|
|
}
|
|
|
|
// This is the block mask. We OR all incoming edges.
|
|
for (auto *Predecessor : predecessors(BB)) {
|
|
VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
|
|
if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
|
|
return BlockMaskCache[BB] = EdgeMask;
|
|
|
|
if (!BlockMask) { // BlockMask has its initialized nullptr value.
|
|
BlockMask = EdgeMask;
|
|
continue;
|
|
}
|
|
|
|
BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
|
|
}
|
|
|
|
return BlockMaskCache[BB] = BlockMask;
|
|
}
|
|
|
|
VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
|
|
ArrayRef<VPValue *> Operands,
|
|
VFRange &Range,
|
|
VPlanPtr &Plan) {
|
|
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
|
|
"Must be called with either a load or store");
|
|
|
|
auto willWiden = [&](ElementCount VF) -> bool {
|
|
LoopVectorizationCostModel::InstWidening Decision =
|
|
CM.getWideningDecision(I, VF);
|
|
assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
|
|
"CM decision should be taken at this point.");
|
|
if (Decision == LoopVectorizationCostModel::CM_Interleave)
|
|
return true;
|
|
if (CM.isScalarAfterVectorization(I, VF) ||
|
|
CM.isProfitableToScalarize(I, VF))
|
|
return false;
|
|
return Decision != LoopVectorizationCostModel::CM_Scalarize;
|
|
};
|
|
|
|
if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
|
|
return nullptr;
|
|
|
|
VPValue *Mask = nullptr;
|
|
if (Legal->isMaskRequired(I))
|
|
Mask = createBlockInMask(I->getParent(), *Plan);
|
|
|
|
// Determine if the pointer operand of the access is either consecutive or
|
|
// reverse consecutive.
|
|
LoopVectorizationCostModel::InstWidening Decision =
|
|
CM.getWideningDecision(I, Range.Start);
|
|
bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
|
|
bool Consecutive =
|
|
Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
|
|
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(I))
|
|
return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
|
|
Consecutive, Reverse);
|
|
|
|
StoreInst *Store = cast<StoreInst>(I);
|
|
return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
|
|
Mask, Consecutive, Reverse);
|
|
}
|
|
|
|
/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
|
|
/// insert a recipe to expand the step for the induction recipe.
|
|
static VPWidenIntOrFpInductionRecipe *
|
|
createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc,
|
|
VPValue *Start, const InductionDescriptor &IndDesc,
|
|
VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop,
|
|
VFRange &Range) {
|
|
assert(IndDesc.getStartValue() ==
|
|
Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
|
|
assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
|
|
"step must be loop invariant");
|
|
|
|
VPValue *Step =
|
|
vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
|
|
if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
|
|
return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI);
|
|
}
|
|
assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
|
|
return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc);
|
|
}
|
|
|
|
VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
|
|
PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
|
|
|
|
// Check if this is an integer or fp induction. If so, build the recipe that
|
|
// produces its scalar and vector values.
|
|
if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
|
|
return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
|
|
*PSE.getSE(), *OrigLoop, Range);
|
|
|
|
// Check if this is pointer induction. If so, build the recipe for it.
|
|
if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
|
|
VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(),
|
|
*PSE.getSE());
|
|
return new VPWidenPointerInductionRecipe(
|
|
Phi, Operands[0], Step, *II,
|
|
LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[&](ElementCount VF) {
|
|
return CM.isScalarAfterVectorization(Phi, VF);
|
|
},
|
|
Range));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
|
|
TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
|
|
// Optimize the special case where the source is a constant integer
|
|
// induction variable. Notice that we can only optimize the 'trunc' case
|
|
// because (a) FP conversions lose precision, (b) sext/zext may wrap, and
|
|
// (c) other casts depend on pointer size.
|
|
|
|
// Determine whether \p K is a truncation based on an induction variable that
|
|
// can be optimized.
|
|
auto isOptimizableIVTruncate =
|
|
[&](Instruction *K) -> std::function<bool(ElementCount)> {
|
|
return [=](ElementCount VF) -> bool {
|
|
return CM.isOptimizableIVTruncate(K, VF);
|
|
};
|
|
};
|
|
|
|
if (LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
isOptimizableIVTruncate(I), Range)) {
|
|
|
|
auto *Phi = cast<PHINode>(I->getOperand(0));
|
|
const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
|
|
VPValue *Start = Plan.getVPValueOrAddLiveIn(II.getStartValue());
|
|
return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
|
|
*OrigLoop, Range);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
|
|
ArrayRef<VPValue *> Operands,
|
|
VPlanPtr &Plan) {
|
|
// If all incoming values are equal, the incoming VPValue can be used directly
|
|
// instead of creating a new VPBlendRecipe.
|
|
if (llvm::all_equal(Operands))
|
|
return Operands[0];
|
|
|
|
unsigned NumIncoming = Phi->getNumIncomingValues();
|
|
// For in-loop reductions, we do not need to create an additional select.
|
|
VPValue *InLoopVal = nullptr;
|
|
for (unsigned In = 0; In < NumIncoming; In++) {
|
|
PHINode *PhiOp =
|
|
dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
|
|
if (PhiOp && CM.isInLoopReduction(PhiOp)) {
|
|
assert(!InLoopVal && "Found more than one in-loop reduction!");
|
|
InLoopVal = Operands[In];
|
|
}
|
|
}
|
|
|
|
assert((!InLoopVal || NumIncoming == 2) &&
|
|
"Found an in-loop reduction for PHI with unexpected number of "
|
|
"incoming values");
|
|
if (InLoopVal)
|
|
return Operands[Operands[0] == InLoopVal ? 1 : 0];
|
|
|
|
// We know that all PHIs in non-header blocks are converted into selects, so
|
|
// we don't have to worry about the insertion order and we can just use the
|
|
// builder. At this point we generate the predication tree. There may be
|
|
// duplications since this is a simple recursive scan, but future
|
|
// optimizations will clean it up.
|
|
SmallVector<VPValue *, 2> OperandsWithMask;
|
|
|
|
for (unsigned In = 0; In < NumIncoming; In++) {
|
|
VPValue *EdgeMask =
|
|
createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), *Plan);
|
|
assert((EdgeMask || NumIncoming == 1) &&
|
|
"Multiple predecessors with one having a full mask");
|
|
OperandsWithMask.push_back(Operands[In]);
|
|
if (EdgeMask)
|
|
OperandsWithMask.push_back(EdgeMask);
|
|
}
|
|
return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
|
|
}
|
|
|
|
VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
|
|
ArrayRef<VPValue *> Operands,
|
|
VFRange &Range,
|
|
VPlanPtr &Plan) {
|
|
bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[this, CI](ElementCount VF) {
|
|
return CM.isScalarWithPredication(CI, VF);
|
|
},
|
|
Range);
|
|
|
|
if (IsPredicated)
|
|
return nullptr;
|
|
|
|
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
|
|
ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
|
|
ID == Intrinsic::pseudoprobe ||
|
|
ID == Intrinsic::experimental_noalias_scope_decl))
|
|
return nullptr;
|
|
|
|
SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size()));
|
|
|
|
// Is it beneficial to perform intrinsic call compared to lib call?
|
|
bool ShouldUseVectorIntrinsic =
|
|
ID && LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[&](ElementCount VF) -> bool {
|
|
Function *Variant;
|
|
// Is it beneficial to perform intrinsic call compared to lib
|
|
// call?
|
|
InstructionCost CallCost =
|
|
CM.getVectorCallCost(CI, VF, &Variant);
|
|
InstructionCost IntrinsicCost =
|
|
CM.getVectorIntrinsicCost(CI, VF);
|
|
return IntrinsicCost <= CallCost;
|
|
},
|
|
Range);
|
|
if (ShouldUseVectorIntrinsic)
|
|
return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID);
|
|
|
|
Function *Variant = nullptr;
|
|
ElementCount VariantVF;
|
|
bool NeedsMask = false;
|
|
// Is better to call a vectorized version of the function than to to scalarize
|
|
// the call?
|
|
auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[&](ElementCount VF) -> bool {
|
|
// The following case may be scalarized depending on the VF.
|
|
// The flag shows whether we can use a usual Call for vectorized
|
|
// version of the instruction.
|
|
|
|
// If we've found a variant at a previous VF, then stop looking. A
|
|
// vectorized variant of a function expects input in a certain shape
|
|
// -- basically the number of input registers, the number of lanes
|
|
// per register, and whether there's a mask required.
|
|
// We store a pointer to the variant in the VPWidenCallRecipe, so
|
|
// once we have an appropriate variant it's only valid for that VF.
|
|
// This will force a different vplan to be generated for each VF that
|
|
// finds a valid variant.
|
|
if (Variant)
|
|
return false;
|
|
CM.getVectorCallCost(CI, VF, &Variant, &NeedsMask);
|
|
// If we found a valid vector variant at this VF, then store the VF
|
|
// in case we need to generate a mask.
|
|
if (Variant)
|
|
VariantVF = VF;
|
|
return Variant != nullptr;
|
|
},
|
|
Range);
|
|
if (ShouldUseVectorCall) {
|
|
if (NeedsMask) {
|
|
// We have 2 cases that would require a mask:
|
|
// 1) The block needs to be predicated, either due to a conditional
|
|
// in the scalar loop or use of an active lane mask with
|
|
// tail-folding, and we use the appropriate mask for the block.
|
|
// 2) No mask is required for the block, but the only available
|
|
// vector variant at this VF requires a mask, so we synthesize an
|
|
// all-true mask.
|
|
VPValue *Mask = nullptr;
|
|
if (Legal->isMaskRequired(CI))
|
|
Mask = createBlockInMask(CI->getParent(), *Plan);
|
|
else
|
|
Mask = Plan->getVPValueOrAddLiveIn(ConstantInt::getTrue(
|
|
IntegerType::getInt1Ty(Variant->getFunctionType()->getContext())));
|
|
|
|
VFShape Shape = VFShape::get(*CI, VariantVF, /*HasGlobalPred=*/true);
|
|
unsigned MaskPos = 0;
|
|
|
|
for (const VFInfo &Info : VFDatabase::getMappings(*CI))
|
|
if (Info.Shape == Shape) {
|
|
assert(Info.isMasked() && "Vector function info shape mismatch");
|
|
MaskPos = Info.getParamIndexForOptionalMask().value();
|
|
break;
|
|
}
|
|
|
|
Ops.insert(Ops.begin() + MaskPos, Mask);
|
|
}
|
|
|
|
return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()),
|
|
Intrinsic::not_intrinsic, Variant);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
|
|
assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
|
|
!isa<StoreInst>(I) && "Instruction should have been handled earlier");
|
|
// Instruction should be widened, unless it is scalar after vectorization,
|
|
// scalarization is profitable or it is predicated.
|
|
auto WillScalarize = [this, I](ElementCount VF) -> bool {
|
|
return CM.isScalarAfterVectorization(I, VF) ||
|
|
CM.isProfitableToScalarize(I, VF) ||
|
|
CM.isScalarWithPredication(I, VF);
|
|
};
|
|
return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
|
|
Range);
|
|
}
|
|
|
|
VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I,
|
|
ArrayRef<VPValue *> Operands,
|
|
VPBasicBlock *VPBB, VPlanPtr &Plan) {
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
return nullptr;
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem: {
|
|
// If not provably safe, use a select to form a safe divisor before widening the
|
|
// div/rem operation itself. Otherwise fall through to general handling below.
