llvm-capstone/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
Guillaume Chatelet c9d5c19597 [Alignment][NFC] Transitionning more getMachineMemOperand call sites
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, Jim, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77121
2020-03-31 08:36:18 +00:00

4730 lines
169 KiB
C++

//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cstdio>
#include <iterator>
#include <set>
using namespace llvm;
#define DEBUG_TYPE "dag-patterns"
static inline bool isIntegerOrPtr(MVT VT) {
return VT.isInteger() || VT == MVT::iPTR;
}
static inline bool isFloatingPoint(MVT VT) {
return VT.isFloatingPoint();
}
static inline bool isVector(MVT VT) {
return VT.isVector();
}
static inline bool isScalar(MVT VT) {
return !VT.isVector();
}
template <typename Predicate>
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
bool Erased = false;
// It is ok to iterate over MachineValueTypeSet and remove elements from it
// at the same time.
for (MVT T : S) {
if (!P(T))
continue;
Erased = true;
S.erase(T);
}
return Erased;
}
// --- TypeSetByHwMode
// This is a parameterized type-set class. For each mode there is a list
// of types that are currently possible for a given tree node. Type
// inference will apply to each mode separately.
TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
for (const ValueTypeByHwMode &VVT : VTList) {
insert(VVT);
AddrSpaces.push_back(VVT.PtrAddrSpace);
}
}
bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
for (const auto &I : *this) {
if (I.second.size() > 1)
return false;
if (!AllowEmpty && I.second.empty())
return false;
}
return true;
}
ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
assert(isValueTypeByHwMode(true) &&
"The type set has multiple types for at least one HW mode");
ValueTypeByHwMode VVT;
auto ASI = AddrSpaces.begin();
for (const auto &I : *this) {
MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
VVT.getOrCreateTypeForMode(I.first, T);
if (ASI != AddrSpaces.end())
VVT.PtrAddrSpace = *ASI++;
}
return VVT;
}
bool TypeSetByHwMode::isPossible() const {
for (const auto &I : *this)
if (!I.second.empty())
return true;
return false;
}
bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
bool Changed = false;
bool ContainsDefault = false;
MVT DT = MVT::Other;
SmallDenseSet<unsigned, 4> Modes;
for (const auto &P : VVT) {
unsigned M = P.first;
Modes.insert(M);
// Make sure there exists a set for each specific mode from VVT.
Changed |= getOrCreate(M).insert(P.second).second;
// Cache VVT's default mode.
if (DefaultMode == M) {
ContainsDefault = true;
DT = P.second;
}
}
// If VVT has a default mode, add the corresponding type to all
// modes in "this" that do not exist in VVT.
if (ContainsDefault)
for (auto &I : *this)
if (!Modes.count(I.first))
Changed |= I.second.insert(DT).second;
return Changed;
}
// Constrain the type set to be the intersection with VTS.
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
bool Changed = false;
if (hasDefault()) {
for (const auto &I : VTS) {
unsigned M = I.first;
if (M == DefaultMode || hasMode(M))
continue;
Map.insert({M, Map.at(DefaultMode)});
Changed = true;
}
}
for (auto &I : *this) {
unsigned M = I.first;
SetType &S = I.second;
if (VTS.hasMode(M) || VTS.hasDefault()) {
Changed |= intersect(I.second, VTS.get(M));
} else if (!S.empty()) {
S.clear();
Changed = true;
}
}
return Changed;
}
template <typename Predicate>
bool TypeSetByHwMode::constrain(Predicate P) {
bool Changed = false;
for (auto &I : *this)
Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
return Changed;
}
template <typename Predicate>
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
assert(empty());
for (const auto &I : VTS) {
SetType &S = getOrCreate(I.first);
for (auto J : I.second)
if (P(J))
S.insert(J);
}
return !empty();
}
void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
SmallVector<unsigned, 4> Modes;
Modes.reserve(Map.size());
for (const auto &I : *this)
Modes.push_back(I.first);
if (Modes.empty()) {
OS << "{}";
return;
}
array_pod_sort(Modes.begin(), Modes.end());
OS << '{';
for (unsigned M : Modes) {
OS << ' ' << getModeName(M) << ':';
writeToStream(get(M), OS);
}
OS << " }";
}
void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
SmallVector<MVT, 4> Types(S.begin(), S.end());
array_pod_sort(Types.begin(), Types.end());
OS << '[';
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
OS << ValueTypeByHwMode::getMVTName(Types[i]);
if (i != e-1)
OS << ' ';
}
OS << ']';
}
bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
// The isSimple call is much quicker than hasDefault - check this first.
bool IsSimple = isSimple();
bool VTSIsSimple = VTS.isSimple();
if (IsSimple && VTSIsSimple)
return *begin() == *VTS.begin();
// Speedup: We have a default if the set is simple.
bool HaveDefault = IsSimple || hasDefault();
bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
if (HaveDefault != VTSHaveDefault)
return false;
SmallDenseSet<unsigned, 4> Modes;
for (auto &I : *this)
Modes.insert(I.first);
for (const auto &I : VTS)
Modes.insert(I.first);
if (HaveDefault) {
// Both sets have default mode.
for (unsigned M : Modes) {
if (get(M) != VTS.get(M))
return false;
}
} else {
// Neither set has default mode.
for (unsigned M : Modes) {
// If there is no default mode, an empty set is equivalent to not having
// the corresponding mode.
bool NoModeThis = !hasMode(M) || get(M).empty();
bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
if (NoModeThis != NoModeVTS)
return false;
if (!NoModeThis)
if (get(M) != VTS.get(M))
return false;
}
}
return true;
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
T.writeToStream(OS);
return OS;
}
}
LLVM_DUMP_METHOD
void TypeSetByHwMode::dump() const {
dbgs() << *this << '\n';
}
bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
auto Int = [&In](MVT T) -> bool { return !In.count(T); };
if (OutP == InP)
return berase_if(Out, Int);
// Compute the intersection of scalars separately to account for only
// one set containing iPTR.
// The intersection of iPTR with a set of integer scalar types that does not
// include iPTR will result in the most specific scalar type:
// - iPTR is more specific than any set with two elements or more
// - iPTR is less specific than any single integer scalar type.
// For example
// { iPTR } * { i32 } -> { i32 }
// { iPTR } * { i32 i64 } -> { iPTR }
// and
// { iPTR i32 } * { i32 } -> { i32 }
// { iPTR i32 } * { i32 i64 } -> { i32 i64 }
// { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
// Compute the difference between the two sets in such a way that the
// iPTR is in the set that is being subtracted. This is to see if there
// are any extra scalars in the set without iPTR that are not in the
// set containing iPTR. Then the iPTR could be considered a "wildcard"
// matching these scalars. If there is only one such scalar, it would
// replace the iPTR, if there are more, the iPTR would be retained.
SetType Diff;
if (InP) {
Diff = Out;
berase_if(Diff, [&In](MVT T) { return In.count(T); });
// Pre-remove these elements and rely only on InP/OutP to determine
// whether a change has been made.
berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
} else {
Diff = In;
berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
Out.erase(MVT::iPTR);
}
// The actual intersection.
bool Changed = berase_if(Out, Int);
unsigned NumD = Diff.size();
if (NumD == 0)
return Changed;
if (NumD == 1) {
Out.insert(*Diff.begin());
// This is a change only if Out was the one with iPTR (which is now
// being replaced).
Changed |= OutP;
} else {
// Multiple elements from Out are now replaced with iPTR.
Out.insert(MVT::iPTR);
Changed |= !OutP;
}
return Changed;
}
bool TypeSetByHwMode::validate() const {
#ifndef NDEBUG
if (empty())
return true;
bool AllEmpty = true;
for (const auto &I : *this)
AllEmpty &= I.second.empty();
return !AllEmpty;
#endif
return true;
}
// --- TypeInfer
bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
const TypeSetByHwMode &In) {
ValidateOnExit _1(Out, *this);
In.validate();
if (In.empty() || Out == In || TP.hasError())
return false;
if (Out.empty()) {
Out = In;
return true;
}
bool Changed = Out.constrain(In);
if (Changed && Out.empty())
TP.error("Type contradiction");
return Changed;
}
bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError())
return false;
assert(!Out.empty() && "cannot pick from an empty set");
bool Changed = false;
for (auto &I : Out) {
TypeSetByHwMode::SetType &S = I.second;
if (S.size() <= 1)
continue;
MVT T = *S.begin(); // Pick the first element.
S.clear();
S.insert(T);
Changed = true;
}
return Changed;
}
bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError())
return false;
if (!Out.empty())
return Out.constrain(isIntegerOrPtr);
return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
}
bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError())
return false;
if (!Out.empty())
return Out.constrain(isFloatingPoint);
return Out.assign_if(getLegalTypes(), isFloatingPoint);
}
bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError())
return false;
if (!Out.empty())
return Out.constrain(isScalar);
return Out.assign_if(getLegalTypes(), isScalar);
}
bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError())
return false;
if (!Out.empty())
return Out.constrain(isVector);
return Out.assign_if(getLegalTypes(), isVector);
}
bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
ValidateOnExit _1(Out, *this);
if (TP.hasError() || !Out.empty())
return false;
Out = getLegalTypes();
return true;
}
template <typename Iter, typename Pred, typename Less>
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
if (B == E)
return E;
Iter Min = E;
for (Iter I = B; I != E; ++I) {
if (!P(*I))
continue;
if (Min == E || L(*I, *Min))
Min = I;
}
return Min;
}
template <typename Iter, typename Pred, typename Less>
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
if (B == E)
return E;
Iter Max = E;
for (Iter I = B; I != E; ++I) {
if (!P(*I))
continue;
if (Max == E || L(*Max, *I))
Max = I;
}
return Max;
}
/// Make sure that for each type in Small, there exists a larger type in Big.
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
TypeSetByHwMode &Big) {
ValidateOnExit _1(Small, *this), _2(Big, *this);
if (TP.hasError())
return false;
bool Changed = false;
if (Small.empty())
Changed |= EnforceAny(Small);
if (Big.empty())
Changed |= EnforceAny(Big);
assert(Small.hasDefault() && Big.hasDefault());
std::vector<unsigned> Modes = union_modes(Small, Big);
// 1. Only allow integer or floating point types and make sure that
// both sides are both integer or both floating point.
