mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2024-12-05 21:12:31 +00:00
5a0e50cd87
lambda-expression in C++11, to match the C++14 rules. llvm-svn: 224620
1641 lines
68 KiB
C++
1641 lines
68 KiB
C++
//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for C++ lambda expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/SemaLambda.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// \brief Examines the FunctionScopeInfo stack to determine the nearest
|
|
/// enclosing lambda (to the current lambda) that is 'capture-ready' for
|
|
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
|
|
/// If successful, returns the index into Sema's FunctionScopeInfo stack
|
|
/// of the capture-ready lambda's LambdaScopeInfo.
|
|
///
|
|
/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
|
|
/// lambda - is on top) to determine the index of the nearest enclosing/outer
|
|
/// lambda that is ready to capture the \p VarToCapture being referenced in
|
|
/// the current lambda.
|
|
/// As we climb down the stack, we want the index of the first such lambda -
|
|
/// that is the lambda with the highest index that is 'capture-ready'.
|
|
///
|
|
/// A lambda 'L' is capture-ready for 'V' (var or this) if:
|
|
/// - its enclosing context is non-dependent
|
|
/// - and if the chain of lambdas between L and the lambda in which
|
|
/// V is potentially used (i.e. the lambda at the top of the scope info
|
|
/// stack), can all capture or have already captured V.
|
|
/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
|
|
///
|
|
/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
|
|
/// for whether it is 'capture-capable' (see
|
|
/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
|
|
/// capture.
|
|
///
|
|
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
|
|
/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
|
|
/// is at the top of the stack and has the highest index.
|
|
/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
|
|
///
|
|
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
|
|
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
|
|
/// which is capture-ready. If the return value evaluates to 'false' then
|
|
/// no lambda is capture-ready for \p VarToCapture.
|
|
|
|
static inline Optional<unsigned>
|
|
getStackIndexOfNearestEnclosingCaptureReadyLambda(
|
|
ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
|
|
VarDecl *VarToCapture) {
|
|
// Label failure to capture.
|
|
const Optional<unsigned> NoLambdaIsCaptureReady;
|
|
|
|
assert(
|
|
isa<clang::sema::LambdaScopeInfo>(
|
|
FunctionScopes[FunctionScopes.size() - 1]) &&
|
|
"The function on the top of sema's function-info stack must be a lambda");
|
|
|
|
// If VarToCapture is null, we are attempting to capture 'this'.
|
|
const bool IsCapturingThis = !VarToCapture;
|
|
const bool IsCapturingVariable = !IsCapturingThis;
|
|
|
|
// Start with the current lambda at the top of the stack (highest index).
|
|
unsigned CurScopeIndex = FunctionScopes.size() - 1;
|
|
DeclContext *EnclosingDC =
|
|
cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
|
|
|
|
do {
|
|
const clang::sema::LambdaScopeInfo *LSI =
|
|
cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
|
|
// IF we have climbed down to an intervening enclosing lambda that contains
|
|
// the variable declaration - it obviously can/must not capture the
|
|
// variable.
|
|
// Since its enclosing DC is dependent, all the lambdas between it and the
|
|
// innermost nested lambda are dependent (otherwise we wouldn't have
|
|
// arrived here) - so we don't yet have a lambda that can capture the
|
|
// variable.
|
|
if (IsCapturingVariable &&
|
|
VarToCapture->getDeclContext()->Equals(EnclosingDC))
|
|
return NoLambdaIsCaptureReady;
|
|
|
|
// For an enclosing lambda to be capture ready for an entity, all
|
|
// intervening lambda's have to be able to capture that entity. If even
|
|
// one of the intervening lambda's is not capable of capturing the entity
|
|
// then no enclosing lambda can ever capture that entity.
|
|
// For e.g.
|
|
// const int x = 10;
|
|
// [=](auto a) { #1
|
|
// [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
|
|
// [=](auto c) { #3
|
|
// f(x, c); <-- can not lead to x's speculative capture by #1 or #2
|
|
// }; }; };
|
|
// If they do not have a default implicit capture, check to see
|
|
// if the entity has already been explicitly captured.
|
|
// If even a single dependent enclosing lambda lacks the capability
|
|
// to ever capture this variable, there is no further enclosing
|
|
// non-dependent lambda that can capture this variable.
|
|
if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
|
|
if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
|
|
return NoLambdaIsCaptureReady;
|
|
if (IsCapturingThis && !LSI->isCXXThisCaptured())
|
|
return NoLambdaIsCaptureReady;
|
|
}
|
|
EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
|
|
|
|
assert(CurScopeIndex);
|
|
--CurScopeIndex;
|
|
} while (!EnclosingDC->isTranslationUnit() &&
|
|
EnclosingDC->isDependentContext() &&
|
|
isLambdaCallOperator(EnclosingDC));
|
|
|
|
assert(CurScopeIndex < (FunctionScopes.size() - 1));
|
|
// If the enclosingDC is not dependent, then the immediately nested lambda
|
|
// (one index above) is capture-ready.
|
|
if (!EnclosingDC->isDependentContext())
|
|
return CurScopeIndex + 1;
|
|
return NoLambdaIsCaptureReady;
|
|
}
|
|
|
|
/// \brief Examines the FunctionScopeInfo stack to determine the nearest
|
|
/// enclosing lambda (to the current lambda) that is 'capture-capable' for
|
|
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
|
|
/// If successful, returns the index into Sema's FunctionScopeInfo stack
|
|
/// of the capture-capable lambda's LambdaScopeInfo.
|
|
///
|
|
/// Given the current stack of lambdas being processed by Sema and
|
|
/// the variable of interest, to identify the nearest enclosing lambda (to the
|
|
/// current lambda at the top of the stack) that can truly capture
|
|
/// a variable, it has to have the following two properties:
|
|
/// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
|
|
/// - climb down the stack (i.e. starting from the innermost and examining
|
|
/// each outer lambda step by step) checking if each enclosing
|
|
/// lambda can either implicitly or explicitly capture the variable.
|
|
/// Record the first such lambda that is enclosed in a non-dependent
|
|
/// context. If no such lambda currently exists return failure.
|
|
/// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
|
|
/// capture the variable by checking all its enclosing lambdas:
|
|
/// - check if all outer lambdas enclosing the 'capture-ready' lambda
|
|
/// identified above in 'a' can also capture the variable (this is done
|
|
/// via tryCaptureVariable for variables and CheckCXXThisCapture for
|
|
/// 'this' by passing in the index of the Lambda identified in step 'a')
|
|
///
|
|
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
|
|
/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
|
|
/// is at the top of the stack.
|
|
///
|
|
/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
|
|
///
|
|
///
|
|
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
|
|
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
|
|
/// which is capture-capable. If the return value evaluates to 'false' then
|
|
/// no lambda is capture-capable for \p VarToCapture.
|
|
|
|
Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
|
|
ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
|
|
VarDecl *VarToCapture, Sema &S) {
|
|
|
|
const Optional<unsigned> NoLambdaIsCaptureCapable;
|
|
|
|
const Optional<unsigned> OptionalStackIndex =
|
|
getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
|
|
VarToCapture);
|
|
if (!OptionalStackIndex)
|
|
return NoLambdaIsCaptureCapable;
|
|
|
|
const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
|
|
assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
|
|
S.getCurGenericLambda()) &&
|
|
"The capture ready lambda for a potential capture can only be the "
|
|
"current lambda if it is a generic lambda");
|
|
|
|
const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
|
|
cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
|
|
|
|
// If VarToCapture is null, we are attempting to capture 'this'
|
|
const bool IsCapturingThis = !VarToCapture;
|
|
const bool IsCapturingVariable = !IsCapturingThis;
|
|
|
|
if (IsCapturingVariable) {
|
|
// Check if the capture-ready lambda can truly capture the variable, by
|
|
// checking whether all enclosing lambdas of the capture-ready lambda allow
|
|
// the capture - i.e. make sure it is capture-capable.