|
|
if (CM.isPredicatedInst(I)) {
|
|
SmallVector<VPValue *> Ops(Operands.begin(), Operands.end());
|
|
VPValue *Mask = createBlockInMask(I->getParent(), *Plan);
|
|
VPValue *One = Plan->getVPValueOrAddLiveIn(
|
|
ConstantInt::get(I->getType(), 1u, false));
|
|
auto *SafeRHS =
|
|
new VPInstruction(Instruction::Select, {Mask, Ops[1], One},
|
|
I->getDebugLoc());
|
|
VPBB->appendRecipe(SafeRHS);
|
|
Ops[1] = SafeRHS;
|
|
return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end()));
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::And:
|
|
case Instruction::AShr:
|
|
case Instruction::FAdd:
|
|
case Instruction::FCmp:
|
|
case Instruction::FDiv:
|
|
case Instruction::FMul:
|
|
case Instruction::FNeg:
|
|
case Instruction::FRem:
|
|
case Instruction::FSub:
|
|
case Instruction::ICmp:
|
|
case Instruction::LShr:
|
|
case Instruction::Mul:
|
|
case Instruction::Or:
|
|
case Instruction::Select:
|
|
case Instruction::Shl:
|
|
case Instruction::Sub:
|
|
case Instruction::Xor:
|
|
case Instruction::Freeze:
|
|
return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
|
|
};
|
|
}
|
|
|
|
void VPRecipeBuilder::fixHeaderPhis() {
|
|
BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
|
|
for (VPHeaderPHIRecipe *R : PhisToFix) {
|
|
auto *PN = cast<PHINode>(R->getUnderlyingValue());
|
|
VPRecipeBase *IncR =
|
|
getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
|
|
R->addOperand(IncR->getVPSingleValue());
|
|
}
|
|
}
|
|
|
|
VPRecipeOrVPValueTy VPRecipeBuilder::handleReplication(Instruction *I,
|
|
VFRange &Range,
|
|
VPlan &Plan) {
|
|
bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
|
|
Range);
|
|
|
|
bool IsPredicated = CM.isPredicatedInst(I);
|
|
|
|
// Even if the instruction is not marked as uniform, there are certain
|
|
// intrinsic calls that can be effectively treated as such, so we check for
|
|
// them here. Conservatively, we only do this for scalable vectors, since
|
|
// for fixed-width VFs we can always fall back on full scalarization.
|
|
if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
|
|
switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
|
|
case Intrinsic::assume:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
// For scalable vectors if one of the operands is variant then we still
|
|
// want to mark as uniform, which will generate one instruction for just
|
|
// the first lane of the vector. We can't scalarize the call in the same
|
|
// way as for fixed-width vectors because we don't know how many lanes
|
|
// there are.
|
|
//
|
|
// The reasons for doing it this way for scalable vectors are:
|
|
// 1. For the assume intrinsic generating the instruction for the first
|
|
// lane is still be better than not generating any at all. For
|
|
// example, the input may be a splat across all lanes.
|
|
// 2. For the lifetime start/end intrinsics the pointer operand only
|
|
// does anything useful when the input comes from a stack object,
|
|
// which suggests it should always be uniform. For non-stack objects
|
|
// the effect is to poison the object, which still allows us to
|
|
// remove the call.
|
|
IsUniform = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
VPValue *BlockInMask = nullptr;
|
|
if (!IsPredicated) {
|
|
// Finalize the recipe for Instr, first if it is not predicated.
|
|
LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
|
|
// Instructions marked for predication are replicated and a mask operand is
|
|
// added initially. Masked replicate recipes will later be placed under an
|
|
// if-then construct to prevent side-effects. Generate recipes to compute
|
|
// the block mask for this region.
|
|
BlockInMask = createBlockInMask(I->getParent(), Plan);
|
|
}
|
|
|
|
auto *Recipe = new VPReplicateRecipe(I, Plan.mapToVPValues(I->operands()),
|
|
IsUniform, BlockInMask);
|
|
return toVPRecipeResult(Recipe);
|
|
}
|
|
|
|
VPRecipeOrVPValueTy
|
|
VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
|
|
ArrayRef<VPValue *> Operands,
|
|
VFRange &Range, VPBasicBlock *VPBB,
|
|
VPlanPtr &Plan) {
|
|
// First, check for specific widening recipes that deal with inductions, Phi
|
|
// nodes, calls and memory operations.
|
|
VPRecipeBase *Recipe;
|
|
if (auto Phi = dyn_cast<PHINode>(Instr)) {
|
|
if (Phi->getParent() != OrigLoop->getHeader())
|
|
return tryToBlend(Phi, Operands, Plan);
|
|
|
|
// Always record recipes for header phis. Later first-order recurrence phis
|
|
// can have earlier phis as incoming values.
|
|
recordRecipeOf(Phi);
|
|
|
|
if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
|
|
return toVPRecipeResult(Recipe);
|
|
|
|
VPHeaderPHIRecipe *PhiRecipe = nullptr;
|
|
assert((Legal->isReductionVariable(Phi) ||
|
|
Legal->isFixedOrderRecurrence(Phi)) &&
|
|
"can only widen reductions and fixed-order recurrences here");
|
|
VPValue *StartV = Operands[0];
|
|
if (Legal->isReductionVariable(Phi)) {
|
|
const RecurrenceDescriptor &RdxDesc =
|
|
Legal->getReductionVars().find(Phi)->second;
|
|
assert(RdxDesc.getRecurrenceStartValue() ==
|
|
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
|
|
PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
|
|
CM.isInLoopReduction(Phi),
|
|
CM.useOrderedReductions(RdxDesc));
|
|
} else {
|
|
// TODO: Currently fixed-order recurrences are modeled as chains of
|
|
// first-order recurrences. If there are no users of the intermediate
|
|
// recurrences in the chain, the fixed order recurrence should be modeled
|
|
// directly, enabling more efficient codegen.
|
|
PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
|
|
}
|
|
|
|
// Record the incoming value from the backedge, so we can add the incoming
|
|
// value from the backedge after all recipes have been created.
|
|
auto *Inc = cast<Instruction>(
|
|
Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
|
|
auto RecipeIter = Ingredient2Recipe.find(Inc);
|
|
if (RecipeIter == Ingredient2Recipe.end())
|
|
recordRecipeOf(Inc);
|
|
|
|
PhisToFix.push_back(PhiRecipe);
|
|
return toVPRecipeResult(PhiRecipe);
|
|
}
|
|
|
|
if (isa<TruncInst>(Instr) &&
|
|
(Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
|
|
Range, *Plan)))
|
|
return toVPRecipeResult(Recipe);
|
|
|
|
// All widen recipes below deal only with VF > 1.
|
|
if (LoopVectorizationPlanner::getDecisionAndClampRange(
|
|
[&](ElementCount VF) { return VF.isScalar(); }, Range))
|
|
return nullptr;
|
|
|
|
if (auto *CI = dyn_cast<CallInst>(Instr))
|
|
return toVPRecipeResult(tryToWidenCall(CI, Operands, Range, Plan));
|
|
|
|
if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
|
|
return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
|
|
|
|
if (!shouldWiden(Instr, Range))
|
|
return nullptr;
|
|
|
|
if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
|
|
return toVPRecipeResult(new VPWidenGEPRecipe(
|
|
GEP, make_range(Operands.begin(), Operands.end())));
|
|
|
|
if (auto *SI = dyn_cast<SelectInst>(Instr)) {
|
|
return toVPRecipeResult(new VPWidenSelectRecipe(
|
|
*SI, make_range(Operands.begin(), Operands.end())));
|
|
}
|
|
|
|
if (auto *CI = dyn_cast<CastInst>(Instr)) {
|
|
return toVPRecipeResult(
|
|
new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(), CI));
|
|
}
|
|
|
|
return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan));
|
|
}
|
|
|
|
void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
|
|
ElementCount MaxVF) {
|
|
assert(OrigLoop->isInnermost() && "Inner loop expected.");
|
|
|
|
// Add assume instructions we need to drop to DeadInstructions, to prevent
|
|
// them from being added to the VPlan.
|
|
// TODO: We only need to drop assumes in blocks that get flattend. If the
|
|
// control flow is preserved, we should keep them.
|
|
SmallPtrSet<Instruction *, 4> DeadInstructions;
|
|
auto &ConditionalAssumes = Legal->getConditionalAssumes();
|
|
DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
|
|
|
|
auto MaxVFTimes2 = MaxVF * 2;
|
|
for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
|
|
VFRange SubRange = {VF, MaxVFTimes2};
|
|
if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange, DeadInstructions))
|
|
VPlans.push_back(std::move(*Plan));
|
|
VF = SubRange.End;
|
|
}
|
|
}
|
|
|
|
// Add the necessary canonical IV and branch recipes required to control the
|
|
// loop.
|
|
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
|
|
TailFoldingStyle Style) {
|
|
Value *StartIdx = ConstantInt::get(IdxTy, 0);
|
|
auto *StartV = Plan.getVPValueOrAddLiveIn(StartIdx);
|
|
|
|
// Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
|
|
auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
|
|
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
|
|
Header->insert(CanonicalIVPHI, Header->begin());
|
|
|
|
// Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
|
|
// IV by VF * UF.
|
|
bool HasNUW = Style == TailFoldingStyle::None;
|
|
auto *CanonicalIVIncrement =
|
|
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
|
|
: VPInstruction::CanonicalIVIncrement,
|
|
{CanonicalIVPHI}, DL, "index.next");
|
|
CanonicalIVPHI->addOperand(CanonicalIVIncrement);
|
|
|
|
VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
|
|
if (useActiveLaneMaskForControlFlow(Style)) {
|
|
// Create the active lane mask instruction in the vplan preheader.
|
|
VPBasicBlock *VecPreheader =
|
|
cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSinglePredecessor());
|
|
|
|
// We can't use StartV directly in the ActiveLaneMask VPInstruction, since
|
|
// we have to take unrolling into account. Each part needs to start at
|
|
// Part * VF
|
|
auto *CanonicalIVIncrementParts =
|
|
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
|
|
: VPInstruction::CanonicalIVIncrementForPart,
|
|
{StartV}, DL, "index.part.next");
|
|
VecPreheader->appendRecipe(CanonicalIVIncrementParts);
|
|
|
|
// Create the ActiveLaneMask instruction using the correct start values.
|
|
VPValue *TC = Plan.getTripCount();
|
|
|
|
VPValue *TripCount, *IncrementValue;
|
|
if (Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
|
|
// When avoiding a runtime check, the active.lane.mask inside the loop
|
|
// uses a modified trip count and the induction variable increment is
|
|
// done after the active.lane.mask intrinsic is called.
|
|
auto *TCMinusVF =
|
|
new VPInstruction(VPInstruction::CalculateTripCountMinusVF, {TC}, DL);
|
|
VecPreheader->appendRecipe(TCMinusVF);
|
|
IncrementValue = CanonicalIVPHI;
|
|
TripCount = TCMinusVF;
|
|
} else {
|
|
// When the loop is guarded by a runtime overflow check for the loop
|
|
// induction variable increment by VF, we can increment the value before
|
|
// the get.active.lane mask and use the unmodified tripcount.
|
|
EB->appendRecipe(CanonicalIVIncrement);
|
|
IncrementValue = CanonicalIVIncrement;
|
|
TripCount = TC;
|
|
}
|
|
|
|
auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
|
|
{CanonicalIVIncrementParts, TC}, DL,
|
|
"active.lane.mask.entry");
|
|
VecPreheader->appendRecipe(EntryALM);
|
|
|
|
// Now create the ActiveLaneMaskPhi recipe in the main loop using the
|
|
// preheader ActiveLaneMask instruction.
|
|
auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
|
|
Header->insert(LaneMaskPhi, Header->getFirstNonPhi());
|
|
|
|
// Create the active lane mask for the next iteration of the loop.