// 2. Make sure that either both sides have vector types, or neither
// of them does.
for (unsigned M : Modes) {
TypeSetByHwMode::SetType &S = Small.get(M);
TypeSetByHwMode::SetType &B = Big.get(M);
if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
Changed |= berase_if(S, NotInt);
Changed |= berase_if(B, NotInt);
} else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
Changed |= berase_if(S, NotFP);
Changed |= berase_if(B, NotFP);
} else if (S.empty() || B.empty()) {
Changed = !S.empty() || !B.empty();
S.clear();
B.clear();
} else {
TP.error("Incompatible types");
return Changed;
}
if (none_of(S, isVector) || none_of(B, isVector)) {
Changed |= berase_if(S, isVector);
Changed |= berase_if(B, isVector);
}
}
auto LT = [](MVT A, MVT B) -> bool {
// Always treat non-scalable MVTs as smaller than scalable MVTs for the
// purposes of ordering.
auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
A.getSizeInBits());
auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
B.getSizeInBits());
return ASize < BSize;
};
auto SameKindLE = [](MVT A, MVT B) -> bool {
// This function is used when removing elements: when a vector is compared
// to a non-vector or a scalable vector to any non-scalable MVT, it should
// return false (to avoid removal).
if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
std::make_tuple(B.isVector(), B.isScalableVector()))
return false;
return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
};
for (unsigned M : Modes) {
TypeSetByHwMode::SetType &S = Small.get(M);
TypeSetByHwMode::SetType &B = Big.get(M);
// MinS = min scalar in Small, remove all scalars from Big that are
// smaller-or-equal than MinS.
auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
if (MinS != S.end())
Changed |= berase_if(B, std::bind(SameKindLE,
std::placeholders::_1, *MinS));
// MaxS = max scalar in Big, remove all scalars from Small that are
// larger than MaxS.
auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
if (MaxS != B.end())
Changed |= berase_if(S, std::bind(SameKindLE,
*MaxS, std::placeholders::_1));
// MinV = min vector in Small, remove all vectors from Big that are
// smaller-or-equal than MinV.
auto MinV = min_if(S.begin(), S.end(), isVector, LT);
if (MinV != S.end())
Changed |= berase_if(B, std::bind(SameKindLE,
std::placeholders::_1, *MinV));
// MaxV = max vector in Big, remove all vectors from Small that are
// larger than MaxV.
auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
if (MaxV != B.end())
Changed |= berase_if(S, std::bind(SameKindLE,
*MaxV, std::placeholders::_1));
}
return Changed;
}
/// 1. Ensure that for each type T in Vec, T is a vector type, and that
/// for each type U in Elem, U is a scalar type.
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
/// type T in Vec, such that U is the element type of T.
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
TypeSetByHwMode &Elem) {
ValidateOnExit _1(Vec, *this), _2(Elem, *this);
if (TP.hasError())
return false;
bool Changed = false;
if (Vec.empty())
Changed |= EnforceVector(Vec);
if (Elem.empty())
Changed |= EnforceScalar(Elem);
for (unsigned M : union_modes(Vec, Elem)) {
TypeSetByHwMode::SetType &V = Vec.get(M);
TypeSetByHwMode::SetType &E = Elem.get(M);
Changed |= berase_if(V, isScalar); // Scalar = !vector
Changed |= berase_if(E, isVector); // Vector = !scalar
assert(!V.empty() && !E.empty());
SmallSet<MVT,4> VT, ST;
// Collect element types from the "vector" set.
for (MVT T : V)
VT.insert(T.getVectorElementType());
// Collect scalar types from the "element" set.
for (MVT T : E)
ST.insert(T);
// Remove from V all (vector) types whose element type is not in S.
Changed |= berase_if(V, [&ST](MVT T) -> bool {
return !ST.count(T.getVectorElementType());
});
// Remove from E all (scalar) types, for which there is no corresponding
// type in V.
Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
}
return Changed;
}
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
const ValueTypeByHwMode &VVT) {
TypeSetByHwMode Tmp(VVT);
ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
return EnforceVectorEltTypeIs(Vec, Tmp);
}
/// Ensure that for each type T in Sub, T is a vector type, and there
/// exists a type U in Vec such that U is a vector type with the same
/// element type as T and at least as many elements as T.
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
TypeSetByHwMode &Sub) {
ValidateOnExit _1(Vec, *this), _2(Sub, *this);
if (TP.hasError())
return false;
/// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
auto IsSubVec = [](MVT B, MVT P) -> bool {
if (!B.isVector() || !P.isVector())
return false;
// Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
// but until there are obvious use-cases for this, keep the
// types separate.
if (B.isScalableVector() != P.isScalableVector())
return false;
if (B.getVectorElementType() != P.getVectorElementType())
return false;
return B.getVectorNumElements() < P.getVectorNumElements();
};
/// Return true if S has no element (vector type) that T is a sub-vector of,
/// i.e. has the same element type as T and more elements.
auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
for (auto I : S)
if (IsSubVec(T, I))
return false;
return true;
};
/// Return true if S has no element (vector type) that T is a super-vector
/// of, i.e. has the same element type as T and fewer elements.
auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
for (auto I : S)
if (IsSubVec(I, T))
return false;
return true;
};
bool Changed = false;
if (Vec.empty())
Changed |= EnforceVector(Vec);
if (Sub.empty())
Changed |= EnforceVector(Sub);
for (unsigned M : union_modes(Vec, Sub)) {
TypeSetByHwMode::SetType &S = Sub.get(M);
TypeSetByHwMode::SetType &V = Vec.get(M);
Changed |= berase_if(S, isScalar);
// Erase all types from S that are not sub-vectors of a type in V.
Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
// Erase all types from V that are not super-vectors of a type in S.
Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
}
return Changed;
}
/// 1. Ensure that V has a scalar type iff W has a scalar type.
/// 2. Ensure that for each vector type T in V, there exists a vector
/// type U in W, such that T and U have the same number of elements.
/// 3. Ensure that for each vector type U in W, there exists a vector
/// type T in V, such that T and U have the same number of elements
/// (reverse of 2).
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
ValidateOnExit _1(V, *this), _2(W, *this);
if (TP.hasError())
return false;
bool Changed = false;
if (V.empty())
Changed |= EnforceAny(V);
if (W.empty())
Changed |= EnforceAny(W);
// An actual vector type cannot have 0 elements, so we can treat scalars
// as zero-length vectors. This way both vectors and scalars can be
// processed identically.
auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
};
for (unsigned M : union_modes(V, W)) {
TypeSetByHwMode::SetType &VS = V.get(M);
TypeSetByHwMode::SetType &WS = W.get(M);
SmallSet<unsigned,2> VN, WN;
for (MVT T : VS)
VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
for (MVT T : WS)
WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
}
return Changed;
}
/// 1. Ensure that for each type T in A, there exists a type U in B,
/// such that T and U have equal size in bits.
/// 2. Ensure that for each type U in B, there exists a type T in A
/// such that T and U have equal size in bits (reverse of 1).
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
ValidateOnExit _1(A, *this), _2(B, *this);
if (TP.hasError())
return false;
bool Changed = false;
if (A.empty())
Changed |= EnforceAny(A);
if (B.empty())
Changed |= EnforceAny(B);
auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
return !Sizes.count(T.getSizeInBits());
};
for (unsigned M : union_modes(A, B)) {
TypeSetByHwMode::SetType &AS = A.get(M);
TypeSetByHwMode::SetType &BS = B.get(M);
SmallSet<unsigned,2> AN, BN;
for (MVT T : AS)
AN.insert(T.getSizeInBits());
for (MVT T : BS)
BN.insert(T.getSizeInBits());
Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
}
return Changed;
}
void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
ValidateOnExit _1(VTS, *this);
const TypeSetByHwMode &Legal = getLegalTypes();
assert(Legal.isDefaultOnly() && "Default-mode only expected");
const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
for (auto &I : VTS)
expandOverloads(I.second, LegalTypes);
}
void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
const TypeSetByHwMode::SetType &Legal) {
std::set<MVT> Ovs;
for (MVT T : Out) {
if (!T.isOverloaded())
continue;
Ovs.insert(T);
// MachineValueTypeSet allows iteration and erasing.
Out.erase(T);
}
for (MVT Ov : Ovs) {
switch (Ov.SimpleTy) {
case MVT::iPTRAny:
Out.insert(MVT::iPTR);
return;
case MVT::iAny:
for (MVT T : MVT::integer_valuetypes())
if (Legal.count(T))
Out.insert(T);
for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
if (Legal.count(T))
Out.insert(T);
for (MVT T : MVT::integer_scalable_vector_valuetypes())
if (Legal.count(T))
Out.insert(T);
return;
case MVT::fAny:
for (MVT T : MVT::fp_valuetypes())
if (Legal.count(T))
Out.insert(T);
for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
if (Legal.count(T))
Out.insert(T);
for (MVT T : MVT::fp_scalable_vector_valuetypes())
if (Legal.count(T))
Out.insert(T);
return;
case MVT::vAny:
for (MVT T : MVT::vector_valuetypes())
if (Legal.count(T))
Out.insert(T);
return;
case MVT::Any:
for (MVT T : MVT::all_valuetypes())
if (Legal.count(T))
Out.insert(T);
return;
default:
break;
}
}
}
const TypeSetByHwMode &TypeInfer::getLegalTypes() {
if (!LegalTypesCached) {
TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
// Stuff all types from all modes into the default mode.