|
|
QualType CaptureType, DeclRefType;
|
|
const bool CanCaptureVariable =
|
|
!S.tryCaptureVariable(VarToCapture,
|
|
/*ExprVarIsUsedInLoc*/ SourceLocation(),
|
|
clang::Sema::TryCapture_Implicit,
|
|
/*EllipsisLoc*/ SourceLocation(),
|
|
/*BuildAndDiagnose*/ false, CaptureType,
|
|
DeclRefType, &IndexOfCaptureReadyLambda);
|
|
if (!CanCaptureVariable)
|
|
return NoLambdaIsCaptureCapable;
|
|
} else {
|
|
// Check if the capture-ready lambda can truly capture 'this' by checking
|
|
// whether all enclosing lambdas of the capture-ready lambda can capture
|
|
// 'this'.
|
|
const bool CanCaptureThis =
|
|
!S.CheckCXXThisCapture(
|
|
CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
|
|
/*Explicit*/ false, /*BuildAndDiagnose*/ false,
|
|
&IndexOfCaptureReadyLambda);
|
|
if (!CanCaptureThis)
|
|
return NoLambdaIsCaptureCapable;
|
|
}
|
|
return IndexOfCaptureReadyLambda;
|
|
}
|
|
|
|
static inline TemplateParameterList *
|
|
getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
|
|
if (LSI->GLTemplateParameterList)
|
|
return LSI->GLTemplateParameterList;
|
|
|
|
if (LSI->AutoTemplateParams.size()) {
|
|
SourceRange IntroRange = LSI->IntroducerRange;
|
|
SourceLocation LAngleLoc = IntroRange.getBegin();
|
|
SourceLocation RAngleLoc = IntroRange.getEnd();
|
|
LSI->GLTemplateParameterList = TemplateParameterList::Create(
|
|
SemaRef.Context,
|
|
/*Template kw loc*/ SourceLocation(), LAngleLoc,
|
|
(NamedDecl **)LSI->AutoTemplateParams.data(),
|
|
LSI->AutoTemplateParams.size(), RAngleLoc);
|
|
}
|
|
return LSI->GLTemplateParameterList;
|
|
}
|
|
|
|
CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
|
|
TypeSourceInfo *Info,
|
|
bool KnownDependent,
|
|
LambdaCaptureDefault CaptureDefault) {
|
|
DeclContext *DC = CurContext;
|
|
while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
|
|
DC = DC->getParent();
|
|
bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
|
|
*this);
|
|
// Start constructing the lambda class.
|
|
CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
|
|
IntroducerRange.getBegin(),
|
|
KnownDependent,
|
|
IsGenericLambda,
|
|
CaptureDefault);
|
|
DC->addDecl(Class);
|
|
|
|
return Class;
|
|
}
|
|
|
|
/// \brief Determine whether the given context is or is enclosed in an inline
|
|
/// function.
|
|
static bool isInInlineFunction(const DeclContext *DC) {
|
|
while (!DC->isFileContext()) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
|
|
if (FD->isInlined())
|
|
return true;
|
|
|
|
DC = DC->getLexicalParent();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
MangleNumberingContext *
|
|
Sema::getCurrentMangleNumberContext(const DeclContext *DC,
|
|
Decl *&ManglingContextDecl) {
|
|
// Compute the context for allocating mangling numbers in the current
|
|
// expression, if the ABI requires them.
|
|
ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
|
|
|
|
enum ContextKind {
|
|
Normal,
|
|
DefaultArgument,
|
|
DataMember,
|
|
StaticDataMember
|
|
} Kind = Normal;
|
|
|
|
// Default arguments of member function parameters that appear in a class
|
|
// definition, as well as the initializers of data members, receive special
|
|
// treatment. Identify them.
|
|
if (ManglingContextDecl) {
|
|
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
|
|
if (const DeclContext *LexicalDC
|
|
= Param->getDeclContext()->getLexicalParent())
|
|
if (LexicalDC->isRecord())
|
|
Kind = DefaultArgument;
|
|
} else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
|
|
if (Var->getDeclContext()->isRecord())
|
|
Kind = StaticDataMember;
|
|
} else if (isa<FieldDecl>(ManglingContextDecl)) {
|
|
Kind = DataMember;
|
|
}
|
|
}
|
|
|
|
// Itanium ABI [5.1.7]:
|
|
// In the following contexts [...] the one-definition rule requires closure
|
|
// types in different translation units to "correspond":
|
|
bool IsInNonspecializedTemplate =
|
|
!ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
|
|
switch (Kind) {
|
|
case Normal:
|
|
// -- the bodies of non-exported nonspecialized template functions
|
|
// -- the bodies of inline functions
|
|
if ((IsInNonspecializedTemplate &&
|
|
!(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
|
|
isInInlineFunction(CurContext)) {
|
|
ManglingContextDecl = nullptr;
|
|
return &Context.getManglingNumberContext(DC);
|
|
}
|
|
|
|
ManglingContextDecl = nullptr;
|
|
return nullptr;
|
|
|
|
case StaticDataMember:
|
|
// -- the initializers of nonspecialized static members of template classes
|
|
if (!IsInNonspecializedTemplate) {
|
|
ManglingContextDecl = nullptr;
|
|
return nullptr;
|
|
}
|
|
// Fall through to get the current context.
|
|
|
|
case DataMember:
|
|
// -- the in-class initializers of class members
|
|
case DefaultArgument:
|
|
// -- default arguments appearing in class definitions
|
|
return &ExprEvalContexts.back().getMangleNumberingContext(Context);
|
|
}
|
|
|
|
llvm_unreachable("unexpected context");
|
|
}
|
|
|
|
MangleNumberingContext &
|
|
Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
|
|
ASTContext &Ctx) {
|
|
assert(ManglingContextDecl && "Need to have a context declaration");
|
|
if (!MangleNumbering)
|
|
MangleNumbering = Ctx.createMangleNumberingContext();
|
|
return *MangleNumbering;
|
|
}
|
|
|
|
CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
|
|
SourceRange IntroducerRange,
|
|
TypeSourceInfo *MethodTypeInfo,
|
|
SourceLocation EndLoc,
|
|
ArrayRef<ParmVarDecl *> Params) {
|
|
QualType MethodType = MethodTypeInfo->getType();
|
|
TemplateParameterList *TemplateParams =
|
|
getGenericLambdaTemplateParameterList(getCurLambda(), *this);
|
|
// If a lambda appears in a dependent context or is a generic lambda (has
|
|
// template parameters) and has an 'auto' return type, deduce it to a
|
|
// dependent type.
|
|
if (Class->isDependentContext() || TemplateParams) {
|
|
const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
|
|
QualType Result = FPT->getReturnType();
|
|
if (Result->isUndeducedType()) {
|
|
Result = SubstAutoType(Result, Context.DependentTy);
|
|
MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
|
|
FPT->getExtProtoInfo());
|
|
}
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p5:
|
|
// The closure type for a lambda-expression has a public inline function
|
|
// call operator (13.5.4) whose parameters and return type are described by
|
|
// the lambda-expression's parameter-declaration-clause and
|
|
// trailing-return-type respectively.
|
|
DeclarationName MethodName
|
|
= Context.DeclarationNames.getCXXOperatorName(OO_Call);
|
|
DeclarationNameLoc MethodNameLoc;
|
|
MethodNameLoc.CXXOperatorName.BeginOpNameLoc
|
|
= IntroducerRange.getBegin().getRawEncoding();
|
|
MethodNameLoc.CXXOperatorName.EndOpNameLoc
|
|
= IntroducerRange.getEnd().getRawEncoding();
|
|
CXXMethodDecl *Method
|
|
= CXXMethodDecl::Create(Context, Class, EndLoc,
|
|
DeclarationNameInfo(MethodName,
|
|
IntroducerRange.getBegin(),
|
|
MethodNameLoc),
|
|
MethodType, MethodTypeInfo,
|
|
SC_None,
|
|
/*isInline=*/true,
|
|
/*isConstExpr=*/false,
|
|
EndLoc);
|
|
Method->setAccess(AS_public);
|
|
|
|
// Temporarily set the lexical declaration context to the current
|
|
// context, so that the Scope stack matches the lexical nesting.