|
|
CanonicalIVIncrementParts =
|
|
new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
|
|
: VPInstruction::CanonicalIVIncrementForPart,
|
|
{IncrementValue}, DL);
|
|
EB->appendRecipe(CanonicalIVIncrementParts);
|
|
|
|
auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
|
|
{CanonicalIVIncrementParts, TripCount}, DL,
|
|
"active.lane.mask.next");
|
|
EB->appendRecipe(ALM);
|
|
LaneMaskPhi->addOperand(ALM);
|
|
|
|
if (Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck) {
|
|
// Do the increment of the canonical IV after the active.lane.mask, because
|
|
// that value is still based off %CanonicalIVPHI
|
|
EB->appendRecipe(CanonicalIVIncrement);
|
|
}
|
|
|
|
// We have to invert the mask here because a true condition means jumping
|
|
// to the exit block.
|
|
auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
|
|
EB->appendRecipe(NotMask);
|
|
|
|
VPInstruction *BranchBack =
|
|
new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
|
|
EB->appendRecipe(BranchBack);
|
|
} else {
|
|
EB->appendRecipe(CanonicalIVIncrement);
|
|
|
|
// Add the BranchOnCount VPInstruction to the latch.
|
|
VPInstruction *BranchBack = new VPInstruction(
|
|
VPInstruction::BranchOnCount,
|
|
{CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
|
|
EB->appendRecipe(BranchBack);
|
|
}
|
|
}
|
|
|
|
// Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
|
|
// original exit block.
|
|
static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
|
|
VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
|
|
VPlan &Plan) {
|
|
BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
|
|
BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
|
|
// Only handle single-exit loops with unique exit blocks for now.
|
|
if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
|
|
return;
|
|
|
|
// Introduce VPUsers modeling the exit values.
|
|
for (PHINode &ExitPhi : ExitBB->phis()) {
|
|
Value *IncomingValue =
|
|
ExitPhi.getIncomingValueForBlock(ExitingBB);
|
|
VPValue *V = Plan.getVPValueOrAddLiveIn(IncomingValue);
|
|
Plan.addLiveOut(&ExitPhi, V);
|
|
}
|
|
}
|
|
|
|
std::optional<VPlanPtr> LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
|
|
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions) {
|
|
|
|
SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
|
|
|
|
VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Pre-construction: record ingredients whose recipes we'll need to further
|
|
// process after constructing the initial VPlan.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// For each interleave group which is relevant for this (possibly trimmed)
|
|
// Range, add it to the set of groups to be later applied to the VPlan and add
|
|
// placeholders for its members' Recipes which we'll be replacing with a
|
|
// single VPInterleaveRecipe.
|
|
for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
|
|
auto applyIG = [IG, this](ElementCount VF) -> bool {
|
|
bool Result = (VF.isVector() && // Query is illegal for VF == 1
|
|
CM.getWideningDecision(IG->getInsertPos(), VF) ==
|
|
LoopVectorizationCostModel::CM_Interleave);
|
|
// For scalable vectors, the only interleave factor currently supported
|
|
// is 2 since we require the (de)interleave2 intrinsics instead of
|
|
// shufflevectors.
|
|
assert((!Result || !VF.isScalable() || IG->getFactor() == 2) &&
|
|
"Unsupported interleave factor for scalable vectors");
|
|
return Result;
|
|
};
|
|
if (!getDecisionAndClampRange(applyIG, Range))
|
|
continue;
|
|
InterleaveGroups.insert(IG);
|
|
for (unsigned i = 0; i < IG->getFactor(); i++)
|
|
if (Instruction *Member = IG->getMember(i))
|
|
RecipeBuilder.recordRecipeOf(Member);
|
|
};
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Build initial VPlan: Scan the body of the loop in a topological order to
|
|
// visit each basic block after having visited its predecessor basic blocks.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Create initial VPlan skeleton, having a basic block for the pre-header
|
|
// which contains SCEV expansions that need to happen before the CFG is
|
|
// modified; a basic block for the vector pre-header, followed by a region for
|
|
// the vector loop, followed by the middle basic block. The skeleton vector
|
|
// loop region contains a header and latch basic blocks.
|
|
VPlanPtr Plan = VPlan::createInitialVPlan(
|
|
createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop),
|
|
*PSE.getSE());
|
|
VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
|
|
VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
|
|
VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
|
|
auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
|
|
VPBlockUtils::insertBlockAfter(TopRegion, Plan->getEntry());
|
|
VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
|
|
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
|
|
|
|
// Don't use getDecisionAndClampRange here, because we don't know the UF
|
|
// so this function is better to be conservative, rather than to split
|
|
// it up into different VPlans.
|
|
bool IVUpdateMayOverflow = false;
|
|
for (ElementCount VF : Range)
|
|
IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
|
|
|
|
Instruction *DLInst =
|
|
getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
|
|
addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
|
|
DLInst ? DLInst->getDebugLoc() : DebugLoc(),
|
|
CM.getTailFoldingStyle(IVUpdateMayOverflow));
|
|
|
|
// Scan the body of the loop in a topological order to visit each basic block
|
|
// after having visited its predecessor basic blocks.
|
|
LoopBlocksDFS DFS(OrigLoop);
|
|
DFS.perform(LI);
|
|
|
|
VPBasicBlock *VPBB = HeaderVPBB;
|
|
for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
|
|
// Relevant instructions from basic block BB will be grouped into VPRecipe
|
|
// ingredients and fill a new VPBasicBlock.
|
|
if (VPBB != HeaderVPBB)
|
|
VPBB->setName(BB->getName());
|
|
Builder.setInsertPoint(VPBB);
|
|
|
|
// Introduce each ingredient into VPlan.
|
|
// TODO: Model and preserve debug intrinsics in VPlan.
|
|
for (Instruction &I : BB->instructionsWithoutDebug(false)) {
|
|
Instruction *Instr = &I;
|
|
|
|
// First filter out irrelevant instructions, to ensure no recipes are
|
|
// built for them.
|
|
if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
|
|
continue;
|
|
|
|
SmallVector<VPValue *, 4> Operands;
|
|
auto *Phi = dyn_cast<PHINode>(Instr);
|
|
if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
|
|
Operands.push_back(Plan->getVPValueOrAddLiveIn(
|
|
Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
|
|
} else {
|
|
auto OpRange = Plan->mapToVPValues(Instr->operands());
|
|
Operands = {OpRange.begin(), OpRange.end()};
|
|
}
|
|
|
|
// Invariant stores inside loop will be deleted and a single store
|
|
// with the final reduction value will be added to the exit block
|
|
StoreInst *SI;
|
|
if ((SI = dyn_cast<StoreInst>(&I)) &&
|
|
Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
|
|
continue;
|
|
|
|
auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
|
|
Instr, Operands, Range, VPBB, Plan);
|
|
if (!RecipeOrValue)
|
|
RecipeOrValue = RecipeBuilder.handleReplication(Instr, Range, *Plan);
|
|
// If Instr can be simplified to an existing VPValue, use it.
|
|
if (isa<VPValue *>(RecipeOrValue)) {
|
|
auto *VPV = cast<VPValue *>(RecipeOrValue);
|
|
Plan->addVPValue(Instr, VPV);
|
|
// If the re-used value is a recipe, register the recipe for the
|
|
// instruction, in case the recipe for Instr needs to be recorded.
|
|
if (VPRecipeBase *R = VPV->getDefiningRecipe())
|
|
RecipeBuilder.setRecipe(Instr, R);
|
|
continue;
|
|
}
|
|
// Otherwise, add the new recipe.
|
|
VPRecipeBase *Recipe = cast<VPRecipeBase *>(RecipeOrValue);
|
|
for (auto *Def : Recipe->definedValues()) {
|
|
auto *UV = Def->getUnderlyingValue();
|
|
Plan->addVPValue(UV, Def);
|
|
}
|
|
|
|
RecipeBuilder.setRecipe(Instr, Recipe);
|
|
if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
|
|
HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
|
|
// Move VPWidenIntOrFpInductionRecipes for optimized truncates to the
|
|
// phi section of HeaderVPBB.
|
|
assert(isa<TruncInst>(Instr));
|
|
Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
|
|
} else
|
|
VPBB->appendRecipe(Recipe);
|
|
}
|
|
|
|
VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
|
|
VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
|
|
}
|
|
|
|
// After here, VPBB should not be used.
|
|
VPBB = nullptr;
|
|
|
|
if (CM.requiresScalarEpilogue(Range)) {
|
|
// No edge from the middle block to the unique exit block has been inserted
|
|
// and there is nothing to fix from vector loop; phis should have incoming
|
|
// from scalar loop only.
|
|
} else
|
|
addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
|
|
|
|
assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
|
|
!Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
|
|
"entry block must be set to a VPRegionBlock having a non-empty entry "
|
|
"VPBasicBlock");
|
|
RecipeBuilder.fixHeaderPhis();
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Transform initial VPlan: Apply previously taken decisions, in order, to
|
|
// bring the VPlan to its final state.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Adjust the recipes for any inloop reductions.
|
|
adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
|
|
RecipeBuilder, Range.Start);
|
|
|
|
// Interleave memory: for each Interleave Group we marked earlier as relevant
|
|
// for this VPlan, replace the Recipes widening its memory instructions with a
|
|
// single VPInterleaveRecipe at its insertion point.
|
|
for (const auto *IG : InterleaveGroups) {
|
|
auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
|
|
RecipeBuilder.getRecipe(IG->getInsertPos()));
|
|
SmallVector<VPValue *, 4> StoredValues;
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
|
|
auto *StoreR =
|
|
cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
|
|
StoredValues.push_back(StoreR->getStoredValue());
|
|
}
|
|
|
|
bool NeedsMaskForGaps =
|
|
IG->requiresScalarEpilogue() && !CM.isScalarEpilogueAllowed();
|
|
auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
|
|
Recipe->getMask(), NeedsMaskForGaps);
|
|
VPIG->insertBefore(Recipe);
|
|
unsigned J = 0;
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (Instruction *Member = IG->getMember(i)) {
|
|
VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
|
|
if (!Member->getType()->isVoidTy()) {
|
|
VPValue *OriginalV = MemberR->getVPSingleValue();
|
|
OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
|
|
J++;
|
|
}
|
|
MemberR->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
for (ElementCount VF : Range)
|
|
Plan->addVF(VF);
|
|
Plan->setName("Initial VPlan");
|
|
|
|
// Replace VPValues for known constant strides guaranteed by predicate scalar
|
|
// evolution.
|
|
for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) {
|
|
auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
|
|
auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV));
|
|
// Only handle constant strides for now.
|
|
if (!ScevStride)
|
|
continue;
|
|
Constant *CI = ConstantInt::get(Stride->getType(), ScevStride->getAPInt());
|
|
|
|
auto *ConstVPV = Plan->getVPValueOrAddLiveIn(CI);
|
|
// The versioned value may not be used in the loop directly, so just add a
|
|
// new live-in in those cases.
|
|
Plan->getVPValueOrAddLiveIn(StrideV)->replaceAllUsesWith(ConstVPV);
|
|
}
|
|
|
|
// From this point onwards, VPlan-to-VPlan transformations may change the plan
|
|
// in ways that accessing values using original IR values is incorrect.
|
|
Plan->disableValue2VPValue();
|
|
|
|
// Sink users of fixed-order recurrence past the recipe defining the previous
|
|
// value and introduce FirstOrderRecurrenceSplice VPInstructions.