const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
for (const auto &I : LTS)
LegalTypes.insert(I.second);
LegalTypesCached = true;
}
assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
return LegalCache;
}
#ifndef NDEBUG
TypeInfer::ValidateOnExit::~ValidateOnExit() {
if (Infer.Validate && !VTS.validate()) {
dbgs() << "Type set is empty for each HW mode:\n"
"possible type contradiction in the pattern below "
"(use -print-records with llvm-tblgen to see all "
"expanded records).\n";
Infer.TP.dump();
llvm_unreachable(nullptr);
}
}
#endif
//===----------------------------------------------------------------------===//
// ScopedName Implementation
//===----------------------------------------------------------------------===//
bool ScopedName::operator==(const ScopedName &o) const {
return Scope == o.Scope && Identifier == o.Identifier;
}
bool ScopedName::operator!=(const ScopedName &o) const {
return !(*this == o);
}
//===----------------------------------------------------------------------===//
// TreePredicateFn Implementation
//===----------------------------------------------------------------------===//
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
assert(
(!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate");
}
bool TreePredicateFn::hasPredCode() const {
return isLoad() || isStore() || isAtomic() ||
!PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
}
std::string TreePredicateFn::getPredCode() const {
std::string Code = "";
if (!isLoad() && !isStore() && !isAtomic()) {
Record *MemoryVT = getMemoryVT();
if (MemoryVT)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"MemoryVT requires IsLoad or IsStore");
}
if (!isLoad() && !isStore()) {
if (isUnindexed())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsUnindexed requires IsLoad or IsStore");
Record *ScalarMemoryVT = getScalarMemoryVT();
if (ScalarMemoryVT)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"ScalarMemoryVT requires IsLoad or IsStore");
}
if (isLoad() + isStore() + isAtomic() > 1)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsLoad, IsStore, and IsAtomic are mutually exclusive");
if (isLoad()) {
if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
!isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
getMinAlignment() < 1)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsLoad cannot be used by itself");
} else {
if (isNonExtLoad())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonExtLoad requires IsLoad");
if (isAnyExtLoad())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAnyExtLoad requires IsLoad");
if (isSignExtLoad())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsSignExtLoad requires IsLoad");
if (isZeroExtLoad())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsZeroExtLoad requires IsLoad");
}
if (isStore()) {
if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
getAddressSpaces() == nullptr && getMinAlignment() < 1)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsStore cannot be used by itself");
} else {
if (isNonTruncStore())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonTruncStore requires IsStore");
if (isTruncStore())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsTruncStore requires IsStore");
}
if (isAtomic()) {
if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
getAddressSpaces() == nullptr &&
!isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
!isAtomicOrderingAcquireRelease() &&
!isAtomicOrderingSequentiallyConsistent() &&
!isAtomicOrderingAcquireOrStronger() &&
!isAtomicOrderingReleaseOrStronger() &&
!isAtomicOrderingWeakerThanAcquire() &&
!isAtomicOrderingWeakerThanRelease())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomic cannot be used by itself");
} else {
if (isAtomicOrderingMonotonic())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingMonotonic requires IsAtomic");
if (isAtomicOrderingAcquire())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingAcquire requires IsAtomic");
if (isAtomicOrderingRelease())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingRelease requires IsAtomic");
if (isAtomicOrderingAcquireRelease())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingAcquireRelease requires IsAtomic");
if (isAtomicOrderingSequentiallyConsistent())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
if (isAtomicOrderingAcquireOrStronger())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingAcquireOrStronger requires IsAtomic");
if (isAtomicOrderingReleaseOrStronger())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingReleaseOrStronger requires IsAtomic");
if (isAtomicOrderingWeakerThanAcquire())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
}
if (isLoad() || isStore() || isAtomic()) {
if (ListInit *AddressSpaces = getAddressSpaces()) {
Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
" if (";
bool First = true;
for (Init *Val : AddressSpaces->getValues()) {
if (First)
First = false;
else
Code += " && ";
IntInit *IntVal = dyn_cast<IntInit>(Val);
if (!IntVal) {
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"AddressSpaces element must be integer");
}
Code += "AddrSpace != " + utostr(IntVal->getValue());
}
Code += ")\nreturn false;\n";
}
int64_t MinAlign = getMinAlignment();
if (MinAlign > 0) {
Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
Code += utostr(MinAlign);
Code += "))\nreturn false;\n";
}
Record *MemoryVT = getMemoryVT();
if (MemoryVT)
Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
MemoryVT->getName() + ") return false;\n")
.str();
}
if (isAtomic() && isAtomicOrderingMonotonic())
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
"AtomicOrdering::Monotonic) return false;\n";
if (isAtomic() && isAtomicOrderingAcquire())
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
"AtomicOrdering::Acquire) return false;\n";
if (isAtomic() && isAtomicOrderingRelease())
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
"AtomicOrdering::Release) return false;\n";
if (isAtomic() && isAtomicOrderingAcquireRelease())
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
"AtomicOrdering::AcquireRelease) return false;\n";
if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
"AtomicOrdering::SequentiallyConsistent) return false;\n";
if (isAtomic() && isAtomicOrderingAcquireOrStronger())
Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
"return false;\n";
if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
"return false;\n";
if (isAtomic() && isAtomicOrderingReleaseOrStronger())
Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
"return false;\n";
if (isAtomic() && isAtomicOrderingWeakerThanRelease())
Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
"return false;\n";
if (isLoad() || isStore()) {
StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
if (isUnindexed())
Code += ("if (cast<" + SDNodeName +
">(N)->getAddressingMode() != ISD::UNINDEXED) "
"return false;\n")
.str();
if (isLoad()) {
if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
isZeroExtLoad()) > 1)
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
"IsZeroExtLoad are mutually exclusive");
if (isNonExtLoad())
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
"ISD::NON_EXTLOAD) return false;\n";
if (isAnyExtLoad())
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
"return false;\n";
if (isSignExtLoad())
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
"return false;\n";
if (isZeroExtLoad())
Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
"return false;\n";
} else {
if ((isNonTruncStore() + isTruncStore()) > 1)
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonTruncStore, and IsTruncStore are mutually exclusive");
if (isNonTruncStore())
Code +=
" if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
if (isTruncStore())
Code +=
" if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
}
Record *ScalarMemoryVT = getScalarMemoryVT();
if (ScalarMemoryVT)
Code += ("if (cast<" + SDNodeName +
">(N)->getMemoryVT().getScalarType() != MVT::" +
ScalarMemoryVT->getName() + ") return false;\n")
.str();
}
std::string PredicateCode =
std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
Code += PredicateCode;
if (PredicateCode.empty() && !Code.empty())
Code += "return true;\n";
return Code;
}
bool TreePredicateFn::hasImmCode() const {
return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
}
std::string TreePredicateFn::getImmCode() const {
return std::string(
PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
}
bool TreePredicateFn::immCodeUsesAPInt() const {
return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
}
bool TreePredicateFn::immCodeUsesAPFloat() const {
bool Unset;
// The return value will be false when IsAPFloat is unset.
return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
Unset);
}
bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
bool Value) const {
bool Unset;
bool Result =
getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
if (Unset)
return false;
return Result == Value;
}
bool TreePredicateFn::usesOperands() const {
return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
}
bool TreePredicateFn::isLoad() const {
return isPredefinedPredicateEqualTo("IsLoad", true);
}
bool TreePredicateFn::isStore() const {
return isPredefinedPredicateEqualTo("IsStore", true);
}
bool TreePredicateFn::isAtomic() const {
return isPredefinedPredicateEqualTo("IsAtomic", true);
}
bool TreePredicateFn::isUnindexed() const {
return isPredefinedPredicateEqualTo("IsUnindexed", true);
}
bool TreePredicateFn::isNonExtLoad() const {
return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
}
bool TreePredicateFn::isAnyExtLoad() const {
return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
}
bool TreePredicateFn::isSignExtLoad() const {
return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
}
bool TreePredicateFn::isZeroExtLoad() const {
return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
}
bool TreePredicateFn::isNonTruncStore() const {
return isPredefinedPredicateEqualTo("IsTruncStore", false);
}
bool TreePredicateFn::isTruncStore() const {
return isPredefinedPredicateEqualTo("IsTruncStore", true);
}
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
}
bool TreePredicateFn::isAtomicOrderingAcquire() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
}
bool TreePredicateFn::isAtomicOrderingRelease() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
}
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
}
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
true);
}
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
}
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
}
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
}
Record *TreePredicateFn::getMemoryVT() const {
Record *R = getOrigPatFragRecord()->getRecord();
if (R->isValueUnset("MemoryVT"))
return nullptr;
return R->getValueAsDef("MemoryVT");
}
ListInit *TreePredicateFn::getAddressSpaces() const {
Record *R = getOrigPatFragRecord()->getRecord();
if (R->isValueUnset("AddressSpaces"))
return nullptr;
return R->getValueAsListInit("AddressSpaces");
}
int64_t TreePredicateFn::getMinAlignment() const {
Record *R = getOrigPatFragRecord()->getRecord();
if (R->isValueUnset("MinAlignment"))
return 0;
return R->getValueAsInt("MinAlignment");
}
Record *TreePredicateFn::getScalarMemoryVT() const {
Record *R = getOrigPatFragRecord()->getRecord();
if (R->isValueUnset("ScalarMemoryVT"))
return nullptr;
return R->getValueAsDef("ScalarMemoryVT");
}
bool TreePredicateFn::hasGISelPredicateCode() const {
return !PatFragRec->getRecord()
->getValueAsString("GISelPredicateCode")
.empty();
}
std::string TreePredicateFn::getGISelPredicateCode() const {
return std::string(
PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
}
StringRef TreePredicateFn::getImmType() const {
if (immCodeUsesAPInt())
return "const APInt &";
if (immCodeUsesAPFloat())
return "const APFloat &";
return "int64_t";
}
StringRef TreePredicateFn::getImmTypeIdentifier() const {
if (immCodeUsesAPInt())
return "APInt";
else if (immCodeUsesAPFloat())
return "APFloat";
return "I64";
}
/// isAlwaysTrue - Return true if this is a noop predicate.
bool TreePredicateFn::isAlwaysTrue() const {
return !hasPredCode() && !hasImmCode();
}
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string TreePredicateFn::getFnName() const {
return "Predicate_" + PatFragRec->getRecord()->getName().str();
}
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
// Handle immediate predicates first.
std::string ImmCode = getImmCode();
if (!ImmCode.empty()) {
if (isLoad())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsLoad cannot be used with ImmLeaf or its subclasses");
if (isStore())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"IsStore cannot be used with ImmLeaf or its subclasses");
if (isUnindexed())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsUnindexed cannot be used with ImmLeaf or its subclasses");
if (isNonExtLoad())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
if (isAnyExtLoad())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
if (isSignExtLoad())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
if (isZeroExtLoad())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
if (isNonTruncStore())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
if (isTruncStore())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"IsTruncStore cannot be used with ImmLeaf or its subclasses");
if (getMemoryVT())
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"MemoryVT cannot be used with ImmLeaf or its subclasses");
if (getScalarMemoryVT())
PrintFatalError(
getOrigPatFragRecord()->getRecord()->getLoc(),
"ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
std::string Result = (" " + getImmType() + " Imm = ").str();
if (immCodeUsesAPFloat())
Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
else if (immCodeUsesAPInt())
Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
else
Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
return Result + ImmCode;
}
// Handle arbitrary node predicates.
assert(hasPredCode() && "Don't have any predicate code!");
// If this is using PatFrags, there are multiple trees to search. They should
// all have the same class. FIXME: Is there a way to find a common
// superclass?
StringRef ClassName;
for (const auto &Tree : PatFragRec->getTrees()) {
StringRef TreeClassName;
if (Tree->isLeaf())
TreeClassName = "SDNode";
else {
Record *Op = Tree->getOperator();
const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
TreeClassName = Info.getSDClassName();
}
if (ClassName.empty())
ClassName = TreeClassName;
else if (ClassName != TreeClassName) {
PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
"PatFrags trees do not have consistent class");
}
}
std::string Result;
if (ClassName == "SDNode")
Result = " SDNode *N = Node;\n";
else
Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
}
//===----------------------------------------------------------------------===//
// PatternToMatch implementation
//
static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
if (!P->isLeaf())
return false;
DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
if (!DI)
return false;
Record *R = DI->getDef();
return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
}
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(const TreePatternNode *P,
const CodeGenDAGPatterns &CGP) {
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
Size += 2;
if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
Size += AM->getComplexity();
// We don't want to count any children twice, so return early.
return Size;
}
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateCalls().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
const TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getNumTypes()) {
const TypeSetByHwMode &T0 = Child->getExtType(0);
// At this point, all variable type sets should be simple, i.e. only
// have a default mode.
if (T0.getMachineValueType() != MVT::Other) {
Size += getPatternSize(Child, CGP);
continue;
}
}
if (Child->isLeaf()) {
if (isa<IntInit>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (Child->getComplexPatternInfo(CGP))
Size += getPatternSize(Child, CGP);
else if (isImmAllOnesAllZerosMatch(Child))
Size += 4; // Matches a build_vector(+3) and a predicate (+1).
else if (!Child->getPredicateCalls().empty())
++Size;
}
}
return Size;
}
/// Compute the complexity metric for the input pattern. This roughly
/// corresponds to the number of nodes that are covered.
int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
}
/// getPredicateCheck - Return a single string containing all of this
/// pattern's predicates concatenated with "&&" operators.