|
|
Method->setLexicalDeclContext(CurContext);
|
|
// Create a function template if we have a template parameter list
|
|
FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
|
|
FunctionTemplateDecl::Create(Context, Class,
|
|
Method->getLocation(), MethodName,
|
|
TemplateParams,
|
|
Method) : nullptr;
|
|
if (TemplateMethod) {
|
|
TemplateMethod->setLexicalDeclContext(CurContext);
|
|
TemplateMethod->setAccess(AS_public);
|
|
Method->setDescribedFunctionTemplate(TemplateMethod);
|
|
}
|
|
|
|
// Add parameters.
|
|
if (!Params.empty()) {
|
|
Method->setParams(Params);
|
|
CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
|
|
const_cast<ParmVarDecl **>(Params.end()),
|
|
/*CheckParameterNames=*/false);
|
|
|
|
for (auto P : Method->params())
|
|
P->setOwningFunction(Method);
|
|
}
|
|
|
|
Decl *ManglingContextDecl;
|
|
if (MangleNumberingContext *MCtx =
|
|
getCurrentMangleNumberContext(Class->getDeclContext(),
|
|
ManglingContextDecl)) {
|
|
unsigned ManglingNumber = MCtx->getManglingNumber(Method);
|
|
Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
|
|
}
|
|
|
|
return Method;
|
|
}
|
|
|
|
void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
|
|
CXXMethodDecl *CallOperator,
|
|
SourceRange IntroducerRange,
|
|
LambdaCaptureDefault CaptureDefault,
|
|
SourceLocation CaptureDefaultLoc,
|
|
bool ExplicitParams,
|
|
bool ExplicitResultType,
|
|
bool Mutable) {
|
|
LSI->CallOperator = CallOperator;
|
|
CXXRecordDecl *LambdaClass = CallOperator->getParent();
|
|
LSI->Lambda = LambdaClass;
|
|
if (CaptureDefault == LCD_ByCopy)
|
|
LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
|
|
else if (CaptureDefault == LCD_ByRef)
|
|
LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
|
|
LSI->CaptureDefaultLoc = CaptureDefaultLoc;
|
|
LSI->IntroducerRange = IntroducerRange;
|
|
LSI->ExplicitParams = ExplicitParams;
|
|
LSI->Mutable = Mutable;
|
|
|
|
if (ExplicitResultType) {
|
|
LSI->ReturnType = CallOperator->getReturnType();
|
|
|
|
if (!LSI->ReturnType->isDependentType() &&
|
|
!LSI->ReturnType->isVoidType()) {
|
|
if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
|
|
diag::err_lambda_incomplete_result)) {
|
|
// Do nothing.
|
|
}
|
|
}
|
|
} else {
|
|
LSI->HasImplicitReturnType = true;
|
|
}
|
|
}
|
|
|
|
void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
|
|
LSI->finishedExplicitCaptures();
|
|
}
|
|
|
|
void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
|
|
// Introduce our parameters into the function scope
|
|
for (unsigned p = 0, NumParams = CallOperator->getNumParams();
|
|
p < NumParams; ++p) {
|
|
ParmVarDecl *Param = CallOperator->getParamDecl(p);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (CurScope && Param->getIdentifier()) {
|
|
CheckShadow(CurScope, Param);
|
|
|
|
PushOnScopeChains(Param, CurScope);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If this expression is an enumerator-like expression of some type
|
|
/// T, return the type T; otherwise, return null.
|
|
///
|
|
/// Pointer comparisons on the result here should always work because
|
|
/// it's derived from either the parent of an EnumConstantDecl
|
|
/// (i.e. the definition) or the declaration returned by
|
|
/// EnumType::getDecl() (i.e. the definition).
|
|
static EnumDecl *findEnumForBlockReturn(Expr *E) {
|
|
// An expression is an enumerator-like expression of type T if,
|
|
// ignoring parens and parens-like expressions:
|
|
E = E->IgnoreParens();
|
|
|
|
// - it is an enumerator whose enum type is T or
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (EnumConstantDecl *D
|
|
= dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
|
|
return cast<EnumDecl>(D->getDeclContext());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// - it is a comma expression whose RHS is an enumerator-like
|
|
// expression of type T or
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma)
|
|
return findEnumForBlockReturn(BO->getRHS());
|
|
return nullptr;
|
|
}
|
|
|
|
// - it is a statement-expression whose value expression is an
|
|
// enumerator-like expression of type T or
|
|
if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
|
|
if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
|
|
return findEnumForBlockReturn(last);
|
|
return nullptr;
|
|
}
|
|
|
|
// - it is a ternary conditional operator (not the GNU ?:
|
|
// extension) whose second and third operands are
|
|
// enumerator-like expressions of type T or
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
|
|
if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
|
|
return ED;
|
|
return nullptr;
|
|
}
|
|
|
|
// (implicitly:)
|
|
// - it is an implicit integral conversion applied to an
|
|
// enumerator-like expression of type T or
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
// We can sometimes see integral conversions in valid
|
|
// enumerator-like expressions.
|
|
if (ICE->getCastKind() == CK_IntegralCast)
|
|
return findEnumForBlockReturn(ICE->getSubExpr());
|
|
|
|
// Otherwise, just rely on the type.
|
|
}
|
|
|
|
// - it is an expression of that formal enum type.
|
|
if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
|
|
return ET->getDecl();
|
|
}
|
|
|
|
// Otherwise, nope.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to find a type T for which the returned expression of the
|
|
/// given statement is an enumerator-like expression of that type.
|
|
static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
|
|
if (Expr *retValue = ret->getRetValue())
|
|
return findEnumForBlockReturn(retValue);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to find a common type T for which all of the returned
|
|
/// expressions in a block are enumerator-like expressions of that
|
|
/// type.
|
|
static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
|
|
ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
|
|
|
|
// Try to find one for the first return.
|
|
EnumDecl *ED = findEnumForBlockReturn(*i);
|
|
if (!ED) return nullptr;
|
|
|
|
// Check that the rest of the returns have the same enum.
|
|
for (++i; i != e; ++i) {
|
|
if (findEnumForBlockReturn(*i) != ED)
|
|
return nullptr;
|
|
}
|
|
|
|
// Never infer an anonymous enum type.
|
|
if (!ED->hasNameForLinkage()) return nullptr;
|
|
|
|
return ED;
|
|
}
|
|
|
|
/// Adjust the given return statements so that they formally return
|
|
/// the given type. It should require, at most, an IntegralCast.
|
|
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
|
|
QualType returnType) {
|
|
for (ArrayRef<ReturnStmt*>::iterator
|
|
i = returns.begin(), e = returns.end(); i != e; ++i) {
|
|
ReturnStmt *ret = *i;
|
|
Expr *retValue = ret->getRetValue();
|
|
if (S.Context.hasSameType(retValue->getType(), returnType))
|
|
continue;
|
|
|
|
// Right now we only support integral fixup casts.
|
|
assert(returnType->isIntegralOrUnscopedEnumerationType());
|
|
assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
|
|
|
|
ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
|
|
|
|
Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
|
|
E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
|
|
E, /*base path*/ nullptr, VK_RValue);
|
|
if (cleanups) {
|
|
cleanups->setSubExpr(E);
|
|
} else {
|
|
ret->setRetValue(E);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
|
|
assert(CSI.HasImplicitReturnType);
|
|
// If it was ever a placeholder, it had to been deduced to DependentTy.
|
|
assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
|
|
|
|
// C++ core issue 975:
|
|
// If a lambda-expression does not include a trailing-return-type,
|
|
// it is as if the trailing-return-type denotes the following type:
|
|
// - if there are no return statements in the compound-statement,
|
|
// or all return statements return either an expression of type
|
|
// void or no expression or braced-init-list, the type void;
|
|
// - otherwise, if all return statements return an expression
|
|
// and the types of the returned expressions after
|
|
// lvalue-to-rvalue conversion (4.1 [conv.lval]),
|
|
// array-to-pointer conversion (4.2 [conv.array]), and
|
|
// function-to-pointer conversion (4.3 [conv.func]) are the
|
|
// same, that common type;
|
|
// - otherwise, the program is ill-formed.