|
|
if (!VPlanTransforms::adjustFixedOrderRecurrences(*Plan, Builder))
|
|
return std::nullopt;
|
|
|
|
VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
|
|
VPlanTransforms::removeRedundantInductionCasts(*Plan);
|
|
|
|
VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
|
|
VPlanTransforms::removeDeadRecipes(*Plan);
|
|
|
|
VPlanTransforms::createAndOptimizeReplicateRegions(*Plan);
|
|
|
|
VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
|
|
VPlanTransforms::mergeBlocksIntoPredecessors(*Plan);
|
|
|
|
assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
|
|
return std::make_optional(std::move(Plan));
|
|
}
|
|
|
|
VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
|
|
// Outer loop handling: They may require CFG and instruction level
|
|
// transformations before even evaluating whether vectorization is profitable.
|
|
// Since we cannot modify the incoming IR, we need to build VPlan upfront in
|
|
// the vectorization pipeline.
|
|
assert(!OrigLoop->isInnermost());
|
|
assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
|
|
|
|
// Create new empty VPlan
|
|
auto Plan = VPlan::createInitialVPlan(
|
|
createTripCountSCEV(Legal->getWidestInductionType(), PSE, OrigLoop),
|
|
*PSE.getSE());
|
|
|
|
// Build hierarchical CFG
|
|
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
|
|
HCFGBuilder.buildHierarchicalCFG();
|
|
|
|
for (ElementCount VF : Range)
|
|
Plan->addVF(VF);
|
|
|
|
VPlanTransforms::VPInstructionsToVPRecipes(
|
|
Plan,
|
|
[this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
|
|
*PSE.getSE(), *TLI);
|
|
|
|
// Remove the existing terminator of the exiting block of the top-most region.
|
|
// A BranchOnCount will be added instead when adding the canonical IV recipes.
|
|
auto *Term =
|
|
Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
|
|
Term->eraseFromParent();
|
|
|
|
addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
|
|
CM.getTailFoldingStyle());
|
|
return Plan;
|
|
}
|
|
|
|
// Adjust the recipes for reductions. For in-loop reductions the chain of
|
|
// instructions leading from the loop exit instr to the phi need to be converted
|
|
// to reductions, with one operand being vector and the other being the scalar
|
|
// reduction chain. For other reductions, a select is introduced between the phi
|
|
// and live-out recipes when folding the tail.
|
|
void LoopVectorizationPlanner::adjustRecipesForReductions(
|
|
VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
|
|
ElementCount MinVF) {
|
|
SmallVector<VPReductionPHIRecipe *> InLoopReductionPhis;
|
|
for (VPRecipeBase &R :
|
|
Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
|
|
continue;
|
|
InLoopReductionPhis.push_back(PhiR);
|
|
}
|
|
|
|
for (VPReductionPHIRecipe *PhiR : InLoopReductionPhis) {
|
|
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
|
|
RecurKind Kind = RdxDesc.getRecurrenceKind();
|
|
assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) &&
|
|
"AnyOf reductions are not allowed for in-loop reductions");
|
|
|
|
// Collect the chain of "link" recipes for the reduction starting at PhiR.
|
|
SetVector<VPRecipeBase *> Worklist;
|
|
Worklist.insert(PhiR);
|
|
for (unsigned I = 0; I != Worklist.size(); ++I) {
|
|
VPRecipeBase *Cur = Worklist[I];
|
|
for (VPUser *U : Cur->getVPSingleValue()->users()) {
|
|
auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
|
|
if (!UserRecipe)
|
|
continue;
|
|
assert(UserRecipe->getNumDefinedValues() == 1 &&
|
|
"recipes must define exactly one result value");
|
|
Worklist.insert(UserRecipe);
|
|
}
|
|
}
|
|
|
|
// Visit operation "Links" along the reduction chain top-down starting from
|
|
// the phi until LoopExitValue. We keep track of the previous item
|
|
// (PreviousLink) to tell which of the two operands of a Link will remain
|
|
// scalar and which will be reduced. For minmax by select(cmp), Link will be
|
|
// the select instructions.
|
|
VPRecipeBase *PreviousLink = PhiR; // Aka Worklist[0].
|
|
for (VPRecipeBase *CurrentLink : Worklist.getArrayRef().drop_front()) {
|
|
VPValue *PreviousLinkV = PreviousLink->getVPSingleValue();
|
|
|
|
Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
|
|
|
|
// Index of the first operand which holds a non-mask vector operand.
|
|
unsigned IndexOfFirstOperand;
|
|
// Recognize a call to the llvm.fmuladd intrinsic.
|
|
bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
|
|
VPValue *VecOp;
|
|
VPBasicBlock *LinkVPBB = CurrentLink->getParent();
|
|
if (IsFMulAdd) {
|
|
assert(
|
|
RecurrenceDescriptor::isFMulAddIntrinsic(CurrentLinkI) &&
|
|
"Expected instruction to be a call to the llvm.fmuladd intrinsic");
|
|
assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
|
|
isa<VPWidenCallRecipe>(CurrentLink)) &&
|
|
CurrentLink->getOperand(2) == PreviousLinkV &&
|
|
"expected a call where the previous link is the added operand");
|
|
|
|
// If the instruction is a call to the llvm.fmuladd intrinsic then we
|
|
// need to create an fmul recipe (multiplying the first two operands of
|
|
// the fmuladd together) to use as the vector operand for the fadd
|
|
// reduction.
|
|
VPInstruction *FMulRecipe =
|
|
new VPInstruction(Instruction::FMul, {CurrentLink->getOperand(0),
|
|
CurrentLink->getOperand(1)});
|
|
FMulRecipe->setFastMathFlags(CurrentLinkI->getFastMathFlags());
|
|
LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
|
|
VecOp = FMulRecipe;
|
|
} else {
|
|
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
|
|
if (auto *Cmp = dyn_cast<VPWidenRecipe>(CurrentLink)) {
|
|
assert(isa<CmpInst>(CurrentLinkI) &&
|
|
"need to have the compare of the select");
|
|
continue;
|
|
}
|
|
assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
|
|
"must be a select recipe");
|
|
IndexOfFirstOperand = 1;
|
|
} else {
|
|
assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
|
|
"Expected to replace a VPWidenSC");
|
|
IndexOfFirstOperand = 0;
|
|
}
|
|
// Note that for non-commutable operands (cmp-selects), the semantics of
|
|
// the cmp-select are captured in the recurrence kind.
|
|
unsigned VecOpId =
|
|
CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLinkV
|
|
? IndexOfFirstOperand + 1
|
|
: IndexOfFirstOperand;
|
|
VecOp = CurrentLink->getOperand(VecOpId);
|
|
assert(VecOp != PreviousLinkV &&
|
|
CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
|
|
(VecOpId - IndexOfFirstOperand)) ==
|
|
PreviousLinkV &&
|
|
"PreviousLinkV must be the operand other than VecOp");
|
|
}
|
|
|
|
BasicBlock *BB = CurrentLinkI->getParent();
|
|
VPValue *CondOp = nullptr;
|
|
if (CM.blockNeedsPredicationForAnyReason(BB)) {
|
|
VPBuilder::InsertPointGuard Guard(Builder);
|
|
Builder.setInsertPoint(LinkVPBB, CurrentLink->getIterator());
|
|
CondOp = RecipeBuilder.createBlockInMask(BB, *Plan);
|
|
}
|
|
|
|
VPReductionRecipe *RedRecipe = new VPReductionRecipe(
|
|
&RdxDesc, CurrentLinkI, PreviousLinkV, VecOp, CondOp, &TTI);
|
|
// Append the recipe to the end of the VPBasicBlock because we need to
|
|
// ensure that it comes after all of it's inputs, including CondOp.
|
|
// Note that this transformation may leave over dead recipes (including
|
|
// CurrentLink), which will be cleaned by a later VPlan transform.
|
|
LinkVPBB->appendRecipe(RedRecipe);
|
|
CurrentLink->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
|
|
PreviousLink = RedRecipe;
|
|
}
|
|
}
|
|
|
|
// If tail is folded by masking, introduce selects between the phi
|
|
// and the live-out instruction of each reduction, at the beginning of the
|
|
// dedicated latch block.
|
|
if (CM.foldTailByMasking()) {
|
|
Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
|
|
for (VPRecipeBase &R :
|
|
Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!PhiR || PhiR->isInLoop())
|
|
continue;
|
|
VPValue *Cond =
|
|
RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), *Plan);
|
|
VPValue *Red = PhiR->getBackedgeValue();
|
|
assert(Red->getDefiningRecipe()->getParent() != LatchVPBB &&
|
|
"reduction recipe must be defined before latch");
|
|
Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
|
|
}
|
|
}
|
|
|
|
VPlanTransforms::clearReductionWrapFlags(*Plan);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const {
|
|
O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
|
|
IG->getInsertPos()->printAsOperand(O, false);
|
|
O << ", ";
|
|
getAddr()->printAsOperand(O, SlotTracker);
|
|
VPValue *Mask = getMask();
|
|
if (Mask) {
|
|
O << ", ";
|
|
Mask->printAsOperand(O, SlotTracker);
|
|
}
|
|
|
|
unsigned OpIdx = 0;
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i) {
|
|
if (!IG->getMember(i))
|
|
continue;
|
|
if (getNumStoreOperands() > 0) {
|
|
O << "\n" << Indent << " store ";
|
|
getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
|
|
O << " to index " << i;
|
|
} else {
|
|
O << "\n" << Indent << " ";
|
|
getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
|
|
O << " = load from index " << i;
|
|
}
|
|
++OpIdx;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "Int or FP induction being replicated.");
|
|
|
|
Value *Start = getStartValue()->getLiveInIRValue();
|
|
const InductionDescriptor &ID = getInductionDescriptor();
|
|
TruncInst *Trunc = getTruncInst();
|
|
IRBuilderBase &Builder = State.Builder;
|
|
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
|
|
assert(State.VF.isVector() && "must have vector VF");
|
|
|
|
// The value from the original loop to which we are mapping the new induction
|
|
// variable.
|
|
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
|
|
|
|
// Fast-math-flags propagate from the original induction instruction.
|
|
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
|
|
if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
|
|
Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
|
|
|
|
// Now do the actual transformations, and start with fetching the step value.
|
|
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
|
|
|
|
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
|
|
"Expected either an induction phi-node or a truncate of it!");
|
|
|
|
// Construct the initial value of the vector IV in the vector loop preheader
|
|
auto CurrIP = Builder.saveIP();
|
|
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
|
|
Builder.SetInsertPoint(VectorPH->getTerminator());
|
|
if (isa<TruncInst>(EntryVal)) {
|
|
assert(Start->getType()->isIntegerTy() &&
|
|
"Truncation requires an integer type");
|
|
auto *TruncType = cast<IntegerType>(EntryVal->getType());
|
|
Step = Builder.CreateTrunc(Step, TruncType);
|
|
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
|
|
}
|
|
|
|
Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
|
|
Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
|
|
Value *SteppedStart = getStepVector(
|
|
SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
|
|
|
|
// We create vector phi nodes for both integer and floating-point induction
|
|
// variables. Here, we determine the kind of arithmetic we will perform.
|
|
Instruction::BinaryOps AddOp;
|
|
Instruction::BinaryOps MulOp;
|
|
if (Step->getType()->isIntegerTy()) {
|
|
AddOp = Instruction::Add;
|
|
MulOp = Instruction::Mul;
|
|
} else {
|
|
AddOp = ID.getInductionOpcode();
|
|
MulOp = Instruction::FMul;
|
|
}
|
|
|
|
// Multiply the vectorization factor by the step using integer or
|
|
// floating-point arithmetic as appropriate.
|
|
Type *StepType = Step->getType();
|
|
Value *RuntimeVF;
|
|
if (Step->getType()->isFloatingPointTy())
|
|
RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
|
|
else
|
|
RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
|
|
Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
|
|
|
|
// Create a vector splat to use in the induction update.