///
std::string PatternToMatch::getPredicateCheck() const {
SmallVector<const Predicate*,4> PredList;
for (const Predicate &P : Predicates) {
if (!P.getCondString().empty())
PredList.push_back(&P);
}
llvm::sort(PredList, deref<std::less<>>());
std::string Check;
for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
if (i != 0)
Check += " && ";
Check += '(' + PredList[i]->getCondString() + ')';
}
return Check;
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
for (const auto &P : VVT)
if (P.second == MVT::isVoid)
PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisVec")) {
ConstraintType = SDTCisVec;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisEltOfVec")) {
ConstraintType = SDTCisEltOfVec;
x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
} else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
ConstraintType = SDTCisSubVecOfVec;
x.SDTCisSubVecOfVec_Info.OtherOperandNum =
R->getValueAsInt("OtherOpNum");
} else if (R->isSubClassOf("SDTCVecEltisVT")) {
ConstraintType = SDTCVecEltisVT;
VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
for (const auto &P : VVT) {
MVT T = P.second;
if (T.isVector())
PrintFatalError(R->getLoc(),
"Cannot use vector type as SDTCVecEltisVT");
if (!T.isInteger() && !T.isFloatingPoint())
PrintFatalError(R->getLoc(), "Must use integer or floating point type "
"as SDTCVecEltisVT");
}
} else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
ConstraintType = SDTCisSameNumEltsAs;
x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisSameSizeAs")) {
ConstraintType = SDTCisSameSizeAs;
x.SDTCisSameSizeAs_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else {
PrintFatalError(R->getLoc(),
"Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, and the result number in ResNo.
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
const SDNodeInfo &NodeInfo,
unsigned &ResNo) {
unsigned NumResults = NodeInfo.getNumResults();
if (OpNo < NumResults) {
ResNo = OpNo;
return N;
}
OpNo -= NumResults;
if (OpNo >= N->getNumChildren()) {
std::string S;
raw_string_ostream OS(S);
OS << "Invalid operand number in type constraint "
<< (OpNo+NumResults) << " ";
N->print(OS);
PrintFatalError(OS.str());
}
return N->getChild(OpNo);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
if (TP.hasError())
return false;
unsigned ResNo = 0; // The result number being referenced.
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
TypeInfer &TI = TP.getInfer();
switch (ConstraintType) {
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
case SDTCisPtrTy:
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
case SDTCisInt:
// Require it to be one of the legal integer VTs.
return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
case SDTCisFP:
// Require it to be one of the legal fp VTs.
return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
case SDTCisVec:
// Require it to be one of the legal vector VTs.
return TI.EnforceVector(NodeToApply->getExtType(ResNo));
case SDTCisSameAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!isa<DefInit>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType")) {
TP.error(N->getOperator()->getName() + " expects a VT operand!");
return false;
}
DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
TypeSetByHwMode TypeListTmp(VVT);
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
OResNo);
return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
}
case SDTCisOpSmallerThanOp: {
unsigned BResNo = 0;
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
BResNo);
return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
BigOperand->getExtType(BResNo));
}
case SDTCisEltOfVec: {
unsigned VResNo = 0;
TreePatternNode *VecOperand =
getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of VecOperand that don't have the right element
// type.
return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
NodeToApply->getExtType(ResNo));
}
case SDTCisSubVecOfVec: {
unsigned VResNo = 0;
TreePatternNode *BigVecOperand =
getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
VResNo);
// Filter vector types out of BigVecOperand that don't have the
// right subvector type.
return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
NodeToApply->getExtType(ResNo));
}
case SDTCVecEltisVT: {
return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
}
case SDTCisSameNumEltsAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
N, NodeInfo, OResNo);
return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
NodeToApply->getExtType(ResNo));
}
case SDTCisSameSizeAs: {
unsigned OResNo = 0;
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
N, NodeInfo, OResNo);
return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
NodeToApply->getExtType(ResNo));
}
}
llvm_unreachable("Invalid ConstraintType!");
}
// Update the node type to match an instruction operand or result as specified
// in the ins or outs lists on the instruction definition. Return true if the
// type was actually changed.
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
Record *Operand,
TreePattern &TP) {
// The 'unknown' operand indicates that types should be inferred from the
// context.
if (Operand->isSubClassOf("unknown_class"))
return false;
// The Operand class specifies a type directly.
if (Operand->isSubClassOf("Operand")) {
Record *R = Operand->getValueAsDef("Type");
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
}
// PointerLikeRegClass has a type that is determined at runtime.
if (Operand->isSubClassOf("PointerLikeRegClass"))
return UpdateNodeType(ResNo, MVT::iPTR, TP);
// Both RegisterClass and RegisterOperand operands derive their types from a
// register class def.
Record *RC = nullptr;
if (Operand->isSubClassOf("RegisterClass"))
RC = Operand;
else if (Operand->isSubClassOf("RegisterOperand"))
RC = Operand->getValueAsDef("RegClass");
assert(RC && "Unknown operand type");
CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
}
bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
for (unsigned i = 0, e = Types.size(); i != e; ++i)
if (!TP.getInfer().isConcrete(Types[i], true))
return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->ContainsUnresolvedType(TP))
return true;
return false;
}
bool TreePatternNode::hasProperTypeByHwMode() const {
for (const TypeSetByHwMode &S : Types)
if (!S.isDefaultOnly())
return true;
for (const TreePatternNodePtr &C : Children)
if (C->hasProperTypeByHwMode())
return true;
return false;
}
bool TreePatternNode::hasPossibleType() const {
for (const TypeSetByHwMode &S : Types)
if (!S.isPossible())
return false;
for (const TreePatternNodePtr &C : Children)
if (!C->hasPossibleType())
return false;
return true;
}
bool TreePatternNode::setDefaultMode(unsigned Mode) {
for (TypeSetByHwMode &S : Types) {
S.makeSimple(Mode);
// Check if the selected mode had a type conflict.
if (S.get(DefaultMode).empty())
return false;
}
for (const TreePatternNodePtr &C : Children)
if (!C->setDefaultMode(Mode))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = parseSDPatternOperatorProperties(R);
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
for (Record *R : ConstraintList)
TypeConstraints.emplace_back(R, CGH);
}
/// getKnownType - If the type constraints on this node imply a fixed type
/// (e.g. all stores return void, etc), then return it as an
/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
unsigned NumResults = getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
assert(ResNo == 0 && "Only handles single result nodes so far");
for (const SDTypeConstraint &Constraint : TypeConstraints) {
// Make sure that this applies to the correct node result.
if (Constraint.OperandNo >= NumResults) // FIXME: need value #
continue;
switch (Constraint.ConstraintType) {
default: break;
case SDTypeConstraint::SDTCisVT:
if (Constraint.VVT.isSimple())
return Constraint.VVT.getSimple().SimpleTy;
break;
case SDTypeConstraint::SDTCisPtrTy:
return MVT::iPTR;
}
}
return MVT::Other;
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
if (Operator->getName() == "set" ||
Operator->getName() == "implicit")
return 0; // All return nothing.
if (Operator->isSubClassOf("Intrinsic"))
return CDP.getIntrinsic(Operator).IS.RetVTs.size();
if (Operator->isSubClassOf("SDNode"))
return CDP.getSDNodeInfo(Operator).getNumResults();
if (Operator->isSubClassOf("PatFrags")) {
// If we've already parsed this pattern fragment, get it. Otherwise, handle
// the forward reference case where one pattern fragment references another
// before it is processed.
if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
// The number of results of a fragment with alternative records is the
// maximum number of results across all alternatives.
unsigned NumResults = 0;
for (auto T : PFRec->getTrees())
NumResults = std::max(NumResults, T->getNumTypes());
return NumResults;
}
ListInit *LI = Operator->getValueAsListInit("Fragments");
assert(LI && "Invalid Fragment");
unsigned NumResults = 0;
for (Init *I : LI->getValues()) {
Record *Op = nullptr;
if (DagInit *Dag = dyn_cast<DagInit>(I))
if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
Op = DI->getDef();
assert(Op && "Invalid Fragment");
NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
}
return NumResults;
}
if (Operator->isSubClassOf("Instruction")) {
CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
// Subtract any defaulted outputs.
for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
Record *OperandNode = InstInfo.Operands[i].Rec;
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
!CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
--NumDefsToAdd;
}
// Add on one implicit def if it has a resolvable type.
if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
++NumDefsToAdd;
return NumDefsToAdd;
}
if (Operator->isSubClassOf("SDNodeXForm"))
return 1; // FIXME: Generalize SDNodeXForm
if (Operator->isSubClassOf("ValueType"))
return 1; // A type-cast of one result.
if (Operator->isSubClassOf("ComplexPattern"))
return 1;
errs() << *Operator;
PrintFatalError("Unhandled node in GetNumNodeResults");
}
void TreePatternNode::print(raw_ostream &OS) const {
if (isLeaf())
OS << *getLeafValue();
else
OS << '(' << getOperator()->getName();
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
OS << ':';
getExtType(i).writeToStream(OS);
}
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
for (const TreePredicateCall &Pred : PredicateCalls) {
OS << "<<P:";
if (Pred.Scope)
OS << Pred.Scope << ":";
OS << Pred.Fn.getFnName() << ">>";
}
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
for (const ScopedName &Name : NamesAsPredicateArg)
OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
}
void TreePatternNode::dump() const {
print(errs());
}
/// isIsomorphicTo - Return true if this node is recursively
/// isomorphic to the specified node. For this comparison, the node's
/// entire state is considered. The assigned name is ignored, since
/// nodes with differing names are considered isomorphic. However, if
/// the assigned name is present in the dependent variable set, then
/// the assigned name is considered significant and the node is
/// isomorphic if the names match.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
const MultipleUseVarSet &DepVars) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateCalls() != N->getPredicateCalls() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
return ((DI->getDef() == NDI->getDef())
&& (DepVars.find(getName()) == DepVars.end()
|| getName() == N->getName()));
}
}
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNodePtr TreePatternNode::clone() const {
TreePatternNodePtr New;
if (isLeaf()) {
New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
} else {
std::vector<TreePatternNodePtr> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
getNumTypes());
}
New->setName(getName());
New->setNamesAsPredicateArg(getNamesAsPredicateArg());
New->Types = Types;
New->setPredicateCalls(getPredicateCalls());
New->setTransformFn(getTransformFn());
return New;
}
/// RemoveAllTypes - Recursively strip all the types of this tree.
void TreePatternNode::RemoveAllTypes() {
// Reset to unknown type.
std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
getChild(i)->RemoveAllTypes();
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::SubstituteFormalArguments(
std::map<std::string, TreePatternNodePtr> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
// Note that, when substituting into an output pattern, Val might be an
// UnsetInit.
if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
cast<DefInit>(Val)->getDef()->getName() == "node")) {
// We found a use of a formal argument, replace it with its value.
TreePatternNodePtr NewChild = ArgMap[Child->getName()];
assert(NewChild && "Couldn't find formal argument!");
assert((Child->getPredicateCalls().empty() ||
NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
"Non-empty child predicate clobbered!");
setChild(i, std::move(NewChild));
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, return the set of inlined versions (this can be more than
/// one if a PatFrags record has multiple alternatives).
void TreePatternNode::InlinePatternFragments(
TreePatternNodePtr T, TreePattern &TP,
std::vector<TreePatternNodePtr> &OutAlternatives) {
if (TP.hasError())
return;
if (isLeaf()) {
OutAlternatives.push_back(T); // nothing to do.
return;
}
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrags")) {
if (getNumChildren() == 0) {
OutAlternatives.push_back(T);
return;
}
// Recursively inline children nodes.
std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
ChildAlternatives.resize(getNumChildren());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNodePtr Child = getChildShared(i);
Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
// If there are no alternatives for any child, there are no
// alternatives for this expression as whole.
if (ChildAlternatives[i].empty())
return;
for (auto NewChild : ChildAlternatives[i])
assert((Child->getPredicateCalls().empty() ||
NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
"Non-empty child predicate clobbered!");
}
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildAlternatives.size());
bool NotDone;
do {
// Create the variant and add it to the output list.
std::vector<TreePatternNodePtr> NewChildren;
for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
TreePatternNodePtr R = std::make_shared<TreePatternNode>(
getOperator(), std::move(NewChildren), getNumTypes());
// Copy over properties.