|
|
//
|
|
// C++ core issue 1048 additionally removes top-level cv-qualifiers
|
|
// from the types of returned expressions to match the C++14 auto
|
|
// deduction rules.
|
|
//
|
|
// In addition, in blocks in non-C++ modes, if all of the return
|
|
// statements are enumerator-like expressions of some type T, where
|
|
// T has a name for linkage, then we infer the return type of the
|
|
// block to be that type.
|
|
|
|
// First case: no return statements, implicit void return type.
|
|
ASTContext &Ctx = getASTContext();
|
|
if (CSI.Returns.empty()) {
|
|
// It's possible there were simply no /valid/ return statements.
|
|
// In this case, the first one we found may have at least given us a type.
|
|
if (CSI.ReturnType.isNull())
|
|
CSI.ReturnType = Ctx.VoidTy;
|
|
return;
|
|
}
|
|
|
|
// Second case: at least one return statement has dependent type.
|
|
// Delay type checking until instantiation.
|
|
assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
|
|
if (CSI.ReturnType->isDependentType())
|
|
return;
|
|
|
|
// Try to apply the enum-fuzz rule.
|
|
if (!getLangOpts().CPlusPlus) {
|
|
assert(isa<BlockScopeInfo>(CSI));
|
|
const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
|
|
if (ED) {
|
|
CSI.ReturnType = Context.getTypeDeclType(ED);
|
|
adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Third case: only one return statement. Don't bother doing extra work!
|
|
SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
|
|
E = CSI.Returns.end();
|
|
if (I+1 == E)
|
|
return;
|
|
|
|
// General case: many return statements.
|
|
// Check that they all have compatible return types.
|
|
|
|
// We require the return types to strictly match here.
|
|
// Note that we've already done the required promotions as part of
|
|
// processing the return statement.
|
|
for (; I != E; ++I) {
|
|
const ReturnStmt *RS = *I;
|
|
const Expr *RetE = RS->getRetValue();
|
|
|
|
QualType ReturnType =
|
|
(RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
|
|
if (Context.hasSameType(ReturnType, CSI.ReturnType))
|
|
continue;
|
|
|
|
// FIXME: This is a poor diagnostic for ReturnStmts without expressions.
|
|
// TODO: It's possible that the *first* return is the divergent one.
|
|
Diag(RS->getLocStart(),
|
|
diag::err_typecheck_missing_return_type_incompatible)
|
|
<< ReturnType << CSI.ReturnType
|
|
<< isa<LambdaScopeInfo>(CSI);
|
|
// Continue iterating so that we keep emitting diagnostics.
|
|
}
|
|
}
|
|
|
|
QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
|
|
bool ByRef,
|
|
IdentifierInfo *Id,
|
|
Expr *&Init) {
|
|
|
|
// We do not need to distinguish between direct-list-initialization
|
|
// and copy-list-initialization here, because we will always deduce
|
|
// std::initializer_list<T>, and direct- and copy-list-initialization
|
|
// always behave the same for such a type.
|
|
// FIXME: We should model whether an '=' was present.
|
|
const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
|
|
|
|
// Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
|
|
// deduce against.
|
|
QualType DeductType = Context.getAutoDeductType();
|
|
TypeLocBuilder TLB;
|
|
TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
|
|
if (ByRef) {
|
|
DeductType = BuildReferenceType(DeductType, true, Loc, Id);
|
|
assert(!DeductType.isNull() && "can't build reference to auto");
|
|
TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
|
|
}
|
|
TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
|
|
|
|
// Are we a non-list direct initialization?
|
|
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
|
|
|
|
Expr *DeduceInit = Init;
|
|
// Initializer could be a C++ direct-initializer. Deduction only works if it
|
|
// contains exactly one expression.
|
|
if (CXXDirectInit) {
|
|
if (CXXDirectInit->getNumExprs() == 0) {
|
|
Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
|
|
<< DeclarationName(Id) << TSI->getType() << Loc;
|
|
return QualType();
|
|
} else if (CXXDirectInit->getNumExprs() > 1) {
|
|
Diag(CXXDirectInit->getExpr(1)->getLocStart(),
|
|
diag::err_init_capture_multiple_expressions)
|
|
<< DeclarationName(Id) << TSI->getType() << Loc;
|
|
return QualType();
|
|
} else {
|
|
DeduceInit = CXXDirectInit->getExpr(0);
|
|
if (isa<InitListExpr>(DeduceInit))
|
|
Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
|
|
<< DeclarationName(Id) << Loc;
|
|
}
|
|
}
|
|
|
|
// Now deduce against the initialization expression and store the deduced
|
|
// type below.
|
|
QualType DeducedType;
|
|
if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
|
|
if (isa<InitListExpr>(Init))
|
|
Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
|
|
<< DeclarationName(Id)
|
|
<< (DeduceInit->getType().isNull() ? TSI->getType()
|
|
: DeduceInit->getType())
|
|
<< DeduceInit->getSourceRange();
|
|
else
|
|
Diag(Loc, diag::err_init_capture_deduction_failure)
|
|
<< DeclarationName(Id) << TSI->getType()
|
|
<< (DeduceInit->getType().isNull() ? TSI->getType()
|
|
: DeduceInit->getType())
|
|
<< DeduceInit->getSourceRange();
|
|
}
|
|
if (DeducedType.isNull())
|
|
return QualType();
|
|
|
|
// Perform initialization analysis and ensure any implicit conversions
|
|
// (such as lvalue-to-rvalue) are enforced.
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
|
|
InitializationKind Kind =
|
|
IsDirectInit
|
|
? (CXXDirectInit ? InitializationKind::CreateDirect(
|
|
Loc, Init->getLocStart(), Init->getLocEnd())
|
|
: InitializationKind::CreateDirectList(Loc))
|
|
: InitializationKind::CreateCopy(Loc, Init->getLocStart());
|
|
|
|
MultiExprArg Args = Init;
|
|
if (CXXDirectInit)
|
|
Args =
|
|
MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
|
|
QualType DclT;
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Args);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
|
|
|
|
if (Result.isInvalid())
|
|
return QualType();
|
|
Init = Result.getAs<Expr>();
|
|
|
|
// The init-capture initialization is a full-expression that must be
|
|
// processed as one before we enter the declcontext of the lambda's
|
|
// call-operator.
|
|
Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
|
|
/*IsConstexpr*/ false,
|
|
/*IsLambdaInitCaptureInitalizer*/ true);
|
|
if (Result.isInvalid())
|
|
return QualType();
|
|
|
|
Init = Result.getAs<Expr>();
|
|
return DeducedType;
|
|
}
|
|
|
|
VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
|
|
QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
|
|
|
|
TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
|
|
Loc);
|
|
// Create a dummy variable representing the init-capture. This is not actually
|
|
// used as a variable, and only exists as a way to name and refer to the
|
|
// init-capture.
|
|
// FIXME: Pass in separate source locations for '&' and identifier.
|
|
VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
|
|
Loc, Id, InitCaptureType, TSI, SC_Auto);
|
|
NewVD->setInitCapture(true);
|
|
NewVD->setReferenced(true);
|
|
NewVD->markUsed(Context);
|
|
NewVD->setInit(Init);
|
|
return NewVD;
|
|
|
|
}
|
|
|
|
FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
|
|
FieldDecl *Field = FieldDecl::Create(
|
|
Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
|
|
nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
|
|
ICIS_NoInit);
|
|
Field->setImplicit(true);
|
|
Field->setAccess(AS_private);
|
|
LSI->Lambda->addDecl(Field);
|
|
|
|
LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
|
|
/*isNested*/false, Var->getLocation(), SourceLocation(),
|
|
Var->getType(), Var->getInit());
|
|
return Field;
|
|
}
|
|
|
|
void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
|
|
Declarator &ParamInfo, Scope *CurScope) {
|
|
// Determine if we're within a context where we know that the lambda will
|
|
// be dependent, because there are template parameters in scope.