|
|
//
|
|
// FIXME: If the step is non-constant, we create the vector splat with
|
|
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
|
|
// handle a constant vector splat.
|
|
Value *SplatVF = isa<Constant>(Mul)
|
|
? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
|
|
: Builder.CreateVectorSplat(State.VF, Mul);
|
|
Builder.restoreIP(CurrIP);
|
|
|
|
// We may need to add the step a number of times, depending on the unroll
|
|
// factor. The last of those goes into the PHI.
|
|
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
|
|
&*State.CFG.PrevBB->getFirstInsertionPt());
|
|
VecInd->setDebugLoc(EntryVal->getDebugLoc());
|
|
Instruction *LastInduction = VecInd;
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
State.set(this, LastInduction, Part);
|
|
|
|
if (isa<TruncInst>(EntryVal))
|
|
State.addMetadata(LastInduction, EntryVal);
|
|
|
|
LastInduction = cast<Instruction>(
|
|
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
|
|
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
|
|
}
|
|
|
|
LastInduction->setName("vec.ind.next");
|
|
VecInd->addIncoming(SteppedStart, VectorPH);
|
|
// Add induction update using an incorrect block temporarily. The phi node
|
|
// will be fixed after VPlan execution. Note that at this point the latch
|
|
// block cannot be used, as it does not exist yet.
|
|
// TODO: Model increment value in VPlan, by turning the recipe into a
|
|
// multi-def and a subclass of VPHeaderPHIRecipe.
|
|
VecInd->addIncoming(LastInduction, VectorPH);
|
|
}
|
|
|
|
void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
|
|
assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
|
|
"Not a pointer induction according to InductionDescriptor!");
|
|
assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
|
|
"Unexpected type.");
|
|
|
|
auto *IVR = getParent()->getPlan()->getCanonicalIV();
|
|
PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
|
|
|
|
if (onlyScalarsGenerated(State.VF)) {
|
|
// This is the normalized GEP that starts counting at zero.
|
|
Value *PtrInd = State.Builder.CreateSExtOrTrunc(
|
|
CanonicalIV, IndDesc.getStep()->getType());
|
|
// Determine the number of scalars we need to generate for each unroll
|
|
// iteration. If the instruction is uniform, we only need to generate the
|
|
// first lane. Otherwise, we generate all VF values.
|
|
bool IsUniform = vputils::onlyFirstLaneUsed(this);
|
|
assert((IsUniform || !State.VF.isScalable()) &&
|
|
"Cannot scalarize a scalable VF");
|
|
unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
|
|
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
Value *PartStart =
|
|
createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
|
|
|
|
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
|
|
Value *Idx = State.Builder.CreateAdd(
|
|
PartStart, ConstantInt::get(PtrInd->getType(), Lane));
|
|
Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
|
|
|
|
Value *Step = State.get(getOperand(1), VPIteration(Part, Lane));
|
|
Value *SclrGep = emitTransformedIndex(
|
|
State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
|
|
SclrGep->setName("next.gep");
|
|
State.set(this, SclrGep, VPIteration(Part, Lane));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
Type *PhiType = IndDesc.getStep()->getType();
|
|
|
|
// Build a pointer phi
|
|
Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
|
|
Type *ScStValueType = ScalarStartValue->getType();
|
|
PHINode *NewPointerPhi =
|
|
PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
|
|
|
|
BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
|
|
NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
|
|
|
|
// A pointer induction, performed by using a gep
|
|
Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
|
|
|
|
Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0));
|
|
Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
|
|
Value *NumUnrolledElems =
|
|
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
|
|
Value *InductionGEP = GetElementPtrInst::Create(
|
|
State.Builder.getInt8Ty(), NewPointerPhi,
|
|
State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
|
|
InductionLoc);
|
|
// Add induction update using an incorrect block temporarily. The phi node
|
|
// will be fixed after VPlan execution. Note that at this point the latch
|
|
// block cannot be used, as it does not exist yet.
|
|
// TODO: Model increment value in VPlan, by turning the recipe into a
|
|
// multi-def and a subclass of VPHeaderPHIRecipe.
|
|
NewPointerPhi->addIncoming(InductionGEP, VectorPH);
|
|
|
|
// Create UF many actual address geps that use the pointer
|
|
// phi as base and a vectorized version of the step value
|
|
// (<step*0, ..., step*N>) as offset.
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
Type *VecPhiType = VectorType::get(PhiType, State.VF);
|
|
Value *StartOffsetScalar =
|
|
State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
|
|
Value *StartOffset =
|
|
State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
|
|
// Create a vector of consecutive numbers from zero to VF.
|
|
StartOffset = State.Builder.CreateAdd(
|
|
StartOffset, State.Builder.CreateStepVector(VecPhiType));
|
|
|
|
assert(ScalarStepValue == State.get(getOperand(1), VPIteration(Part, 0)) &&
|
|
"scalar step must be the same across all parts");
|
|
Value *GEP = State.Builder.CreateGEP(
|
|
State.Builder.getInt8Ty(), NewPointerPhi,
|
|
State.Builder.CreateMul(
|
|
StartOffset,
|
|
State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
|
|
"vector.gep"));
|
|
State.set(this, GEP, Part);
|
|
}
|
|
}
|
|
|
|
void VPDerivedIVRecipe::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "VPDerivedIVRecipe being replicated.");
|
|
|
|
// Fast-math-flags propagate from the original induction instruction.
|
|
IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
|
|
if (IndDesc.getInductionBinOp() &&
|
|
isa<FPMathOperator>(IndDesc.getInductionBinOp()))
|
|
State.Builder.setFastMathFlags(
|
|
IndDesc.getInductionBinOp()->getFastMathFlags());
|
|
|
|
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
|
|
Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0));
|
|
Value *DerivedIV =
|
|
emitTransformedIndex(State.Builder, CanonicalIV,
|
|
getStartValue()->getLiveInIRValue(), Step, IndDesc);
|
|
DerivedIV->setName("offset.idx");
|
|
if (ResultTy != DerivedIV->getType()) {
|
|
assert(Step->getType()->isIntegerTy() &&
|
|
"Truncation requires an integer step");
|
|
DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy);
|
|
}
|
|
assert(DerivedIV != CanonicalIV && "IV didn't need transforming?");
|
|
|
|
State.set(this, DerivedIV, VPIteration(0, 0));
|
|
}
|
|
|
|
void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
|
|
// Fast-math-flags propagate from the original induction instruction.
|
|
IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
|
|
if (IndDesc.getInductionBinOp() &&
|
|
isa<FPMathOperator>(IndDesc.getInductionBinOp()))
|
|
State.Builder.setFastMathFlags(
|
|
IndDesc.getInductionBinOp()->getFastMathFlags());
|
|
|
|
Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0));
|
|
Value *Step = State.get(getStepValue(), VPIteration(0, 0));
|
|
|
|
buildScalarSteps(BaseIV, Step, IndDesc, this, State);
|
|
}
|
|
|
|
void VPInterleaveRecipe::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "Interleave group being replicated.");
|
|
State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
|
|
getStoredValues(), getMask(),
|
|
NeedsMaskForGaps);
|
|
}
|
|
|
|
void VPReductionRecipe::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "Reduction being replicated.");
|
|
Value *PrevInChain = State.get(getChainOp(), 0);
|
|
RecurKind Kind = RdxDesc->getRecurrenceKind();
|
|
bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
|
|
// Propagate the fast-math flags carried by the underlying instruction.
|
|
IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
|
|
State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
Value *NewVecOp = State.get(getVecOp(), Part);
|
|
if (VPValue *Cond = getCondOp()) {
|
|
Value *NewCond = State.get(Cond, Part);
|
|
VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
|
|
Value *Iden = RdxDesc->getRecurrenceIdentity(
|
|
Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
|
|
Value *IdenVec =
|
|
State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
|
|
Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
|
|
NewVecOp = Select;
|
|
}
|
|
Value *NewRed;
|
|
Value *NextInChain;
|
|
if (IsOrdered) {
|
|
if (State.VF.isVector())
|
|
NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
|
|
PrevInChain);
|
|
else
|
|
NewRed = State.Builder.CreateBinOp(
|
|
(Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
|
|
NewVecOp);
|
|
PrevInChain = NewRed;
|
|
} else {
|
|
PrevInChain = State.get(getChainOp(), Part);
|
|
NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
|
|
}
|
|
if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
|
|
NextInChain =
|
|
createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
|
|
NewRed, PrevInChain);
|
|
} else if (IsOrdered)
|
|
NextInChain = NewRed;
|
|
else
|
|
NextInChain = State.Builder.CreateBinOp(
|
|
(Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
|
|
PrevInChain);
|
|
State.set(this, NextInChain, Part);
|
|
}
|
|
}
|
|
|
|
void VPReplicateRecipe::execute(VPTransformState &State) {
|
|
Instruction *UI = getUnderlyingInstr();
|
|
if (State.Instance) { // Generate a single instance.
|
|
assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
|
|
State.ILV->scalarizeInstruction(UI, this, *State.Instance, State);
|
|
// Insert scalar instance packing it into a vector.
|
|
if (State.VF.isVector() && shouldPack()) {
|
|
// If we're constructing lane 0, initialize to start from poison.
|
|
if (State.Instance->Lane.isFirstLane()) {
|
|
assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
|
|
Value *Poison = PoisonValue::get(
|
|
VectorType::get(UI->getType(), State.VF));
|
|
State.set(this, Poison, State.Instance->Part);
|
|
}
|
|
State.packScalarIntoVectorValue(this, *State.Instance);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (IsUniform) {
|
|
// If the recipe is uniform across all parts (instead of just per VF), only
|
|
// generate a single instance.
|
|
if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) &&
|
|
all_of(operands(), [](VPValue *Op) {
|
|
return Op->isDefinedOutsideVectorRegions();
|
|
})) {
|
|
State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), State);
|
|
if (user_begin() != user_end()) {
|
|
for (unsigned Part = 1; Part < State.UF; ++Part)
|
|
State.set(this, State.get(this, VPIteration(0, 0)),
|
|
VPIteration(Part, 0));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Uniform within VL means we need to generate lane 0 only for each
|
|
// unrolled copy.
|
|
for (unsigned Part = 0; Part < State.UF; ++Part)
|
|
State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0), State);
|
|
return;
|
|
}
|
|
|
|
// A store of a loop varying value to a uniform address only needs the last
|
|
// copy of the store.
|
|
if (isa<StoreInst>(UI) &&
|
|
vputils::isUniformAfterVectorization(getOperand(1))) {
|
|
auto Lane = VPLane::getLastLaneForVF(State.VF);
|
|
State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane),
|
|
State);
|
|
return;
|
|
}
|
|
|
|
// Generate scalar instances for all VF lanes of all UF parts.
|
|
assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
|
|
const unsigned EndLane = State.VF.getKnownMinValue();
|
|
for (unsigned Part = 0; Part < State.UF; ++Part)
|
|
for (unsigned Lane = 0; Lane < EndLane; ++Lane)
|
|
State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane), State);
|
|
}
|
|
|
|
void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
|
|
VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
|
|
|
|
// Attempt to issue a wide load.
|
|
LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
|
|
StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
|
|
|
|
assert((LI || SI) && "Invalid Load/Store instruction");
|
|
assert((!SI || StoredValue) && "No stored value provided for widened store");
|
|
assert((!LI || !StoredValue) && "Stored value provided for widened load");
|
|
|
|
Type *ScalarDataTy = getLoadStoreType(&Ingredient);
|
|
|
|
auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
|
|
const Align Alignment = getLoadStoreAlignment(&Ingredient);
|
|
bool CreateGatherScatter = !isConsecutive();
|
|
|
|
auto &Builder = State.Builder;
|
|
InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
|
|
bool isMaskRequired = getMask();
|
|
if (isMaskRequired)
|
|
for (unsigned Part = 0; Part < State.UF; ++Part)
|
|
BlockInMaskParts[Part] = State.get(getMask(), Part);
|
|
|
|
const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
|
|
// Calculate the pointer for the specific unroll-part.