R->setName(getName());
R->setNamesAsPredicateArg(getNamesAsPredicateArg());
R->setPredicateCalls(getPredicateCalls());
R->setTransformFn(getTransformFn());
for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
R->setType(i, getExtType(i));
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
R->setResultIndex(i, getResultIndex(i));
// Register alternative.
OutAlternatives.push_back(R);
// Increment indices to the next permutation by incrementing the
// indices from last index backward, e.g., generate the sequence
// [0, 0], [0, 1], [1, 0], [1, 1].
int IdxsIdx;
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
Idxs[IdxsIdx] = 0;
else
break;
}
NotDone = (IdxsIdx >= 0);
} while (NotDone);
return;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size()) {
TP.error("'" + Op->getName() + "' fragment requires " +
Twine(Frag->getNumArgs()) + " operands!");
return;
}
TreePredicateFn PredFn(Frag);
unsigned Scope = 0;
if (TreePredicateFn(Frag).usesOperands())
Scope = TP.getDAGPatterns().allocateScope();
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNodePtr> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
TreePatternNodePtr Child = getChildShared(i);
if (Scope != 0) {
Child = Child->clone();
Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
}
ArgMap[Frag->getArgName(i)] = Child;
}
// Loop over all fragment alternatives.
for (auto Alternative : Frag->getTrees()) {
TreePatternNodePtr FragTree = Alternative->clone();
if (!PredFn.isAlwaysTrue())
FragTree->addPredicateCall(PredFn, Scope);
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs())
FragTree->SubstituteFormalArguments(ArgMap);
// Transfer types. Note that the resolved alternative may have fewer
// (but not more) results than the PatFrags node.
FragTree->setName(getName());
for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
FragTree->UpdateNodeType(i, getExtType(i), TP);
// Transfer in the old predicates.
for (const TreePredicateCall &Pred : getPredicateCalls())
FragTree->addPredicateCall(Pred);
// The fragment we inlined could have recursive inlining that is needed. See
// if there are any pattern fragments in it and inline them as needed.
FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
}
}
/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it. This will infer the type of register
/// references from the register file information, for example.
///
/// When Unnamed is set, return the type of a DAG operand with no name, such as
/// the F8RC register class argument in:
///
/// (COPY_TO_REGCLASS GPR:$src, F8RC)
///
/// When Unnamed is false, return the type of a named DAG operand such as the
/// GPR:$src operand above.
///
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
bool NotRegisters,
bool Unnamed,
TreePattern &TP) {
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
// Check to see if this is a register operand.
if (R->isSubClassOf("RegisterOperand")) {
assert(ResNo == 0 && "Regoperand ref only has one result!");
if (NotRegisters)
return TypeSetByHwMode(); // Unknown.
Record *RegClass = R->getValueAsDef("RegClass");
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
}
// Check to see if this is a register or a register class.
if (R->isSubClassOf("RegisterClass")) {
assert(ResNo == 0 && "Regclass ref only has one result!");
// An unnamed register class represents itself as an i32 immediate, for
// example on a COPY_TO_REGCLASS instruction.
if (Unnamed)
return TypeSetByHwMode(MVT::i32);
// In a named operand, the register class provides the possible set of
// types.
if (NotRegisters)
return TypeSetByHwMode(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
}
if (R->isSubClassOf("PatFrags")) {
assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
// Pattern fragment types will be resolved when they are inlined.
return TypeSetByHwMode(); // Unknown.
}
if (R->isSubClassOf("Register")) {
assert(ResNo == 0 && "Registers only produce one result!");
if (NotRegisters)
return TypeSetByHwMode(); // Unknown.
const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
return TypeSetByHwMode(T.getRegisterVTs(R));
}
if (R->isSubClassOf("SubRegIndex")) {
assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
return TypeSetByHwMode(MVT::i32);
}
if (R->isSubClassOf("ValueType")) {
assert(ResNo == 0 && "This node only has one result!");
// An unnamed VTSDNode represents itself as an MVT::Other immediate.
//
// (sext_inreg GPR:$src, i16)
// ~~~
if (Unnamed)
return TypeSetByHwMode(MVT::Other);
// With a name, the ValueType simply provides the type of the named
// variable.
//
// (sext_inreg i32:$src, i16)
// ~~~~~~~~
if (NotRegisters)
return TypeSetByHwMode(); // Unknown.
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
}
if (R->isSubClassOf("CondCode")) {
assert(ResNo == 0 && "This node only has one result!");
// Using a CondCodeSDNode.
return TypeSetByHwMode(MVT::Other);
}
if (R->isSubClassOf("ComplexPattern")) {
assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
if (NotRegisters)
return TypeSetByHwMode(); // Unknown.
return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
}
if (R->isSubClassOf("PointerLikeRegClass")) {
assert(ResNo == 0 && "Regclass can only have one result!");
TypeSetByHwMode VTS(MVT::iPTR);
TP.getInfer().expandOverloads(VTS);
return VTS;
}
if (R->getName() == "node" || R->getName() == "srcvalue" ||
R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
// Placeholder.
return TypeSetByHwMode(); // Unknown.
}
if (R->isSubClassOf("Operand")) {
const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
Record *T = R->getValueAsDef("Type");
return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
return TypeSetByHwMode(MVT::Other);
}
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
return nullptr;
unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
return &CDP.getIntrinsicInfo(IID);
}
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
/// return the ComplexPattern information, otherwise return null.
const ComplexPattern *
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
Record *Rec;
if (isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
if (!DI)
return nullptr;
Rec = DI->getDef();
} else
Rec = getOperator();
if (!Rec->isSubClassOf("ComplexPattern"))
return nullptr;
return &CGP.getComplexPattern(Rec);
}
unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
// A ComplexPattern specifically declares how many results it fills in.
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->getNumOperands();
// If MIOperandInfo is specified, that gives the count.
if (isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(getLeafValue());
if (DI && DI->getDef()->isSubClassOf("Operand")) {
DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
if (MIOps->getNumArgs())
return MIOps->getNumArgs();
}
}
// Otherwise there is just one result.
return 1;
}
/// NodeHasProperty - Return true if this node has the specified property.
bool TreePatternNode::NodeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (isLeaf()) {
if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
return CP->hasProperty(Property);
return false;
}
if (Property != SDNPHasChain) {
// The chain proprety is already present on the different intrinsic node
// types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
// on the intrinsic. Anything else is specific to the individual intrinsic.
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
return Int->hasProperty(Property);
}
if (!Operator->isSubClassOf("SDPatternOperator"))
return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
/// TreeHasProperty - Return true if any node in this tree has the specified
/// property.
bool TreePatternNode::TreeHasProperty(SDNP Property,
const CodeGenDAGPatterns &CGP) const {
if (NodeHasProperty(Property, CGP))
return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->TreeHasProperty(Property, CGP))
return true;
return false;
}
/// isCommutativeIntrinsic - Return true if the node corresponds to a
/// commutative intrinsic.
bool
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
return Int->isCommutative;
return false;
}
static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
if (!N->isLeaf())
return N->getOperator()->isSubClassOf(Class);
DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
if (DI && DI->getDef()->isSubClassOf(Class))
return true;
return false;
}
static void emitTooManyOperandsError(TreePattern &TP,
StringRef InstName,
unsigned Expected,
unsigned Actual) {
TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
" operands but expected only " + Twine(Expected) + "!");
}
static void emitTooFewOperandsError(TreePattern &TP,
StringRef InstName,
unsigned Actual) {
TP.error("Instruction '" + InstName +
"' expects more than the provided " + Twine(Actual) + " operands!");
}
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, flag an error.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
if (TP.hasError())
return false;
CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
if (isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
bool MadeChange = false;
for (unsigned i = 0, e = Types.size(); i != e; ++i)
MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
NotRegisters,
!hasName(), TP), TP);
return MadeChange;
}
if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
assert(Types.size() == 1 && "Invalid IntInit");
// Int inits are always integers. :)
bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
if (!TP.getInfer().isConcrete(Types[0], false))
return MadeChange;
ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
for (auto &P : VVT) {
MVT::SimpleValueType VT = P.second.SimpleTy;
if (VT == MVT::iPTR || VT == MVT::iPTRAny)
continue;
unsigned Size = MVT(VT).getSizeInBits();
// Make sure that the value is representable for this type.
if (Size >= 32)
continue;
// Check that the value doesn't use more bits than we have. It must
// either be a sign- or zero-extended equivalent of the original.
int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
SignBitAndAbove == 1)
continue;
TP.error("Integer value '" + Twine(II->getValue()) +
"' is out of range for type '" + getEnumName(VT) + "'!");
break;
}
return MadeChange;
}
return false;
}
if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
bool MadeChange = false;
// Apply the result type to the node.
unsigned NumRetVTs = Int->IS.RetVTs.size();
unsigned NumParamVTs = Int->IS.ParamVTs.size();
for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
if (getNumChildren() != NumParamVTs + 1) {
TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
" operands, not " + Twine(getNumChildren() - 1) + " operands!");
return false;
}
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
}
return MadeChange;
}
if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
// Check that the number of operands is sane. Negative operands -> varargs.
if (NI.getNumOperands() >= 0 &&
getNumChildren() != (unsigned)NI.getNumOperands()) {
TP.error(getOperator()->getName() + " node requires exactly " +
Twine(NI.getNumOperands()) + " operands!");
return false;
}
bool MadeChange = false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= NI.ApplyTypeConstraints(this, TP);
return MadeChange;
}
if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = CDP.getInstruction(getOperator());
CodeGenInstruction &InstInfo =
CDP.getTargetInfo().getInstruction(getOperator());
bool MadeChange = false;
// Apply the result types to the node, these come from the things in the
// (outs) list of the instruction.
unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
Inst.getNumResults());
for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
// If the instruction has implicit defs, we apply the first one as a result.
// FIXME: This sucks, it should apply all implicit defs.
if (!InstInfo.ImplicitDefs.empty()) {
unsigned ResNo = NumResultsToAdd;
// FIXME: Generalize to multiple possible types and multiple possible
// ImplicitDefs.
MVT::SimpleValueType VT =
InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
if (VT != MVT::Other)
MadeChange |= UpdateNodeType(ResNo, VT, TP);
}
// If this is an INSERT_SUBREG, constrain the source and destination VTs to
// be the same.
if (getOperator()->getName() == "INSERT_SUBREG") {
assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
} else if (getOperator()->getName() == "REG_SEQUENCE") {
// We need to do extra, custom typechecking for REG_SEQUENCE since it is
// variadic.
unsigned NChild = getNumChildren();
if (NChild < 3) {
TP.error("REG_SEQUENCE requires at least 3 operands!");
return false;
}
if (NChild % 2 == 0) {
TP.error("REG_SEQUENCE requires an odd number of operands!");
return false;
}
if (!isOperandClass(getChild(0), "RegisterClass")) {
TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
return false;
}
for (unsigned I = 1; I < NChild; I += 2) {
TreePatternNode *SubIdxChild = getChild(I + 1);
if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
Twine(I + 1) + "!");
return false;
}
}
}
unsigned NumResults = Inst.getNumResults();
unsigned NumFixedOperands = InstInfo.Operands.size();
// If one or more operands with a default value appear at the end of the
// formal operand list for an instruction, we allow them to be overridden
// by optional operands provided in the pattern.