|
|
bool KnownDependent = false;
|
|
LambdaScopeInfo *const LSI = getCurLambda();
|
|
assert(LSI && "LambdaScopeInfo should be on stack!");
|
|
TemplateParameterList *TemplateParams =
|
|
getGenericLambdaTemplateParameterList(LSI, *this);
|
|
|
|
if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
|
|
// Since we have our own TemplateParams, so check if an outer scope
|
|
// has template params, only then are we in a dependent scope.
|
|
if (TemplateParams) {
|
|
TmplScope = TmplScope->getParent();
|
|
TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
|
|
}
|
|
if (TmplScope && !TmplScope->decl_empty())
|
|
KnownDependent = true;
|
|
}
|
|
// Determine the signature of the call operator.
|
|
TypeSourceInfo *MethodTyInfo;
|
|
bool ExplicitParams = true;
|
|
bool ExplicitResultType = true;
|
|
bool ContainsUnexpandedParameterPack = false;
|
|
SourceLocation EndLoc;
|
|
SmallVector<ParmVarDecl *, 8> Params;
|
|
if (ParamInfo.getNumTypeObjects() == 0) {
|
|
// C++11 [expr.prim.lambda]p4:
|
|
// If a lambda-expression does not include a lambda-declarator, it is as
|
|
// if the lambda-declarator were ().
|
|
FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
|
|
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
|
|
EPI.HasTrailingReturn = true;
|
|
EPI.TypeQuals |= DeclSpec::TQ_const;
|
|
// C++1y [expr.prim.lambda]:
|
|
// The lambda return type is 'auto', which is replaced by the
|
|
// trailing-return type if provided and/or deduced from 'return'
|
|
// statements
|
|
// We don't do this before C++1y, because we don't support deduced return
|
|
// types there.
|
|
QualType DefaultTypeForNoTrailingReturn =
|
|
getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
|
|
: Context.DependentTy;
|
|
QualType MethodTy =
|
|
Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
|
|
MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
|
|
ExplicitParams = false;
|
|
ExplicitResultType = false;
|
|
EndLoc = Intro.Range.getEnd();
|
|
} else {
|
|
assert(ParamInfo.isFunctionDeclarator() &&
|
|
"lambda-declarator is a function");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
|
|
|
|
// C++11 [expr.prim.lambda]p5:
|
|
// This function call operator is declared const (9.3.1) if and only if
|
|
// the lambda-expression's parameter-declaration-clause is not followed
|
|
// by mutable. It is neither virtual nor declared volatile. [...]
|
|
if (!FTI.hasMutableQualifier())
|
|
FTI.TypeQuals |= DeclSpec::TQ_const;
|
|
|
|
MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
assert(MethodTyInfo && "no type from lambda-declarator");
|
|
EndLoc = ParamInfo.getSourceRange().getEnd();
|
|
|
|
ExplicitResultType = FTI.hasTrailingReturnType();
|
|
|
|
if (FTIHasNonVoidParameters(FTI)) {
|
|
Params.reserve(FTI.NumParams);
|
|
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
|
|
Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
|
|
}
|
|
|
|
// Check for unexpanded parameter packs in the method type.
|
|
if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
|
|
ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
|
|
KnownDependent, Intro.Default);
|
|
|
|
CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
|
|
MethodTyInfo, EndLoc, Params);
|
|
if (ExplicitParams)
|
|
CheckCXXDefaultArguments(Method);
|
|
|
|
// Attributes on the lambda apply to the method.
|
|
ProcessDeclAttributes(CurScope, Method, ParamInfo);
|
|
|
|
// Introduce the function call operator as the current declaration context.
|
|
PushDeclContext(CurScope, Method);
|
|
|
|
// Build the lambda scope.
|
|
buildLambdaScope(LSI, Method,
|
|
Intro.Range,
|
|
Intro.Default, Intro.DefaultLoc,
|
|
ExplicitParams,
|
|
ExplicitResultType,
|
|
!Method->isConst());
|
|
|
|
// C++11 [expr.prim.lambda]p9:
|
|
// A lambda-expression whose smallest enclosing scope is a block scope is a
|
|
// local lambda expression; any other lambda expression shall not have a
|
|
// capture-default or simple-capture in its lambda-introducer.
|
|
//
|
|
// For simple-captures, this is covered by the check below that any named
|
|
// entity is a variable that can be captured.
|
|
//
|
|
// For DR1632, we also allow a capture-default in any context where we can
|
|
// odr-use 'this' (in particular, in a default initializer for a non-static
|
|
// data member).
|
|
if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
|
|
(getCurrentThisType().isNull() ||
|
|
CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
|
|
/*BuildAndDiagnose*/false)))
|
|
Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
|
|
|
|
// Distinct capture names, for diagnostics.
|
|
llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
|
|
|
|
// Handle explicit captures.
|
|
SourceLocation PrevCaptureLoc
|
|
= Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
|
|
for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
|
|
PrevCaptureLoc = C->Loc, ++C) {
|
|
if (C->Kind == LCK_This) {
|
|
// C++11 [expr.prim.lambda]p8:
|
|
// An identifier or this shall not appear more than once in a
|
|
// lambda-capture.
|
|
if (LSI->isCXXThisCaptured()) {
|
|
Diag(C->Loc, diag::err_capture_more_than_once)
|
|
<< "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p8:
|
|
// If a lambda-capture includes a capture-default that is =, the
|
|
// lambda-capture shall not contain this [...].
|
|
if (Intro.Default == LCD_ByCopy) {
|
|
Diag(C->Loc, diag::err_this_capture_with_copy_default)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p12:
|
|
// If this is captured by a local lambda expression, its nearest
|
|
// enclosing function shall be a non-static member function.
|
|
QualType ThisCaptureType = getCurrentThisType();
|
|
if (ThisCaptureType.isNull()) {
|
|
Diag(C->Loc, diag::err_this_capture) << true;
|
|
continue;
|
|
}
|
|
|
|
CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
|
|
continue;
|
|
}
|
|
|
|
assert(C->Id && "missing identifier for capture");
|
|
|
|
if (C->Init.isInvalid())
|
|
continue;
|
|
|
|
VarDecl *Var = nullptr;
|
|
if (C->Init.isUsable()) {
|
|
Diag(C->Loc, getLangOpts().CPlusPlus14
|
|
? diag::warn_cxx11_compat_init_capture
|
|
: diag::ext_init_capture);
|
|
|
|
if (C->Init.get()->containsUnexpandedParameterPack())
|
|
ContainsUnexpandedParameterPack = true;
|
|
// If the initializer expression is usable, but the InitCaptureType
|
|
// is not, then an error has occurred - so ignore the capture for now.
|
|
// for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
|
|
// FIXME: we should create the init capture variable and mark it invalid
|
|
// in this case.
|
|
if (C->InitCaptureType.get().isNull())
|
|
continue;
|
|
Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
|
|
C->Id, C->Init.get());
|
|
// C++1y [expr.prim.lambda]p11:
|
|
// An init-capture behaves as if it declares and explicitly
|
|
// captures a variable [...] whose declarative region is the
|
|
// lambda-expression's compound-statement
|
|
if (Var)
|
|
PushOnScopeChains(Var, CurScope, false);
|
|
} else {
|
|
// C++11 [expr.prim.lambda]p8:
|
|
// If a lambda-capture includes a capture-default that is &, the
|
|
// identifiers in the lambda-capture shall not be preceded by &.
|
|
// If a lambda-capture includes a capture-default that is =, [...]
|
|
// each identifier it contains shall be preceded by &.
|
|
if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
|
|
Diag(C->Loc, diag::err_reference_capture_with_reference_default)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
|
|
continue;
|
|
} else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
|
|
Diag(C->Loc, diag::err_copy_capture_with_copy_default)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p10:
|
|
// The identifiers in a capture-list are looked up using the usual
|
|
// rules for unqualified name lookup (3.4.1)
|
|
DeclarationNameInfo Name(C->Id, C->Loc);
|
|
LookupResult R(*this, Name, LookupOrdinaryName);
|
|
LookupName(R, CurScope);
|
|
if (R.isAmbiguous())
|
|
continue;
|
|
if (R.empty()) {
|
|
// FIXME: Disable corrections that would add qualification?