|
|
Value *PartPtr = nullptr;
|
|
|
|
// Use i32 for the gep index type when the value is constant,
|
|
// or query DataLayout for a more suitable index type otherwise.
|
|
const DataLayout &DL =
|
|
Builder.GetInsertBlock()->getModule()->getDataLayout();
|
|
Type *IndexTy = State.VF.isScalable() && (isReverse() || Part > 0)
|
|
? DL.getIndexType(ScalarDataTy->getPointerTo())
|
|
: Builder.getInt32Ty();
|
|
bool InBounds = false;
|
|
if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
|
|
InBounds = gep->isInBounds();
|
|
if (isReverse()) {
|
|
// If the address is consecutive but reversed, then the
|
|
// wide store needs to start at the last vector element.
|
|
// RunTimeVF = VScale * VF.getKnownMinValue()
|
|
// For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
|
|
Value *RunTimeVF = getRuntimeVF(Builder, IndexTy, State.VF);
|
|
// NumElt = -Part * RunTimeVF
|
|
Value *NumElt =
|
|
Builder.CreateMul(ConstantInt::get(IndexTy, -(int64_t)Part), RunTimeVF);
|
|
// LastLane = 1 - RunTimeVF
|
|
Value *LastLane =
|
|
Builder.CreateSub(ConstantInt::get(IndexTy, 1), RunTimeVF);
|
|
PartPtr = Builder.CreateGEP(ScalarDataTy, Ptr, NumElt, "", InBounds);
|
|
PartPtr =
|
|
Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane, "", InBounds);
|
|
if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
|
|
BlockInMaskParts[Part] =
|
|
Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
|
|
} else {
|
|
Value *Increment = createStepForVF(Builder, IndexTy, State.VF, Part);
|
|
PartPtr = Builder.CreateGEP(ScalarDataTy, Ptr, Increment, "", InBounds);
|
|
}
|
|
|
|
unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
|
|
return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
|
|
};
|
|
|
|
// Handle Stores:
|
|
if (SI) {
|
|
State.setDebugLocFromInst(SI);
|
|
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
Instruction *NewSI = nullptr;
|
|
Value *StoredVal = State.get(StoredValue, Part);
|
|
if (CreateGatherScatter) {
|
|
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
|
|
Value *VectorGep = State.get(getAddr(), Part);
|
|
NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
|
|
MaskPart);
|
|
} else {
|
|
if (isReverse()) {
|
|
// If we store to reverse consecutive memory locations, then we need
|
|
// to reverse the order of elements in the stored value.
|
|
StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
|
|
// We don't want to update the value in the map as it might be used in
|
|
// another expression. So don't call resetVectorValue(StoredVal).
|
|
}
|
|
auto *VecPtr =
|
|
CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
|
|
if (isMaskRequired)
|
|
NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
|
|
BlockInMaskParts[Part]);
|
|
else
|
|
NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
|
|
}
|
|
State.addMetadata(NewSI, SI);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle loads.
|
|
assert(LI && "Must have a load instruction");
|
|
State.setDebugLocFromInst(LI);
|
|
for (unsigned Part = 0; Part < State.UF; ++Part) {
|
|
Value *NewLI;
|
|
if (CreateGatherScatter) {
|
|
Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
|
|
Value *VectorGep = State.get(getAddr(), Part);
|
|
NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
|
|
nullptr, "wide.masked.gather");
|
|
State.addMetadata(NewLI, LI);
|
|
} else {
|
|
auto *VecPtr =
|
|
CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
|
|
if (isMaskRequired)
|
|
NewLI = Builder.CreateMaskedLoad(
|
|
DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
|
|
PoisonValue::get(DataTy), "wide.masked.load");
|
|
else
|
|
NewLI =
|
|
Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
|
|
|
|
// Add metadata to the load, but setVectorValue to the reverse shuffle.
|
|
State.addMetadata(NewLI, LI);
|
|
if (Reverse)
|
|
NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
|
|
}
|
|
|
|
State.set(getVPSingleValue(), NewLI, Part);
|
|
}
|
|
}
|
|
|
|
// Determine how to lower the scalar epilogue, which depends on 1) optimising
|
|
// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
|
|
// predication, and 4) a TTI hook that analyses whether the loop is suitable
|
|
// for predication.
|
|
static ScalarEpilogueLowering getScalarEpilogueLowering(
|
|
Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
|
|
LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) {
|
|
// 1) OptSize takes precedence over all other options, i.e. if this is set,
|
|
// don't look at hints or options, and don't request a scalar epilogue.
|
|
// (For PGSO, as shouldOptimizeForSize isn't currently accessible from
|
|
// LoopAccessInfo (due to code dependency and not being able to reliably get
|
|
// PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
|
|
// of strides in LoopAccessInfo::analyzeLoop() and vectorize without
|
|
// versioning when the vectorization is forced, unlike hasOptSize. So revert
|
|
// back to the old way and vectorize with versioning when forced. See D81345.)
|
|
if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
|
|
PGSOQueryType::IRPass) &&
|
|
Hints.getForce() != LoopVectorizeHints::FK_Enabled))
|
|
return CM_ScalarEpilogueNotAllowedOptSize;
|
|
|
|
// 2) If set, obey the directives
|
|
if (PreferPredicateOverEpilogue.getNumOccurrences()) {
|
|
switch (PreferPredicateOverEpilogue) {
|
|
case PreferPredicateTy::ScalarEpilogue:
|
|
return CM_ScalarEpilogueAllowed;
|
|
case PreferPredicateTy::PredicateElseScalarEpilogue:
|
|
return CM_ScalarEpilogueNotNeededUsePredicate;
|
|
case PreferPredicateTy::PredicateOrDontVectorize:
|
|
return CM_ScalarEpilogueNotAllowedUsePredicate;
|
|
};
|
|
}
|
|
|
|
// 3) If set, obey the hints
|
|
switch (Hints.getPredicate()) {
|
|
case LoopVectorizeHints::FK_Enabled:
|
|
return CM_ScalarEpilogueNotNeededUsePredicate;
|
|
case LoopVectorizeHints::FK_Disabled:
|
|
return CM_ScalarEpilogueAllowed;
|
|
};
|
|
|
|
// 4) if the TTI hook indicates this is profitable, request predication.
|
|
TailFoldingInfo TFI(TLI, &LVL, IAI);
|
|
if (TTI->preferPredicateOverEpilogue(&TFI))
|
|
return CM_ScalarEpilogueNotNeededUsePredicate;
|
|
|
|
return CM_ScalarEpilogueAllowed;
|
|
}
|
|
|
|
// Process the loop in the VPlan-native vectorization path. This path builds
|
|
// VPlan upfront in the vectorization pipeline, which allows to apply
|
|
// VPlan-to-VPlan transformations from the very beginning without modifying the
|
|
// input LLVM IR.
|
|
static bool processLoopInVPlanNativePath(
|
|
Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
|
|
LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
|
|
TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
|
|
OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
|
|
LoopVectorizationRequirements &Requirements) {
|
|
|
|
if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
|
|
LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
|
|
return false;
|
|
}
|
|
assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
|
|
Function *F = L->getHeader()->getParent();
|
|
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
|
|
|
|
ScalarEpilogueLowering SEL =
|
|
getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
|
|
|
|
LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
|
|
&Hints, IAI);
|
|
// Use the planner for outer loop vectorization.
|
|
// TODO: CM is not used at this point inside the planner. Turn CM into an
|
|
// optional argument if we don't need it in the future.
|
|
LoopVectorizationPlanner LVP(L, LI, TLI, *TTI, LVL, CM, IAI, PSE, Hints, ORE);
|
|
|
|
// Get user vectorization factor.
|
|
ElementCount UserVF = Hints.getWidth();
|
|
|
|
CM.collectElementTypesForWidening();
|
|
|
|
// Plan how to best vectorize, return the best VF and its cost.
|
|
const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
|
|
|
|
// If we are stress testing VPlan builds, do not attempt to generate vector
|
|
// code. Masked vector code generation support will follow soon.
|
|
// Also, do not attempt to vectorize if no vector code will be produced.
|
|
if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
|
|
return false;
|
|
|
|
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
|
|
|
|
{
|
|
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
|
|
F->getParent()->getDataLayout());
|
|
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
|
|
VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
|
|
LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
|
|
<< L->getHeader()->getParent()->getName() << "\"\n");
|
|
LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
|
|
}
|
|
|
|
// Mark the loop as already vectorized to avoid vectorizing again.
|
|
Hints.setAlreadyVectorized();
|
|
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
|
|
return true;
|
|
}
|
|
|
|
// Emit a remark if there are stores to floats that required a floating point
|
|
// extension. If the vectorized loop was generated with floating point there
|
|
// will be a performance penalty from the conversion overhead and the change in
|
|
// the vector width.
|
|
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
|
|
SmallVector<Instruction *, 4> Worklist;
|
|
for (BasicBlock *BB : L->getBlocks()) {
|
|
for (Instruction &Inst : *BB) {
|
|
if (auto *S = dyn_cast<StoreInst>(&Inst)) {
|
|
if (S->getValueOperand()->getType()->isFloatTy())
|
|
Worklist.push_back(S);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Traverse the floating point stores upwards searching, for floating point
|
|
// conversions.
|
|
SmallPtrSet<const Instruction *, 4> Visited;
|
|
SmallPtrSet<const Instruction *, 4> EmittedRemark;
|
|
while (!Worklist.empty()) {
|
|
auto *I = Worklist.pop_back_val();
|
|
if (!L->contains(I))
|
|
continue;
|
|
if (!Visited.insert(I).second)
|
|
continue;
|
|
|
|
// Emit a remark if the floating point store required a floating
|
|
// point conversion.
|
|
// TODO: More work could be done to identify the root cause such as a
|
|
// constant or a function return type and point the user to it.
|
|
if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
|
|
I->getDebugLoc(), L->getHeader())
|
|
<< "floating point conversion changes vector width. "
|
|
<< "Mixed floating point precision requires an up/down "
|
|
<< "cast that will negatively impact performance.";
|
|
});
|
|
|
|
for (Use &Op : I->operands())
|
|
if (auto *OpI = dyn_cast<Instruction>(Op))
|
|
Worklist.push_back(OpI);
|
|
}
|
|
}
|
|
|
|
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
|
|
VectorizationFactor &VF,
|
|
std::optional<unsigned> VScale, Loop *L,
|
|
ScalarEvolution &SE) {
|
|
InstructionCost CheckCost = Checks.getCost();
|
|
if (!CheckCost.isValid())
|
|
return false;
|
|
|
|
// When interleaving only scalar and vector cost will be equal, which in turn
|
|
// would lead to a divide by 0. Fall back to hard threshold.
|
|
if (VF.Width.isScalar()) {
|
|
if (CheckCost > VectorizeMemoryCheckThreshold) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "LV: Interleaving only is not profitable due to runtime checks\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
|
|
double ScalarC = *VF.ScalarCost.getValue();
|
|
if (ScalarC == 0)
|
|
return true;
|
|
|
|
// First, compute the minimum iteration count required so that the vector
|
|
// loop outperforms the scalar loop.
|
|
// The total cost of the scalar loop is
|
|
// ScalarC * TC
|
|
// where
|
|
// * TC is the actual trip count of the loop.