//
// But if an operand B without a default appears at any point after an
// operand A with a default, then we don't allow A to be overridden,
// because there would be no way to specify whether the next operand in
// the pattern was intended to override A or skip it.
unsigned NonOverridableOperands = NumFixedOperands;
while (NonOverridableOperands > NumResults &&
CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
--NonOverridableOperands;
unsigned ChildNo = 0;
assert(NumResults <= NumFixedOperands);
for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
Record *OperandNode = InstInfo.Operands[i].Rec;
// If the operand has a default value, do we use it? We must use the
// default if we've run out of children of the pattern DAG to consume,
// or if the operand is followed by a non-defaulted one.
if (CDP.operandHasDefault(OperandNode) &&
(i < NonOverridableOperands || ChildNo >= getNumChildren()))
continue;
// If we have run out of child nodes and there _isn't_ a default
// value we can use for the next operand, give an error.
if (ChildNo >= getNumChildren()) {
emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
return false;
}
TreePatternNode *Child = getChild(ChildNo++);
unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
// If the operand has sub-operands, they may be provided by distinct
// child patterns, so attempt to match each sub-operand separately.
if (OperandNode->isSubClassOf("Operand")) {
DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
// But don't do that if the whole operand is being provided by
// a single ComplexPattern-related Operand.
if (Child->getNumMIResults(CDP) < NumArgs) {
// Match first sub-operand against the child we already have.
Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
MadeChange |=
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
// And the remaining sub-operands against subsequent children.
for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
if (ChildNo >= getNumChildren()) {
emitTooFewOperandsError(TP, getOperator()->getName(),
getNumChildren());
return false;
}
Child = getChild(ChildNo++);
SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
MadeChange |=
Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
}
continue;
}
}
}
// If we didn't match by pieces above, attempt to match the whole
// operand now.
MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
}
if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
emitTooManyOperandsError(TP, getOperator()->getName(),
ChildNo, getNumChildren());
return false;
}
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
if (getOperator()->isSubClassOf("ComplexPattern")) {
bool MadeChange = false;
for (unsigned i = 0; i < getNumChildren(); ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand.
if (getNumChildren() != 1) {
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
return false;
}
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
return MadeChange;
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
return true;
if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a sanity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason,
const CodeGenDAGPatterns &CDP) {
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, CDP))
return false;
// If this is an intrinsic, handle cases that would make it not match. For
// example, if an operand is required to be an immediate.
if (getOperator()->isSubClassOf("Intrinsic")) {
// TODO:
return true;
}
if (getOperator()->isSubClassOf("ComplexPattern"))
return true;
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node, unless the RHS also is.
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
if (OnlyOnRHSOfCommutative(getChild(i))) {
Reason="Immediate value must be on the RHS of commutative operators!";
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
isInputPattern(isInput), HasError(false),
Infer(*this) {
for (Init *I : RawPat->getValues())
Trees.push_back(ParseTreePattern(I, ""));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
isInputPattern(isInput), HasError(false),
Infer(*this) {
Trees.push_back(ParseTreePattern(Pat, ""));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
CodeGenDAGPatterns &cdp)
: TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
Infer(*this) {
Trees.push_back(Pat);
}
void TreePattern::error(const Twine &Msg) {
if (HasError)
return;
dump();
PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
HasError = true;
}
void TreePattern::ComputeNamedNodes() {
for (TreePatternNodePtr &Tree : Trees)
ComputeNamedNodes(Tree.get());
}
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
if (!N->getName().empty())
NamedNodes[N->getName()].push_back(N);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
ComputeNamedNodes(N->getChild(i));
}
TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
StringRef OpName) {
if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
Record *R = DI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode of its own. For example:
/// (foo GPR, imm) -> (foo GPR, (imm))
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
return ParseTreePattern(
DagInit::get(DI, nullptr,
std::vector<std::pair<Init*, StringInit*> >()),
OpName);
// Input argument?
TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
if (R->getName() == "node" && !OpName.empty()) {
if (OpName.empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(std::string(OpName));
}
Res->setName(OpName);
return Res;
}
// ?:$name or just $name.
if (isa<UnsetInit>(TheInit)) {
if (OpName.empty())
error("'?' argument requires a name to match with operand list");
TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
Args.push_back(std::string(OpName));
Res->setName(OpName);
return Res;
}
if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
if (!OpName.empty())
error("Constant int or bit argument should not have a name!");
if (isa<BitInit>(TheInit))
TheInit = TheInit->convertInitializerTo(IntRecTy::get());
return std::make_shared<TreePatternNode>(TheInit, 1);
}
if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(IntRecTy::get());
if (!II || !isa<IntInit>(II))
error("Bits value must be constants!");
return ParseTreePattern(II, OpName);
}
DagInit *Dag = dyn_cast<DagInit>(TheInit);
if (!Dag) {
TheInit->print(errs());
error("Pattern has unexpected init kind!");
}
DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
TreePatternNodePtr New =
ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
// Apply the type cast.
assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
if (!OpName.empty())
error("ValueType cast should not have a name!");
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrags") &&
!Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
!Operator->isSubClassOf("ComplexPattern") &&
Operator->getName() != "set" &&
Operator->getName() != "implicit")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern) {
if (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm"))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
} else {
if (Operator->isSubClassOf("Intrinsic"))
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
if (Operator->isSubClassOf("SDNode") &&
Operator->getName() != "imm" &&
Operator->getName() != "timm" &&
Operator->getName() != "fpimm" &&
Operator->getName() != "tglobaltlsaddr" &&
Operator->getName() != "tconstpool" &&
Operator->getName() != "tjumptable" &&
Operator->getName() != "tframeindex" &&
Operator->getName() != "texternalsym" &&
Operator->getName() != "tblockaddress" &&
Operator->getName() != "tglobaladdr" &&
Operator->getName() != "bb" &&
Operator->getName() != "vt" &&
Operator->getName() != "mcsym")
error("Cannot use '" + Operator->getName() + "' in an output pattern!");
}
std::vector<TreePatternNodePtr> Children;
// Parse all the operands.
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
// Get the actual number of results before Operator is converted to an intrinsic
// node (which is hard-coded to have either zero or one result).
unsigned NumResults = GetNumNodeResults(Operator, CDP);
// If the operator is an intrinsic, then this is just syntactic sugar for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
// convert the intrinsic name to a number.
if (Operator->isSubClassOf("Intrinsic")) {
const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
if (Int.IS.RetVTs.empty())
Operator = getDAGPatterns().get_intrinsic_void_sdnode();
else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
// Has side-effects, requires chain.
Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
else // Otherwise, no chain.
Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
Children.insert(Children.begin(),
std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
}
if (Operator->isSubClassOf("ComplexPattern")) {
for (unsigned i = 0; i < Children.size(); ++i) {
TreePatternNodePtr Child = Children[i];
if (Child->getName().empty())
error("All arguments to a ComplexPattern must be named");
// Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
// and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
// neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
auto OperandId = std::make_pair(Operator, i);
auto PrevOp = ComplexPatternOperands.find(Child->getName());
if (PrevOp != ComplexPatternOperands.end()) {
if (PrevOp->getValue() != OperandId)
error("All ComplexPattern operands must appear consistently: "
"in the same order in just one ComplexPattern instance.");
} else
ComplexPatternOperands[Child->getName()] = OperandId;
}
}
TreePatternNodePtr Result =
std::make_shared<TreePatternNode>(Operator, std::move(Children),
NumResults);
Result->setName(OpName);
if (Dag->getName()) {
assert(Result->getName().empty());
Result->setName(Dag->getNameStr());
}
return Result;
}
/// SimplifyTree - See if we can simplify this tree to eliminate something that
/// will never match in favor of something obvious that will. This is here
/// strictly as a convenience to target authors because it allows them to write
/// more type generic things and have useless type casts fold away.
///
/// This returns true if any change is made.
static bool SimplifyTree(TreePatternNodePtr &N) {
if (N->isLeaf())
return false;
// If we have a bitconvert with a resolved type and if the source and
// destination types are the same, then the bitconvert is useless, remove it.
//
// We make an exception if the types are completely empty. This can come up
// when the pattern being simplified is in the Fragments list of a PatFrags,
// so that the operand is just an untyped "node". In that situation we leave
// bitconverts unsimplified, and simplify them later once the fragment is
// expanded into its true context.
if (N->getOperator()->getName() == "bitconvert" &&
N->getExtType(0).isValueTypeByHwMode(false) &&
!N->getExtType(0).empty() &&
N->getExtType(0) == N->getChild(0)->getExtType(0) &&
N->getName().empty()) {
N = N->getChildShared(0);
SimplifyTree(N);
return true;
}
// Walk all children.
bool MadeChange = false;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNodePtr Child = N->getChildShared(i);
MadeChange |= SimplifyTree(Child);
N->setChild(i, std::move(Child));
}
return MadeChange;
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are inferred, false
/// otherwise. Flags an error if a type contradiction is found.
bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
if (NamedNodes.empty())
ComputeNamedNodes();
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (TreePatternNodePtr &Tree : Trees) {
MadeChange |= Tree->ApplyTypeConstraints(*this, false);
MadeChange |= SimplifyTree(Tree);
}
// If there are constraints on our named nodes, apply them.
for (auto &Entry : NamedNodes) {
SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
// If we have input named node types, propagate their types to the named
// values here.
if (InNamedTypes) {
if (!InNamedTypes->count(Entry.getKey())) {
error("Node '" + std::string(Entry.getKey()) +
"' in output pattern but not input pattern");
return true;
}
const SmallVectorImpl<TreePatternNode*> &InNodes =
InNamedTypes->find(Entry.getKey())->second;
// The input types should be fully resolved by now.
for (TreePatternNode *Node : Nodes) {
// If this node is a register class, and it is the root of the pattern
// then we're mapping something onto an input register. We allow
// changing the type of the input register in this case. This allows
// us to match things like:
// def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
if (Node == Trees[0].get() && Node->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
continue;
}
assert(Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
*this);
}
}
// If there are multiple nodes with the same name, they must all have the
// same type.
if (Entry.second.size() > 1) {
for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
"FIXME: cannot name multiple result nodes yet");
MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
}
}
}
}
bool HasUnresolvedTypes = false;
for (const TreePatternNodePtr &Tree : Trees)
HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
return !HasUnresolvedTypes;
}
void TreePattern::print(raw_ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (const TreePatternNodePtr &Tree : Trees) {
OS << "\t";
Tree->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
// CodeGenDAGPatterns implementation
//
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
PatternRewriterFn PatternRewriter)
: Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
PatternRewriter(PatternRewriter) {
Intrinsics = CodeGenIntrinsicTable(Records);
ParseNodeInfo();
ParseNodeTransforms();
ParseComplexPatterns();
ParsePatternFragments();
ParseDefaultOperands();
ParseInstructions();
ParsePatternFragments(/*OutFrags*/true);
ParsePatterns();
// Break patterns with parameterized types into a series of patterns,
// where each one has a fixed type and is predicated on the conditions
// of the associated HW mode.