|
|
CXXScopeSpec ScopeSpec;
|
|
if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
|
|
llvm::make_unique<DeclFilterCCC<VarDecl>>()))
|
|
continue;
|
|
}
|
|
|
|
Var = R.getAsSingle<VarDecl>();
|
|
if (Var && DiagnoseUseOfDecl(Var, C->Loc))
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p8:
|
|
// An identifier or this shall not appear more than once in a
|
|
// lambda-capture.
|
|
if (!CaptureNames.insert(C->Id).second) {
|
|
if (Var && LSI->isCaptured(Var)) {
|
|
Diag(C->Loc, diag::err_capture_more_than_once)
|
|
<< C->Id << SourceRange(LSI->getCapture(Var).getLocation())
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
|
|
} else
|
|
// Previous capture captured something different (one or both was
|
|
// an init-cpature): no fixit.
|
|
Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p10:
|
|
// [...] each such lookup shall find a variable with automatic storage
|
|
// duration declared in the reaching scope of the local lambda expression.
|
|
// Note that the 'reaching scope' check happens in tryCaptureVariable().
|
|
if (!Var) {
|
|
Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
|
|
continue;
|
|
}
|
|
|
|
// Ignore invalid decls; they'll just confuse the code later.
|
|
if (Var->isInvalidDecl())
|
|
continue;
|
|
|
|
if (!Var->hasLocalStorage()) {
|
|
Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
|
|
Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
|
|
continue;
|
|
}
|
|
|
|
// C++11 [expr.prim.lambda]p23:
|
|
// A capture followed by an ellipsis is a pack expansion (14.5.3).
|
|
SourceLocation EllipsisLoc;
|
|
if (C->EllipsisLoc.isValid()) {
|
|
if (Var->isParameterPack()) {
|
|
EllipsisLoc = C->EllipsisLoc;
|
|
} else {
|
|
Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
|
|
<< SourceRange(C->Loc);
|
|
|
|
// Just ignore the ellipsis.
|
|
}
|
|
} else if (Var->isParameterPack()) {
|
|
ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
if (C->Init.isUsable()) {
|
|
buildInitCaptureField(LSI, Var);
|
|
} else {
|
|
TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
|
|
TryCapture_ExplicitByVal;
|
|
tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
|
|
}
|
|
}
|
|
finishLambdaExplicitCaptures(LSI);
|
|
|
|
LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
|
|
|
|
// Add lambda parameters into scope.
|
|
addLambdaParameters(Method, CurScope);
|
|
|
|
// Enter a new evaluation context to insulate the lambda from any
|
|
// cleanups from the enclosing full-expression.
|
|
PushExpressionEvaluationContext(PotentiallyEvaluated);
|
|
}
|
|
|
|
void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
|
|
bool IsInstantiation) {
|
|
LambdaScopeInfo *LSI = getCurLambda();
|
|
|
|
// Leave the expression-evaluation context.
|
|
DiscardCleanupsInEvaluationContext();
|
|
PopExpressionEvaluationContext();
|
|
|
|
// Leave the context of the lambda.
|
|
if (!IsInstantiation)
|
|
PopDeclContext();
|
|
|
|
// Finalize the lambda.
|
|
CXXRecordDecl *Class = LSI->Lambda;
|
|
Class->setInvalidDecl();
|
|
SmallVector<Decl*, 4> Fields(Class->fields());
|
|
ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
|
|
SourceLocation(), nullptr);
|
|
CheckCompletedCXXClass(Class);
|
|
|
|
PopFunctionScopeInfo();
|
|
}
|
|
|
|
/// \brief Add a lambda's conversion to function pointer, as described in
|
|
/// C++11 [expr.prim.lambda]p6.
|
|
static void addFunctionPointerConversion(Sema &S,
|
|
SourceRange IntroducerRange,
|
|
CXXRecordDecl *Class,
|
|
CXXMethodDecl *CallOperator) {
|
|
// Add the conversion to function pointer.
|
|
const FunctionProtoType *CallOpProto =
|
|
CallOperator->getType()->getAs<FunctionProtoType>();
|
|
const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
|
|
CallOpProto->getExtProtoInfo();
|
|
QualType PtrToFunctionTy;
|
|
QualType InvokerFunctionTy;
|
|
{
|
|
FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
|
|
CallingConv CC = S.Context.getDefaultCallingConvention(
|
|
CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
|
|
InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
|
|
InvokerExtInfo.TypeQuals = 0;
|
|
assert(InvokerExtInfo.RefQualifier == RQ_None &&
|
|
"Lambda's call operator should not have a reference qualifier");
|
|
InvokerFunctionTy =
|
|
S.Context.getFunctionType(CallOpProto->getReturnType(),
|
|
CallOpProto->getParamTypes(), InvokerExtInfo);
|
|
PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
|
|
}
|
|
|
|
// Create the type of the conversion function.
|
|
FunctionProtoType::ExtProtoInfo ConvExtInfo(
|
|
S.Context.getDefaultCallingConvention(
|
|
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
|
|
// The conversion function is always const.
|
|
ConvExtInfo.TypeQuals = Qualifiers::Const;
|
|
QualType ConvTy =
|
|
S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
|
|
|
|
SourceLocation Loc = IntroducerRange.getBegin();
|
|
DeclarationName ConversionName
|
|
= S.Context.DeclarationNames.getCXXConversionFunctionName(
|
|
S.Context.getCanonicalType(PtrToFunctionTy));
|
|
DeclarationNameLoc ConvNameLoc;
|
|
// Construct a TypeSourceInfo for the conversion function, and wire
|
|
// all the parameters appropriately for the FunctionProtoTypeLoc
|
|
// so that everything works during transformation/instantiation of
|
|
// generic lambdas.
|
|
// The main reason for wiring up the parameters of the conversion
|
|
// function with that of the call operator is so that constructs
|
|
// like the following work:
|
|
// auto L = [](auto b) { <-- 1
|
|
// return [](auto a) -> decltype(a) { <-- 2
|
|
// return a;
|
|
// };
|
|
// };
|
|
// int (*fp)(int) = L(5);
|
|
// Because the trailing return type can contain DeclRefExprs that refer
|
|
// to the original call operator's variables, we hijack the call
|
|
// operators ParmVarDecls below.
|
|
TypeSourceInfo *ConvNamePtrToFunctionTSI =
|
|
S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
|
|
ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
|
|
|
|
// The conversion function is a conversion to a pointer-to-function.
|
|
TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
|
|
FunctionProtoTypeLoc ConvTL =
|
|
ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
|
|
// Get the result of the conversion function which is a pointer-to-function.
|
|
PointerTypeLoc PtrToFunctionTL =
|
|
ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
|
|
// Do the same for the TypeSourceInfo that is used to name the conversion
|
|
// operator.
|
|
PointerTypeLoc ConvNamePtrToFunctionTL =
|
|
ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
|
|
|
|
// Get the underlying function types that the conversion function will
|
|
// be converting to (should match the type of the call operator).
|
|
FunctionProtoTypeLoc CallOpConvTL =
|
|
PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
|
|
FunctionProtoTypeLoc CallOpConvNameTL =
|
|
ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
|
|
|
|
// Wire up the FunctionProtoTypeLocs with the call operator's parameters.
|
|
// These parameter's are essentially used to transform the name and
|
|
// the type of the conversion operator. By using the same parameters
|
|
// as the call operator's we don't have to fix any back references that
|
|
// the trailing return type of the call operator's uses (such as
|
|
// decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
|
|
// - we can simply use the return type of the call operator, and
|
|
// everything should work.
|
|
SmallVector<ParmVarDecl *, 4> InvokerParams;
|
|
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
|
|
ParmVarDecl *From = CallOperator->getParamDecl(I);
|
|
|
|
InvokerParams.push_back(ParmVarDecl::Create(S.Context,
|
|
// Temporarily add to the TU. This is set to the invoker below.