|
|
// * ScalarC is the cost of a single scalar iteration.
|
|
//
|
|
// The total cost of the vector loop is
|
|
// RtC + VecC * (TC / VF) + EpiC
|
|
// where
|
|
// * RtC is the cost of the generated runtime checks
|
|
// * VecC is the cost of a single vector iteration.
|
|
// * TC is the actual trip count of the loop
|
|
// * VF is the vectorization factor
|
|
// * EpiCost is the cost of the generated epilogue, including the cost
|
|
// of the remaining scalar operations.
|
|
//
|
|
// Vectorization is profitable once the total vector cost is less than the
|
|
// total scalar cost:
|
|
// RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
|
|
//
|
|
// Now we can compute the minimum required trip count TC as
|
|
// (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
|
|
//
|
|
// For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
|
|
// the computations are performed on doubles, not integers and the result
|
|
// is rounded up, hence we get an upper estimate of the TC.
|
|
unsigned IntVF = VF.Width.getKnownMinValue();
|
|
if (VF.Width.isScalable()) {
|
|
unsigned AssumedMinimumVscale = 1;
|
|
if (VScale)
|
|
AssumedMinimumVscale = *VScale;
|
|
IntVF *= AssumedMinimumVscale;
|
|
}
|
|
double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
|
|
double RtC = *CheckCost.getValue();
|
|
double MinTC1 = RtC / (ScalarC - VecCOverVF);
|
|
|
|
// Second, compute a minimum iteration count so that the cost of the
|
|
// runtime checks is only a fraction of the total scalar loop cost. This
|
|
// adds a loop-dependent bound on the overhead incurred if the runtime
|
|
// checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
|
|
// * TC. To bound the runtime check to be a fraction 1/X of the scalar
|
|
// cost, compute
|
|
// RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
|
|
double MinTC2 = RtC * 10 / ScalarC;
|
|
|
|
// Now pick the larger minimum. If it is not a multiple of VF, choose the
|
|
// next closest multiple of VF. This should partly compensate for ignoring
|
|
// the epilogue cost.
|
|
uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
|
|
VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
|
|
<< VF.MinProfitableTripCount << "\n");
|
|
|
|
// Skip vectorization if the expected trip count is less than the minimum
|
|
// required trip count.
|
|
if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
|
|
if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
|
|
VF.MinProfitableTripCount)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
|
|
"trip count < minimum profitable VF ("
|
|
<< *ExpectedTC << " < " << VF.MinProfitableTripCount
|
|
<< ")\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
|
|
: InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
|
|
!EnableLoopInterleaving),
|
|
VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
|
|
!EnableLoopVectorization) {}
|
|
|
|
bool LoopVectorizePass::processLoop(Loop *L) {
|
|
assert((EnableVPlanNativePath || L->isInnermost()) &&
|
|
"VPlan-native path is not enabled. Only process inner loops.");
|
|
|
|
#ifndef NDEBUG
|
|
const std::string DebugLocStr = getDebugLocString(L);
|
|
#endif /* NDEBUG */
|
|
|
|
LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
|
|
<< L->getHeader()->getParent()->getName() << "' from "
|
|
<< DebugLocStr << "\n");
|
|
|
|
LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Loop hints:"
|
|
<< " force="
|
|
<< (Hints.getForce() == LoopVectorizeHints::FK_Disabled
|
|
? "disabled"
|
|
: (Hints.getForce() == LoopVectorizeHints::FK_Enabled
|
|
? "enabled"
|
|
: "?"))
|
|
<< " width=" << Hints.getWidth()
|
|
<< " interleave=" << Hints.getInterleave() << "\n");
|
|
|
|
// Function containing loop
|
|
Function *F = L->getHeader()->getParent();
|
|
|
|
// Looking at the diagnostic output is the only way to determine if a loop
|
|
// was vectorized (other than looking at the IR or machine code), so it
|
|
// is important to generate an optimization remark for each loop. Most of
|
|
// these messages are generated as OptimizationRemarkAnalysis. Remarks
|
|
// generated as OptimizationRemark and OptimizationRemarkMissed are
|
|
// less verbose reporting vectorized loops and unvectorized loops that may
|
|
// benefit from vectorization, respectively.
|
|
|
|
if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
|
|
return false;
|
|
}
|
|
|
|
PredicatedScalarEvolution PSE(*SE, *L);
|
|
|
|
// Check if it is legal to vectorize the loop.
|
|
LoopVectorizationRequirements Requirements;
|
|
LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
|
|
&Requirements, &Hints, DB, AC, BFI, PSI);
|
|
if (!LVL.canVectorize(EnableVPlanNativePath)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
// Entrance to the VPlan-native vectorization path. Outer loops are processed
|
|
// here. They may require CFG and instruction level transformations before
|
|
// even evaluating whether vectorization is profitable. Since we cannot modify
|
|
// the incoming IR, we need to build VPlan upfront in the vectorization
|
|
// pipeline.
|
|
if (!L->isInnermost())
|
|
return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
|
|
ORE, BFI, PSI, Hints, Requirements);
|
|
|
|
assert(L->isInnermost() && "Inner loop expected.");
|
|
|
|
InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
|
|
bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
|
|
|
|
// If an override option has been passed in for interleaved accesses, use it.
|
|
if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
|
|
UseInterleaved = EnableInterleavedMemAccesses;
|
|
|
|
// Analyze interleaved memory accesses.
|
|
if (UseInterleaved)
|
|
IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
|
|
|
|
// Check the function attributes and profiles to find out if this function
|
|
// should be optimized for size.
|
|
ScalarEpilogueLowering SEL =
|
|
getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
|
|
|
|
// Check the loop for a trip count threshold: vectorize loops with a tiny trip
|
|
// count by optimizing for size, to minimize overheads.
|
|
auto ExpectedTC = getSmallBestKnownTC(*SE, L);
|
|
if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
|
|
<< "This loop is worth vectorizing only if no scalar "
|
|
<< "iteration overheads are incurred.");
|
|
if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
|
|
LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
|
|
else {
|
|
if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) {
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " But the target considers the trip count too "
|
|
"small to consider vectorizing.\n");
|
|
reportVectorizationFailure(
|
|
"The trip count is below the minial threshold value.",
|
|
"loop trip count is too low, avoiding vectorization",
|
|
"LowTripCount", ORE, L);
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the function attributes to see if implicit floats or vectors are
|
|
// allowed.
|
|
if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
|
|
reportVectorizationFailure(
|
|
"Can't vectorize when the NoImplicitFloat attribute is used",
|
|
"loop not vectorized due to NoImplicitFloat attribute",
|
|
"NoImplicitFloat", ORE, L);
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
// Check if the target supports potentially unsafe FP vectorization.
|
|
// FIXME: Add a check for the type of safety issue (denormal, signaling)
|
|
// for the target we're vectorizing for, to make sure none of the
|
|
// additional fp-math flags can help.
|
|
if (Hints.isPotentiallyUnsafe() &&
|
|
TTI->isFPVectorizationPotentiallyUnsafe()) {
|
|
reportVectorizationFailure(
|
|
"Potentially unsafe FP op prevents vectorization",
|
|
"loop not vectorized due to unsafe FP support.",
|
|
"UnsafeFP", ORE, L);
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
bool AllowOrderedReductions;
|
|
// If the flag is set, use that instead and override the TTI behaviour.
|
|
if (ForceOrderedReductions.getNumOccurrences() > 0)
|
|
AllowOrderedReductions = ForceOrderedReductions;
|
|
else
|
|
AllowOrderedReductions = TTI->enableOrderedReductions();
|
|
if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
|
|
ORE->emit([&]() {
|
|
auto *ExactFPMathInst = Requirements.getExactFPInst();
|
|
return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
|
|
ExactFPMathInst->getDebugLoc(),
|
|
ExactFPMathInst->getParent())
|
|
<< "loop not vectorized: cannot prove it is safe to reorder "
|
|
"floating-point operations";
|
|
});
|
|
LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
|
|
"reorder floating-point operations\n");
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
// Use the cost model.
|
|
LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
|
|
F, &Hints, IAI);
|
|
// Use the planner for vectorization.
|
|
LoopVectorizationPlanner LVP(L, LI, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
|
|
ORE);
|
|
|
|
// Get user vectorization factor and interleave count.
|
|
ElementCount UserVF = Hints.getWidth();
|
|
unsigned UserIC = Hints.getInterleave();
|
|
|
|
// Plan how to best vectorize, return the best VF and its cost.
|
|
std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
|
|
|
|
VectorizationFactor VF = VectorizationFactor::Disabled();
|
|
unsigned IC = 1;
|
|
|
|
GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
|
|
F->getParent()->getDataLayout());
|
|
if (MaybeVF) {
|
|
VF = *MaybeVF;
|
|
// Select the interleave count.
|
|
IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
|
|
|
|
unsigned SelectedIC = std::max(IC, UserIC);
|
|
// Optimistically generate runtime checks if they are needed. Drop them if
|
|
// they turn out to not be profitable.
|
|
if (VF.Width.isVector() || SelectedIC > 1)
|
|
Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
|
|
|
|
// Check if it is profitable to vectorize with runtime checks.
|
|
bool ForceVectorization =
|
|
Hints.getForce() == LoopVectorizeHints::FK_Enabled;
|
|
if (!ForceVectorization &&
|
|
!areRuntimeChecksProfitable(Checks, VF, getVScaleForTuning(L, *TTI), L,
|
|
*PSE.getSE())) {
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysisAliasing(
|
|
DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "loop not vectorized: cannot prove it is safe to reorder "
|
|
"memory operations";
|
|
});
|
|
LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
|
|
Hints.emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Identify the diagnostic messages that should be produced.
|
|
std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
|
|
bool VectorizeLoop = true, InterleaveLoop = true;
|
|
if (VF.Width.isScalar()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
|
|
VecDiagMsg = std::make_pair(
|
|
"VectorizationNotBeneficial",
|
|
"the cost-model indicates that vectorization is not beneficial");
|
|
VectorizeLoop = false;
|
|
}
|
|
|
|
if (!MaybeVF && UserIC > 1) {
|
|
// Tell the user interleaving was avoided up-front, despite being explicitly
|
|
// requested.
|
|
LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
|
|
"interleaving should be avoided up front\n");
|
|
IntDiagMsg = std::make_pair(
|
|
"InterleavingAvoided",
|
|
"Ignoring UserIC, because interleaving was avoided up front");
|
|
InterleaveLoop = false;
|
|
} else if (IC == 1 && UserIC <= 1) {
|
|
// Tell the user interleaving is not beneficial.
|
|
LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
|
|
IntDiagMsg = std::make_pair(
|
|
"InterleavingNotBeneficial",
|
|
"the cost-model indicates that interleaving is not beneficial");
|
|
InterleaveLoop = false;
|
|
if (UserIC == 1) {
|
|
IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
|
|
IntDiagMsg.second +=
|
|
" and is explicitly disabled or interleave count is set to 1";
|
|
}
|
|
} else if (IC > 1 && UserIC == 1) {
|
|
// Tell the user interleaving is beneficial, but it explicitly disabled.
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
|
|
IntDiagMsg = std::make_pair(
|
|
"InterleavingBeneficialButDisabled",
|
|
"the cost-model indicates that interleaving is beneficial "
|
|
"but is explicitly disabled or interleave count is set to 1");
|
|
InterleaveLoop = false;
|
|
}
|
|
|
|
// Override IC if user provided an interleave count.
|
|
IC = UserIC > 0 ? UserIC : IC;
|
|
|
|
// Emit diagnostic messages, if any.
|
|
const char *VAPassName = Hints.vectorizeAnalysisPassName();
|
|
if (!VectorizeLoop && !InterleaveLoop) {
|
|
// Do not vectorize or interleaving the loop.