ExpandHwModeBasedTypes();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
// Infer instruction flags. For example, we can detect loads,
// stores, and side effects in many cases by examining an
// instruction's pattern.
InferInstructionFlags();
// Verify that instruction flags match the patterns.
VerifyInstructionFlags();
}
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
if (!N || !N->isSubClassOf("SDNode"))
PrintFatalError("Error getting SDNode '" + Name + "'!");
return N;
}
// Parse all of the SDNode definitions for the target, populating SDNodes.
void CodeGenDAGPatterns::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
while (!Nodes.empty()) {
Record *R = Nodes.back();
SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
Nodes.pop_back();
}
// Get the builtin intrinsic nodes.
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void CodeGenDAGPatterns::ParseNodeTransforms() {
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
StringRef Code = XFormNode->getValueAsString("XFormFunction");
SDNodeXForms.insert(
std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
Xforms.pop_back();
}
}
void CodeGenDAGPatterns::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
// First step, parse all of the fragments.
for (Record *Frag : Fragments) {
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
continue;
ListInit *LI = Frag->getValueAsListInit("Fragments");
TreePattern *P =
(PatternFragments[Frag] = std::make_unique<TreePattern>(
Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
*this)).get();
// Validate the argument list, converting it to set, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
// Copy the args so we can take StringRefs to them.
auto ArgsCopy = Args;
SmallDenseSet<StringRef, 4> OperandsSet;
OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
if (OperandsSet.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Frag->getValueAsDag("Operands");
DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
// Special cases: ops == outs == ins. Different names are used to
// improve readability.
if (!OpsOp ||
(OpsOp->getDef()->getName() != "ops" &&
OpsOp->getDef()->getName() != "outs" &&
OpsOp->getDef()->getName() != "ins"))
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!isa<DefInit>(OpsList->getArg(j)) ||
cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (!OpsList->getArgName(j))
P->error("Operands list should have names for each operand!");
StringRef ArgNameStr = OpsList->getArgNameStr(j);
if (!OperandsSet.count(ArgNameStr))
P->error("'" + ArgNameStr +
"' does not occur in pattern or was multiply specified!");
OperandsSet.erase(ArgNameStr);
Args.push_back(std::string(ArgNameStr));
}
if (!OperandsSet.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsSet.begin() + "'!");
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Frag->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
for (auto T : P->getTrees())
T->setTransformFn(Transform);
}
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (Record *Frag : Fragments) {
if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
continue;
TreePattern &ThePat = *PatternFragments[Frag];
ThePat.InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern. Also, don't
// validate type sets; validation may cause spurious failures e.g. if a
// fragment needs floating-point types but the current target does not have
// any (this is only an error if that fragment is ever used!).
{
TypeInfer::SuppressValidation SV(ThePat.getInfer());
ThePat.InferAllTypes();
ThePat.resetError();
}
// If debugging, print out the pattern fragment result.
LLVM_DEBUG(ThePat.dump());
}
}
void CodeGenDAGPatterns::ParseDefaultOperands() {
std::vector<Record*> DefaultOps;
DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
// Find some SDNode.
assert(!SDNodes.empty() && "No SDNodes parsed?");
Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
// Clone the DefaultInfo dag node, changing the operator from 'ops' to
// SomeSDnode so that we can parse this.
std::vector<std::pair<Init*, StringInit*> > Ops;
for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
DefaultInfo->getArgName(op)));
DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
// Create a TreePattern to parse this.
TreePattern P(DefaultOps[i], DI, false, *this);
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
// Copy the operands over into a DAGDefaultOperand.
DAGDefaultOperand DefaultOpInfo;
const TreePatternNodePtr &T = P.getTree(0);
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
TreePatternNodePtr TPN = T->getChildShared(op);
while (TPN->ApplyTypeConstraints(P, false))
/* Resolve all types */;
if (TPN->ContainsUnresolvedType(P)) {
PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
DefaultOps[i]->getName() +
"' doesn't have a concrete type!");
}
DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
}
// Insert it into the DefaultOperands map so we can find it later.
DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
std::map<std::string, TreePatternNodePtr> &InstInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
DI->getDef()->isSubClassOf("RegisterOperand")))
I.error("Input " + DI->getDef()->getName() + " must be named!");
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
if (!DI)
I.error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
return true;
}
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I.error("All $" + Pat->getName() + " inputs must agree with each other");
// Ensure that the types can agree as well.
Slot->UpdateNodeType(0, Pat->getExtType(0), I);
Pat->UpdateNodeType(0, Slot->getExtType(0), I);
if (Slot->getExtTypes() != Pat->getExtTypes())
I.error("All $" + Pat->getName() + " inputs must agree with each other");
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
TreePattern &I, TreePatternNodePtr Pat,
std::map<std::string, TreePatternNodePtr> &InstInputs,
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
&InstResults,
std::vector<Record *> &InstImpResults) {
// The instruction pattern still has unresolved fragments. For *named*
// nodes we must resolve those here. This may not result in multiple
// alternatives.
if (!Pat->getName().empty()) {
TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
SrcPattern.InlinePatternFragments();
SrcPattern.InferAllTypes();
Pat = SrcPattern.getOnlyTree();
}
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I.error("Cannot specify a transform function for a non-input value!");
return;
}
if (Pat->getOperator()->getName() == "implicit") {
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I.error("implicitly defined value should be a register!");
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
if (!Val || !Val->getDef()->isSubClassOf("Register"))
I.error("implicitly defined value should be a register!");
InstImpResults.push_back(Val->getDef());
}
return;
}
if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getNumTypes() == 0)
I.error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
InstResults, InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = HandleUse(I, Pat, InstInputs);
if (!isUse && Pat->getTransformFn())
I.error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I.error("set requires operands!");
if (Pat->getTransformFn())
I.error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumDests = Pat->getNumChildren()-1;
for (unsigned i = 0; i != NumDests; ++i) {
TreePatternNodePtr Dest = Pat->getChildShared(i);
// For set destinations we also must resolve fragments here.
TreePattern DestPattern(I.getRecord(), Dest, false, *this);
DestPattern.InlinePatternFragments();
DestPattern.InferAllTypes();
Dest = DestPattern.getOnlyTree();
if (!Dest->isLeaf())
I.error("set destination should be a register!");
DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
if (!Val) {
I.error("set destination should be a register!");
continue;
}
if (Val->getDef()->isSubClassOf("RegisterClass") ||
Val->getDef()->isSubClassOf("ValueType") ||
Val->getDef()->isSubClassOf("RegisterOperand") ||
Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
if (Dest->getName().empty())
I.error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I.error("cannot set '" + Dest->getName() + "' multiple times");
InstResults[Dest->getName()] = Dest;
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I.error("set destination should be a register!");
}
}
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
InstResults, InstImpResults);
}
//===----------------------------------------------------------------------===//
// Instruction Analysis
//===----------------------------------------------------------------------===//
class InstAnalyzer {
const CodeGenDAGPatterns &CDP;
public:
bool hasSideEffects;
bool mayStore;
bool mayLoad;
bool isBitcast;
bool isVariadic;
bool hasChain;
InstAnalyzer(const CodeGenDAGPatterns &cdp)
: CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
isBitcast(false), isVariadic(false), hasChain(false) {}
void Analyze(const PatternToMatch &Pat) {
const TreePatternNode *N = Pat.getSrcPattern();
AnalyzeNode(N);
// These properties are detected only on the root node.
isBitcast = IsNodeBitcast(N);
}
private:
bool IsNodeBitcast(const TreePatternNode *N) const {
if (hasSideEffects || mayLoad || mayStore || isVariadic)
return false;
if (N->isLeaf())
return false;
if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
return false;
const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
return false;
return OpInfo.getEnumName() == "ISD::BITCAST";
}
public:
void AnalyzeNode(const TreePatternNode *N) {
if (N->isLeaf()) {
if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
Record *LeafRec = DI->getDef();
// Handle ComplexPattern leaves.
if (LeafRec->isSubClassOf("ComplexPattern")) {
const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
if (CP.hasProperty(SDNPMayStore)) mayStore = true;
if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
}
}
return;
}
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
AnalyzeNode(N->getChild(i));
// Notice properties of the node.
if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
// If this is an intrinsic, analyze it.
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
mayLoad = true;// These may load memory.
if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
IntInfo->hasSideEffects)
// ReadWriteMem intrinsics can have other strange effects.
hasSideEffects = true;
}
}
};
static bool InferFromPattern(CodeGenInstruction &InstInfo,
const InstAnalyzer &PatInfo,
Record *PatDef) {
bool Error = false;
// Remember where InstInfo got its flags.
if (InstInfo.hasUndefFlags())
InstInfo.InferredFrom = PatDef;
// Check explicitly set flags for consistency.
if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
!InstInfo.hasSideEffects_Unset) {
// Allow explicitly setting hasSideEffects = 1 on instructions, even when
// the pattern has no side effects. That could be useful for div/rem
// instructions that may trap.
if (!InstInfo.hasSideEffects) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
Twine(InstInfo.hasSideEffects));
}
}
if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
Twine(InstInfo.mayStore));
}
if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
// Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
// Some targets translate immediates to loads.
if (!InstInfo.mayLoad) {
Error = true;
PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
Twine(InstInfo.mayLoad));
}
}
// Transfer inferred flags.
InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
InstInfo.mayStore |= PatInfo.mayStore;
InstInfo.mayLoad |= PatInfo.mayLoad;
// These flags are silently added without any verification.
// FIXME: To match historical behavior of TableGen, for now add those flags
// only when we're inferring from the primary instruction pattern.
if (PatDef->isSubClassOf("Instruction")) {
InstInfo.isBitcast |= PatInfo.isBitcast;
InstInfo.hasChain |= PatInfo.hasChain;
InstInfo.hasChain_Inferred = true;
}
// Don't infer isVariadic. This flag means something different on SDNodes and
// instructions. For example, a CALL SDNode is variadic because it has the
// call arguments as operands, but a CALL instruction is not variadic - it
// has argument registers as implicit, not explicit uses.
return Error;
}
/// hasNullFragReference - Return true if the DAG has any reference to the
/// null_frag operator.
static bool hasNullFragReference(DagInit *DI) {
DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
if (!OpDef) return false;
Record *Operator = OpDef->getDef();
// If this is the null fragment, return true.
if (Operator->getName() == "null_frag") return true;
// If any of the arguments reference the null fragment, return true.
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
if (Arg && hasNullFragReference(Arg))
return true;
}
return false;
}
/// hasNullFragReference - Return true if any DAG in the list references
/// the null_frag operator.
static bool hasNullFragReference(ListInit *LI) {
for (Init *I : LI->getValues()) {
DagInit *DI = dyn_cast<DagInit>(I);
assert(DI && "non-dag in an instruction Pattern list?!");
if (hasNullFragReference(DI))
return true;
}
return false;
}
/// Get all the instructions in a tree.
static void
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
if (Tree->isLeaf())
return;
if (Tree->getOperator()->isSubClassOf("Instruction"))
Instrs.push_back(Tree->getOperator());
for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
getInstructionsInTree(Tree->getChild(i), Instrs);
}
/// Check the class of a pattern leaf node against the instruction operand it
/// represents.