|
|
S.Context.getTranslationUnitDecl(),
|
|
From->getLocStart(),
|
|
From->getLocation(),
|
|
From->getIdentifier(),
|
|
From->getType(),
|
|
From->getTypeSourceInfo(),
|
|
From->getStorageClass(),
|
|
/*DefaultArg=*/nullptr));
|
|
CallOpConvTL.setParam(I, From);
|
|
CallOpConvNameTL.setParam(I, From);
|
|
}
|
|
|
|
CXXConversionDecl *Conversion
|
|
= CXXConversionDecl::Create(S.Context, Class, Loc,
|
|
DeclarationNameInfo(ConversionName,
|
|
Loc, ConvNameLoc),
|
|
ConvTy,
|
|
ConvTSI,
|
|
/*isInline=*/true, /*isExplicit=*/false,
|
|
/*isConstexpr=*/false,
|
|
CallOperator->getBody()->getLocEnd());
|
|
Conversion->setAccess(AS_public);
|
|
Conversion->setImplicit(true);
|
|
|
|
if (Class->isGenericLambda()) {
|
|
// Create a template version of the conversion operator, using the template
|
|
// parameter list of the function call operator.
|
|
FunctionTemplateDecl *TemplateCallOperator =
|
|
CallOperator->getDescribedFunctionTemplate();
|
|
FunctionTemplateDecl *ConversionTemplate =
|
|
FunctionTemplateDecl::Create(S.Context, Class,
|
|
Loc, ConversionName,
|
|
TemplateCallOperator->getTemplateParameters(),
|
|
Conversion);
|
|
ConversionTemplate->setAccess(AS_public);
|
|
ConversionTemplate->setImplicit(true);
|
|
Conversion->setDescribedFunctionTemplate(ConversionTemplate);
|
|
Class->addDecl(ConversionTemplate);
|
|
} else
|
|
Class->addDecl(Conversion);
|
|
// Add a non-static member function that will be the result of
|
|
// the conversion with a certain unique ID.
|
|
DeclarationName InvokerName = &S.Context.Idents.get(
|
|
getLambdaStaticInvokerName());
|
|
// FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
|
|
// we should get a prebuilt TrivialTypeSourceInfo from Context
|
|
// using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
|
|
// then rewire the parameters accordingly, by hoisting up the InvokeParams
|
|
// loop below and then use its Params to set Invoke->setParams(...) below.
|
|
// This would avoid the 'const' qualifier of the calloperator from
|
|
// contaminating the type of the invoker, which is currently adjusted
|
|
// in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
|
|
// trailing return type of the invoker would require a visitor to rebuild
|
|
// the trailing return type and adjusting all back DeclRefExpr's to refer
|
|
// to the new static invoker parameters - not the call operator's.
|
|
CXXMethodDecl *Invoke
|
|
= CXXMethodDecl::Create(S.Context, Class, Loc,
|
|
DeclarationNameInfo(InvokerName, Loc),
|
|
InvokerFunctionTy,
|
|
CallOperator->getTypeSourceInfo(),
|
|
SC_Static, /*IsInline=*/true,
|
|
/*IsConstexpr=*/false,
|
|
CallOperator->getBody()->getLocEnd());
|
|
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
|
|
InvokerParams[I]->setOwningFunction(Invoke);
|
|
Invoke->setParams(InvokerParams);
|
|
Invoke->setAccess(AS_private);
|
|
Invoke->setImplicit(true);
|
|
if (Class->isGenericLambda()) {
|
|
FunctionTemplateDecl *TemplateCallOperator =
|
|
CallOperator->getDescribedFunctionTemplate();
|
|
FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
|
|
S.Context, Class, Loc, InvokerName,
|
|
TemplateCallOperator->getTemplateParameters(),
|
|
Invoke);
|
|
StaticInvokerTemplate->setAccess(AS_private);
|
|
StaticInvokerTemplate->setImplicit(true);
|
|
Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
|
|
Class->addDecl(StaticInvokerTemplate);
|
|
} else
|
|
Class->addDecl(Invoke);
|
|
}
|
|
|
|
/// \brief Add a lambda's conversion to block pointer.
|
|
static void addBlockPointerConversion(Sema &S,
|
|
SourceRange IntroducerRange,
|
|
CXXRecordDecl *Class,
|
|
CXXMethodDecl *CallOperator) {
|
|
const FunctionProtoType *Proto
|
|
= CallOperator->getType()->getAs<FunctionProtoType>();
|
|
QualType BlockPtrTy;
|
|
{
|
|
FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
|
|
ExtInfo.TypeQuals = 0;
|
|
QualType FunctionTy = S.Context.getFunctionType(
|
|
Proto->getReturnType(), Proto->getParamTypes(), ExtInfo);
|
|
BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo ExtInfo(S.Context.getDefaultCallingConvention(
|
|
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
|
|
ExtInfo.TypeQuals = Qualifiers::Const;
|
|
QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ExtInfo);
|
|
|
|
SourceLocation Loc = IntroducerRange.getBegin();
|
|
DeclarationName Name
|
|
= S.Context.DeclarationNames.getCXXConversionFunctionName(
|
|
S.Context.getCanonicalType(BlockPtrTy));
|
|
DeclarationNameLoc NameLoc;
|
|
NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
|
|
CXXConversionDecl *Conversion
|
|
= CXXConversionDecl::Create(S.Context, Class, Loc,
|
|
DeclarationNameInfo(Name, Loc, NameLoc),
|
|
ConvTy,
|
|
S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
|
|
/*isInline=*/true, /*isExplicit=*/false,
|
|
/*isConstexpr=*/false,
|
|
CallOperator->getBody()->getLocEnd());
|
|
Conversion->setAccess(AS_public);
|
|
Conversion->setImplicit(true);
|
|
Class->addDecl(Conversion);
|
|
}
|
|
|
|
ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
|
|
Scope *CurScope,
|
|
bool IsInstantiation) {
|
|
// Collect information from the lambda scope.
|
|
SmallVector<LambdaCapture, 4> Captures;
|
|
SmallVector<Expr *, 4> CaptureInits;
|
|
LambdaCaptureDefault CaptureDefault;
|
|
SourceLocation CaptureDefaultLoc;
|
|
CXXRecordDecl *Class;
|
|
CXXMethodDecl *CallOperator;
|
|
SourceRange IntroducerRange;
|
|
bool ExplicitParams;
|
|
bool ExplicitResultType;
|
|
bool LambdaExprNeedsCleanups;
|
|
bool ContainsUnexpandedParameterPack;
|
|
SmallVector<VarDecl *, 4> ArrayIndexVars;
|
|
SmallVector<unsigned, 4> ArrayIndexStarts;
|
|
{
|
|
LambdaScopeInfo *LSI = getCurLambda();
|
|
CallOperator = LSI->CallOperator;
|
|
Class = LSI->Lambda;
|
|
IntroducerRange = LSI->IntroducerRange;
|
|
ExplicitParams = LSI->ExplicitParams;
|
|
ExplicitResultType = !LSI->HasImplicitReturnType;
|
|
LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
|
|
ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
|
|
ArrayIndexVars.swap(LSI->ArrayIndexVars);
|
|
ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
|
|
|
|
// Translate captures.
|
|
for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
|
|
LambdaScopeInfo::Capture From = LSI->Captures[I];
|
|
assert(!From.isBlockCapture() && "Cannot capture __block variables");
|
|
bool IsImplicit = I >= LSI->NumExplicitCaptures;
|
|
|
|
// Handle 'this' capture.
|
|
if (From.isThisCapture()) {
|
|
Captures.push_back(
|
|
LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
|
|
CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
|
|
getCurrentThisType(),
|
|
/*isImplicit=*/true));
|
|
continue;
|
|
}
|
|
if (From.isVLATypeCapture()) {
|
|
Captures.push_back(
|
|
LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
|
|
CaptureInits.push_back(nullptr);
|
|
continue;
|
|
}
|
|
|
|
VarDecl *Var = From.getVariable();
|
|
LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
|
|
Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
|
|
Var, From.getEllipsisLoc()));
|
|
CaptureInits.push_back(From.getInitExpr());
|
|
}
|
|
|
|
switch (LSI->ImpCaptureStyle) {
|
|
case CapturingScopeInfo::ImpCap_None:
|
|
CaptureDefault = LCD_None;
|
|
break;
|
|
|
|
case CapturingScopeInfo::ImpCap_LambdaByval:
|
|
CaptureDefault = LCD_ByCopy;
|
|
break;
|
|
|
|
case CapturingScopeInfo::ImpCap_CapturedRegion:
|
|
case CapturingScopeInfo::ImpCap_LambdaByref:
|
|
CaptureDefault = LCD_ByRef;
|
|
break;
|
|
|
|
case CapturingScopeInfo::ImpCap_Block:
|
|
llvm_unreachable("block capture in lambda");
|
|
break;
|
|
}
|
|
CaptureDefaultLoc = LSI->CaptureDefaultLoc;
|
|
|
|
// C++11 [expr.prim.lambda]p4:
|
|
// If a lambda-expression does not include a
|
|
// trailing-return-type, it is as if the trailing-return-type
|
|
// denotes the following type:
|
|
//
|
|
// Skip for C++1y return type deduction semantics which uses
|
|
// different machinery.