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
|
|
L->getStartLoc(), L->getHeader())
|
|
<< VecDiagMsg.second;
|
|
});
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
|
|
L->getStartLoc(), L->getHeader())
|
|
<< IntDiagMsg.second;
|
|
});
|
|
return false;
|
|
} else if (!VectorizeLoop && InterleaveLoop) {
|
|
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
|
|
L->getStartLoc(), L->getHeader())
|
|
<< VecDiagMsg.second;
|
|
});
|
|
} else if (VectorizeLoop && !InterleaveLoop) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
|
|
<< ") in " << DebugLocStr << '\n');
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
|
|
L->getStartLoc(), L->getHeader())
|
|
<< IntDiagMsg.second;
|
|
});
|
|
} else if (VectorizeLoop && InterleaveLoop) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
|
|
<< ") in " << DebugLocStr << '\n');
|
|
LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
|
|
}
|
|
|
|
bool DisableRuntimeUnroll = false;
|
|
MDNode *OrigLoopID = L->getLoopID();
|
|
{
|
|
using namespace ore;
|
|
if (!VectorizeLoop) {
|
|
assert(IC > 1 && "interleave count should not be 1 or 0");
|
|
// If we decided that it is not legal to vectorize the loop, then
|
|
// interleave it.
|
|
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
|
|
&CM, BFI, PSI, Checks);
|
|
|
|
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
|
|
LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
|
|
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "interleaved loop (interleaved count: "
|
|
<< NV("InterleaveCount", IC) << ")";
|
|
});
|
|
} else {
|
|
// If we decided that it is *legal* to vectorize the loop, then do it.
|
|
|
|
// Consider vectorizing the epilogue too if it's profitable.
|
|
VectorizationFactor EpilogueVF =
|
|
LVP.selectEpilogueVectorizationFactor(VF.Width, IC);
|
|
if (EpilogueVF.Width.isVector()) {
|
|
|
|
// The first pass vectorizes the main loop and creates a scalar epilogue
|
|
// to be vectorized by executing the plan (potentially with a different
|
|
// factor) again shortly afterwards.
|
|
EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
|
|
EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
|
|
EPI, &LVL, &CM, BFI, PSI, Checks);
|
|
|
|
VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
|
|
auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
|
|
BestMainPlan, MainILV, DT, true);
|
|
++LoopsVectorized;
|
|
|
|
// Second pass vectorizes the epilogue and adjusts the control flow
|
|
// edges from the first pass.
|
|
EPI.MainLoopVF = EPI.EpilogueVF;
|
|
EPI.MainLoopUF = EPI.EpilogueUF;
|
|
EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
|
|
ORE, EPI, &LVL, &CM, BFI, PSI,
|
|
Checks);
|
|
|
|
VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
|
|
VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
|
|
VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
|
|
Header->setName("vec.epilog.vector.body");
|
|
|
|
// Re-use the trip count and steps expanded for the main loop, as
|
|
// skeleton creation needs it as a value that dominates both the scalar
|
|
// and vector epilogue loops
|
|
// TODO: This is a workaround needed for epilogue vectorization and it
|
|
// should be removed once induction resume value creation is done
|
|
// directly in VPlan.
|
|
EpilogILV.setTripCount(MainILV.getTripCount());
|
|
for (auto &R : make_early_inc_range(*BestEpiPlan.getPreheader())) {
|
|
auto *ExpandR = cast<VPExpandSCEVRecipe>(&R);
|
|
auto *ExpandedVal = BestEpiPlan.getVPValueOrAddLiveIn(
|
|
ExpandedSCEVs.find(ExpandR->getSCEV())->second);
|
|
ExpandR->replaceAllUsesWith(ExpandedVal);
|
|
ExpandR->eraseFromParent();
|
|
}
|
|
|
|
// Ensure that the start values for any VPWidenIntOrFpInductionRecipe,
|
|
// VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated
|
|
// before vectorizing the epilogue loop.
|
|
for (VPRecipeBase &R : Header->phis()) {
|
|
if (isa<VPCanonicalIVPHIRecipe>(&R))
|
|
continue;
|
|
|
|
Value *ResumeV = nullptr;
|
|
// TODO: Move setting of resume values to prepareToExecute.
|
|
if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
|
|
ResumeV = MainILV.getReductionResumeValue(
|
|
ReductionPhi->getRecurrenceDescriptor());
|
|
} else {
|
|
// Create induction resume values for both widened pointer and
|
|
// integer/fp inductions and update the start value of the induction
|
|
// recipes to use the resume value.
|
|
PHINode *IndPhi = nullptr;
|
|
const InductionDescriptor *ID;
|
|
if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
|
|
IndPhi = cast<PHINode>(Ind->getUnderlyingValue());
|
|
ID = &Ind->getInductionDescriptor();
|
|
} else {
|
|
auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R);
|
|
IndPhi = WidenInd->getPHINode();
|
|
ID = &WidenInd->getInductionDescriptor();
|
|
}
|
|
|
|
ResumeV = MainILV.createInductionResumeValue(
|
|
IndPhi, *ID, getExpandedStep(*ID, ExpandedSCEVs),
|
|
{EPI.MainLoopIterationCountCheck});
|
|
}
|
|
assert(ResumeV && "Must have a resume value");
|
|
VPValue *StartVal = BestEpiPlan.getVPValueOrAddLiveIn(ResumeV);
|
|
cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
|
|
}
|
|
|
|
LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
|
|
DT, true, &ExpandedSCEVs);
|
|
++LoopsEpilogueVectorized;
|
|
|
|
if (!MainILV.areSafetyChecksAdded())
|
|
DisableRuntimeUnroll = true;
|
|
} else {
|
|
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
|
|
VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
|
|
PSI, Checks);
|
|
|
|
VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
|
|
LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
|
|
++LoopsVectorized;
|
|
|
|
// Add metadata to disable runtime unrolling a scalar loop when there
|
|
// are no runtime checks about strides and memory. A scalar loop that is
|
|
// rarely used is not worth unrolling.
|
|
if (!LB.areSafetyChecksAdded())
|
|
DisableRuntimeUnroll = true;
|
|
}
|
|
// Report the vectorization decision.
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "vectorized loop (vectorization width: "
|
|
<< NV("VectorizationFactor", VF.Width)
|
|
<< ", interleaved count: " << NV("InterleaveCount", IC) << ")";
|
|
});
|
|
}
|
|
|
|
if (ORE->allowExtraAnalysis(LV_NAME))
|
|
checkMixedPrecision(L, ORE);
|
|
}
|
|
|
|
std::optional<MDNode *> RemainderLoopID =
|
|
makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
|
|
LLVMLoopVectorizeFollowupEpilogue});
|
|
if (RemainderLoopID) {
|
|
L->setLoopID(*RemainderLoopID);
|
|
} else {
|
|
if (DisableRuntimeUnroll)
|
|
AddRuntimeUnrollDisableMetaData(L);
|
|
|
|
// Mark the loop as already vectorized to avoid vectorizing again.
|
|
Hints.setAlreadyVectorized();
|
|
}
|
|
|
|
assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
|
|
return true;
|
|
}
|
|
|
|
LoopVectorizeResult LoopVectorizePass::runImpl(
|
|
Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
|
|
DominatorTree &DT_, BlockFrequencyInfo *BFI_, TargetLibraryInfo *TLI_,
|
|
DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_,
|
|
OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
|
|
SE = &SE_;
|
|
LI = &LI_;
|
|
TTI = &TTI_;
|
|
DT = &DT_;
|
|
BFI = BFI_;
|
|
TLI = TLI_;
|
|
AC = &AC_;
|
|
LAIs = &LAIs_;
|
|
DB = &DB_;
|
|
ORE = &ORE_;
|
|
PSI = PSI_;
|
|
|
|
// Don't attempt if
|
|
// 1. the target claims to have no vector registers, and
|
|
// 2. interleaving won't help ILP.
|
|
//
|
|
// The second condition is necessary because, even if the target has no
|
|
// vector registers, loop vectorization may still enable scalar
|
|
// interleaving.
|
|
if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
|
|
TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
|
|
return LoopVectorizeResult(false, false);
|
|
|
|
bool Changed = false, CFGChanged = false;
|
|
|
|
// The vectorizer requires loops to be in simplified form.
|
|
// Since simplification may add new inner loops, it has to run before the
|
|
// legality and profitability checks. This means running the loop vectorizer
|
|
// will simplify all loops, regardless of whether anything end up being
|
|
// vectorized.
|
|
for (const auto &L : *LI)
|
|
Changed |= CFGChanged |=
|
|
simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
|
|
|
|
// Build up a worklist of inner-loops to vectorize. This is necessary as
|
|
// the act of vectorizing or partially unrolling a loop creates new loops
|
|
// and can invalidate iterators across the loops.
|
|
SmallVector<Loop *, 8> Worklist;
|
|
|
|
for (Loop *L : *LI)
|
|
collectSupportedLoops(*L, LI, ORE, Worklist);
|
|
|
|
LoopsAnalyzed += Worklist.size();
|
|
|
|
// Now walk the identified inner loops.
|
|
while (!Worklist.empty()) {
|
|
Loop *L = Worklist.pop_back_val();
|
|
|
|
// For the inner loops we actually process, form LCSSA to simplify the
|
|
// transform.
|
|
Changed |= formLCSSARecursively(*L, *DT, LI, SE);
|
|
|
|
Changed |= CFGChanged |= processLoop(L);
|
|
|
|
if (Changed)
|
|
LAIs->clear();
|
|
}
|
|
|
|
// Process each loop nest in the function.
|
|
return LoopVectorizeResult(Changed, CFGChanged);
|
|
}
|
|
|
|
PreservedAnalyses LoopVectorizePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
// There are no loops in the function. Return before computing other expensive
|
|
// analyses.
|
|
if (LI.empty())
|
|
return PreservedAnalyses::all();
|
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
|
|
LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
ProfileSummaryInfo *PSI =
|
|
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
|
|
BlockFrequencyInfo *BFI = nullptr;
|
|
if (PSI && PSI->hasProfileSummary())
|
|
BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
|
|
LoopVectorizeResult Result =
|
|
runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI);
|
|
if (!Result.MadeAnyChange)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
|
|
if (isAssignmentTrackingEnabled(*F.getParent())) {
|
|
for (auto &BB : F)
|
|
RemoveRedundantDbgInstrs(&BB);
|
|
}
|
|
|
|
// We currently do not preserve loopinfo/dominator analyses with outer loop
|
|
// vectorization. Until this is addressed, mark these analyses as preserved
|
|
// only for non-VPlan-native path.
|
|
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
|
|
if (!EnableVPlanNativePath) {
|
|
PA.preserve<LoopAnalysis>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
SE.verify();
|
|
#endif
|
|
}
|
|
|
|
if (Result.MadeCFGChange) {
|
|
// Making CFG changes likely means a loop got vectorized. Indicate that
|
|
// extra simplification passes should be run.
|
|
// TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
|
|
// be run if runtime checks have been added.
|
|
AM.getResult<ShouldRunExtraVectorPasses>(F);
|
|
PA.preserve<ShouldRunExtraVectorPasses>();
|
|
} else {
|
|
PA.preserveSet<CFGAnalyses>();
|
|
}
|
|
return PA;
|
|
}
|
|
|
|
void LoopVectorizePass::printPipeline(
|
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
|
static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
|
|
OS, MapClassName2PassName);
|
|
|
|
OS << '<';
|
|
OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
|
|
OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
|
|
OS << '>';
|
|
}
|