|
|
// FIXME: Refactor and Merge the return type deduction machinery.
|
|
// FIXME: Assumes current resolution to core issue 975.
|
|
if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus14) {
|
|
deduceClosureReturnType(*LSI);
|
|
|
|
// - if there are no return statements in the
|
|
// compound-statement, or all return statements return
|
|
// either an expression of type void or no expression or
|
|
// braced-init-list, the type void;
|
|
if (LSI->ReturnType.isNull()) {
|
|
LSI->ReturnType = Context.VoidTy;
|
|
}
|
|
|
|
// Create a function type with the inferred return type.
|
|
const FunctionProtoType *Proto
|
|
= CallOperator->getType()->getAs<FunctionProtoType>();
|
|
QualType FunctionTy = Context.getFunctionType(
|
|
LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
|
|
CallOperator->setType(FunctionTy);
|
|
}
|
|
// C++ [expr.prim.lambda]p7:
|
|
// The lambda-expression's compound-statement yields the
|
|
// function-body (8.4) of the function call operator [...].
|
|
ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
|
|
CallOperator->setLexicalDeclContext(Class);
|
|
Decl *TemplateOrNonTemplateCallOperatorDecl =
|
|
CallOperator->getDescribedFunctionTemplate()
|
|
? CallOperator->getDescribedFunctionTemplate()
|
|
: cast<Decl>(CallOperator);
|
|
|
|
TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
|
|
Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
|
|
|
|
PopExpressionEvaluationContext();
|
|
|
|
// C++11 [expr.prim.lambda]p6:
|
|
// The closure type for a lambda-expression with no lambda-capture
|
|
// has a public non-virtual non-explicit const conversion function
|
|
// to pointer to function having the same parameter and return
|
|
// types as the closure type's function call operator.
|
|
if (Captures.empty() && CaptureDefault == LCD_None)
|
|
addFunctionPointerConversion(*this, IntroducerRange, Class,
|
|
CallOperator);
|
|
|
|
// Objective-C++:
|
|
// The closure type for a lambda-expression has a public non-virtual
|
|
// non-explicit const conversion function to a block pointer having the
|
|
// same parameter and return types as the closure type's function call
|
|
// operator.
|
|
// FIXME: Fix generic lambda to block conversions.
|
|
if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
|
|
!Class->isGenericLambda())
|
|
addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
|
|
|
|
// Finalize the lambda class.
|
|
SmallVector<Decl*, 4> Fields(Class->fields());
|
|
ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
|
|
SourceLocation(), nullptr);
|
|
CheckCompletedCXXClass(Class);
|
|
}
|
|
|
|
if (LambdaExprNeedsCleanups)
|
|
ExprNeedsCleanups = true;
|
|
|
|
LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
|
|
CaptureDefault, CaptureDefaultLoc,
|
|
Captures,
|
|
ExplicitParams, ExplicitResultType,
|
|
CaptureInits, ArrayIndexVars,
|
|
ArrayIndexStarts, Body->getLocEnd(),
|
|
ContainsUnexpandedParameterPack);
|
|
|
|
if (!CurContext->isDependentContext()) {
|
|
switch (ExprEvalContexts.back().Context) {
|
|
// C++11 [expr.prim.lambda]p2:
|
|
// A lambda-expression shall not appear in an unevaluated operand
|
|
// (Clause 5).
|
|
case Unevaluated:
|
|
case UnevaluatedAbstract:
|
|
// C++1y [expr.const]p2:
|
|
// A conditional-expression e is a core constant expression unless the
|
|
// evaluation of e, following the rules of the abstract machine, would
|
|
// evaluate [...] a lambda-expression.
|
|
//
|
|
// This is technically incorrect, there are some constant evaluated contexts
|
|
// where this should be allowed. We should probably fix this when DR1607 is
|
|
// ratified, it lays out the exact set of conditions where we shouldn't
|
|
// allow a lambda-expression.
|
|
case ConstantEvaluated:
|
|
// We don't actually diagnose this case immediately, because we
|
|
// could be within a context where we might find out later that
|
|
// the expression is potentially evaluated (e.g., for typeid).
|
|
ExprEvalContexts.back().Lambdas.push_back(Lambda);
|
|
break;
|
|
|
|
case PotentiallyEvaluated:
|
|
case PotentiallyEvaluatedIfUsed:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return MaybeBindToTemporary(Lambda);
|
|
}
|
|
|
|
ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
|
|
SourceLocation ConvLocation,
|
|
CXXConversionDecl *Conv,
|
|
Expr *Src) {
|
|
// Make sure that the lambda call operator is marked used.
|
|
CXXRecordDecl *Lambda = Conv->getParent();
|
|
CXXMethodDecl *CallOperator
|
|
= cast<CXXMethodDecl>(
|
|
Lambda->lookup(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
|
|
CallOperator->setReferenced();
|
|
CallOperator->markUsed(Context);
|
|
|
|
ExprResult Init = PerformCopyInitialization(
|
|
InitializedEntity::InitializeBlock(ConvLocation,
|
|
Src->getType(),
|
|
/*NRVO=*/false),
|
|
CurrentLocation, Src);
|
|
if (!Init.isInvalid())
|
|
Init = ActOnFinishFullExpr(Init.get());
|
|
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
|
|
// Create the new block to be returned.
|
|
BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
|
|
|
|
// Set the type information.
|
|
Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
|
|
Block->setIsVariadic(CallOperator->isVariadic());
|
|
Block->setBlockMissingReturnType(false);
|
|
|
|
// Add parameters.
|
|
SmallVector<ParmVarDecl *, 4> BlockParams;
|
|
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
|
|
ParmVarDecl *From = CallOperator->getParamDecl(I);
|
|
BlockParams.push_back(ParmVarDecl::Create(Context, Block,
|
|
From->getLocStart(),
|
|
From->getLocation(),
|
|
From->getIdentifier(),
|
|
From->getType(),
|
|
From->getTypeSourceInfo(),
|
|
From->getStorageClass(),
|
|
/*DefaultArg=*/nullptr));
|
|
}
|
|
Block->setParams(BlockParams);
|
|
|
|
Block->setIsConversionFromLambda(true);
|
|
|
|
// Add capture. The capture uses a fake variable, which doesn't correspond
|
|
// to any actual memory location. However, the initializer copy-initializes
|
|
// the lambda object.
|
|
TypeSourceInfo *CapVarTSI =
|
|
Context.getTrivialTypeSourceInfo(Src->getType());
|
|
VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
|
|
ConvLocation, nullptr,
|
|
Src->getType(), CapVarTSI,
|
|
SC_None);
|
|
BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
|
|
/*Nested=*/false, /*Copy=*/Init.get());
|
|
Block->setCaptures(Context, &Capture, &Capture + 1,
|
|
/*CapturesCXXThis=*/false);
|
|
|
|
// Add a fake function body to the block. IR generation is responsible
|
|
// for filling in the actual body, which cannot be expressed as an AST.
|
|
Block->setBody(new (Context) CompoundStmt(ConvLocation));
|
|
|
|
// Create the block literal expression.
|
|
Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
|
|
ExprCleanupObjects.push_back(Block);
|
|
ExprNeedsCleanups = true;
|
|
|
|
return BuildBlock;
|
|
}
|