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
Record *Leaf) {
if (OI.Rec == Leaf)
return true;
// Allow direct value types to be used in instruction set patterns.
// The type will be checked later.
if (Leaf->isSubClassOf("ValueType"))
return true;
// Patterns can also be ComplexPattern instances.
if (Leaf->isSubClassOf("ComplexPattern"))
return true;
return false;
}
void CodeGenDAGPatterns::parseInstructionPattern(
CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
// Parse the instruction.
TreePattern I(CGI.TheDef, Pat, true, *this);
// InstInputs - Keep track of all of the inputs of the instruction, along
// with the record they are declared as.
std::map<std::string, TreePatternNodePtr> InstInputs;
// InstResults - Keep track of all the virtual registers that are 'set'
// in the instruction, including what reg class they are.
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
InstResults;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
SmallString<32> TypesString;
for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
TypesString.clear();
TreePatternNodePtr Pat = I.getTree(j);
if (Pat->getNumTypes() != 0) {
raw_svector_ostream OS(TypesString);
for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
if (k > 0)
OS << ", ";
Pat->getExtType(k).writeToStream(OS);
}
I.error("Top-level forms in instruction pattern should have"
" void types, has types " +
OS.str());
}
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
// list for the instruction. This determines the order that operands are
// added to the machine instruction the node corresponds to.
unsigned NumResults = InstResults.size();
// Parse the operands list from the (ops) list, validating it.
assert(I.getArgList().empty() && "Args list should still be empty here!");
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
std::vector<unsigned> ResultIndices;
SmallVector<TreePatternNodePtr, 2> ResNodes;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.Operands.size()) {
const std::string &OpName =
std::find_if(InstResults.begin(), InstResults.end(),
[](const std::pair<std::string, TreePatternNodePtr> &P) {
return P.second;
})
->first;
I.error("'" + OpName + "' set but does not appear in operand list!");
}
const std::string &OpName = CGI.Operands[i].Name;
// Check that it exists in InstResults.
auto InstResultIter = InstResults.find(OpName);
if (InstResultIter == InstResults.end() || !InstResultIter->second)
I.error("Operand $" + OpName + " does not exist in operand list!");
TreePatternNodePtr RNode = InstResultIter->second;
Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
ResNodes.push_back(std::move(RNode));
if (!R)
I.error("Operand $" + OpName + " should be a set destination: all "
"outputs must occur before inputs in operand list!");
if (!checkOperandClass(CGI.Operands[i], R))
I.error("Operand $" + OpName + " class mismatch!");
// Remember the return type.
Results.push_back(CGI.Operands[i].Rec);
// Remember the result index.
ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
// Okay, this one checks out.
InstResultIter->second = nullptr;
}
// Loop over the inputs next.
std::vector<TreePatternNodePtr> ResultNodeOperands;
std::vector<Record*> Operands;
for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
CGIOperandList::OperandInfo &Op = CGI.Operands[i];
const std::string &OpName = Op.Name;
if (OpName.empty())
I.error("Operand #" + Twine(i) + " in operands list has no name!");
if (!InstInputs.count(OpName)) {
// If this is an operand with a DefaultOps set filled in, we can ignore
// this. When we codegen it, we will do so as always executed.
if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
// Does it have a non-empty DefaultOps field? If so, ignore this
// operand.
if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
continue;
}
I.error("Operand $" + OpName +
" does not appear in the instruction pattern");
}
TreePatternNodePtr InVal = InstInputs[OpName];
InstInputs.erase(OpName); // It occurred, remove from map.
if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
if (!checkOperandClass(Op, InRec))
I.error("Operand $" + OpName + "'s register class disagrees"
" between the operand and pattern");
}
Operands.push_back(Op.Rec);
// Construct the result for the dest-pattern operand list.
TreePatternNodePtr OpNode = InVal->clone();
// No predicate is useful on the result.
OpNode->clearPredicateCalls();
// Promote the xform function to be an explicit node if set.
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(nullptr);
std::vector<TreePatternNodePtr> Children;
Children.push_back(OpNode);
OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
OpNode->getNumTypes());
}
ResultNodeOperands.push_back(std::move(OpNode));
}
if (!InstInputs.empty())
I.error("Input operand $" + InstInputs.begin()->first +
" occurs in pattern but not in operands list!");
TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
I.getRecord(), std::move(ResultNodeOperands),
GetNumNodeResults(I.getRecord(), *this));
// Copy fully inferred output node types to instruction result pattern.
for (unsigned i = 0; i != NumResults; ++i) {
assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
ResultPattern->setType(i, ResNodes[i]->getExtType(0));
ResultPattern->setResultIndex(i, ResultIndices[i]);
}
// FIXME: Assume only the first tree is the pattern. The others are clobber
// nodes.
TreePatternNodePtr Pattern = I.getTree(0);
TreePatternNodePtr SrcPattern;
if (Pattern->getOperator()->getName() == "set") {
SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
} else{
// Not a set (store or something?)
SrcPattern = Pattern;
}
// Create and insert the instruction.
// FIXME: InstImpResults should not be part of DAGInstruction.
Record *R = I.getRecord();
DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
std::forward_as_tuple(Results, Operands, InstImpResults,
SrcPattern, ResultPattern));
LLVM_DEBUG(I.dump());
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved. This populates the Instructions list with fully
/// resolved instructions.
void CodeGenDAGPatterns::ParseInstructions() {
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
for (Record *Instr : Instrs) {
ListInit *LI = nullptr;
if (isa<ListInit>(Instr->getValueInit("Pattern")))
LI = Instr->getValueAsListInit("Pattern");
// If there is no pattern, only collect minimal information about the
// instruction for its operand list. We have to assume that there is one
// result, as we have no detailed info. A pattern which references the
// null_frag operator is as-if no pattern were specified. Normally this
// is from a multiclass expansion w/ a SDPatternOperator passed in as
// null_frag.
if (!LI || LI->empty() || hasNullFragReference(LI)) {
std::vector<Record*> Results;
std::vector<Record*> Operands;
CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
if (InstInfo.Operands.size() != 0) {
for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
Results.push_back(InstInfo.Operands[j].Rec);
// The rest are inputs.
for (unsigned j = InstInfo.Operands.NumDefs,
e = InstInfo.Operands.size(); j < e; ++j)
Operands.push_back(InstInfo.Operands[j].Rec);
}
// Create and insert the instruction.
std::vector<Record*> ImpResults;
Instructions.insert(std::make_pair(Instr,
DAGInstruction(Results, Operands, ImpResults)));
continue; // no pattern.
}
CodeGenInstruction &CGI = Target.getInstruction(Instr);
parseInstructionPattern(CGI, LI, Instructions);
}
// If we can, convert the instructions to be patterns that are matched!
for (auto &Entry : Instructions) {
Record *Instr = Entry.first;
DAGInstruction &TheInst = Entry.second;
TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
if (SrcPattern && ResultPattern) {
TreePattern Pattern(Instr, SrcPattern, true, *this);
TreePattern Result(Instr, ResultPattern, false, *this);
ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
}
}
}
typedef std::pair<TreePatternNode *, unsigned> NameRecord;
static void FindNames(TreePatternNode *P,
std::map<std::string, NameRecord> &Names,
TreePattern *PatternTop) {
if (!P->getName().empty()) {
NameRecord &Rec = Names[P->getName()];
// If this is the first instance of the name, remember the node.
if (Rec.second++ == 0)
Rec.first = P;
else if (Rec.first->getExtTypes() != P->getExtTypes())
PatternTop->error("repetition of value: $" + P->getName() +
" where different uses have different types!");
}
if (!P->isLeaf()) {
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
FindNames(P->getChild(i), Names, PatternTop);
}
}
std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
std::vector<Predicate> Preds;
for (Init *I : L->getValues()) {
if (DefInit *Pred = dyn_cast<DefInit>(I))
Preds.push_back(Pred->getDef());
else
llvm_unreachable("Non-def on the list");
}
// Sort so that different orders get canonicalized to the same string.
llvm::sort(Preds);
return Preds;
}
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
PatternToMatch &&PTM) {
// Do some sanity checking on the pattern we're about to match.
std::string Reason;
if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
PrintWarning(Pattern->getRecord()->getLoc(),
Twine("Pattern can never match: ") + Reason);
return;
}
// If the source pattern's root is a complex pattern, that complex pattern
// must specify the nodes it can potentially match.
if (const ComplexPattern *CP =
PTM.getSrcPattern()->getComplexPatternInfo(*this))
if (CP->getRootNodes().empty())
Pattern->error("ComplexPattern at root must specify list of opcodes it"
" could match");
// Find all of the named values in the input and output, ensure they have the
// same type.
std::map<std::string, NameRecord> SrcNames, DstNames;
FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
FindNames(PTM.getDstPattern(), DstNames, Pattern);
// Scan all of the named values in the destination pattern, rejecting them if
// they don't exist in the input pattern.
for (const auto &Entry : DstNames) {
if (SrcNames[Entry.first].first == nullptr)
Pattern->error("Pattern has input without matching name in output: $" +
Entry.first);
}
// Scan all of the named values in the source pattern, rejecting them if the
// name isn't used in the dest, and isn't used to tie two values together.
for (const auto &Entry : SrcNames)
if (DstNames[Entry.first].first == nullptr &&
SrcNames[Entry.first].second == 1)
Pattern->error("Pattern has dead named input: $" + Entry.first);
PatternsToMatch.push_back(PTM);
}
void CodeGenDAGPatterns::InferInstructionFlags() {
ArrayRef<const CodeGenInstruction*> Instructions =
Target.getInstructionsByEnumValue();
unsigned Errors = 0;
// Try to infer flags from all patterns in PatternToMatch. These include
// both the primary instruction patterns (which always come first) and
// patterns defined outside the instruction.
for (const PatternToMatch &PTM : ptms()) {
// We can only infer from single-instruction patterns, otherwise we won't
// know which instruction should get the flags.
SmallVector<Record*, 8> PatInstrs;
getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
if (PatInstrs.size() != 1)
continue;
// Get the single instruction.
CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
// Only infer properties from the first pattern. We'll verify the others.
if (InstInfo.InferredFrom)
continue;
InstAnalyzer PatInfo(*this);
PatInfo.Analyze(PTM);
Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
}
if (Errors)
PrintFatalError("pattern conflicts");
// If requested by the target, guess any undefined properties.
if (Target.guessInstructionProperties()) {
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
CodeGenInstruction *InstInfo =
const_cast<CodeGenInstruction *>(Instructions[i]);
if (InstInfo->InferredFrom)
continue;
// The mayLoad and mayStore flags default to false.
// Conservatively assume hasSideEffects if it wasn't explicit.
if (InstInfo->hasSideEffects_Unset)
InstInfo->hasSideEffects = true;
}
return;
}
// Complain about any flags that are still undefined.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
CodeGenInstruction *InstInfo =
const_cast<CodeGenInstruction *>(Instructions[i]);
if (InstInfo->InferredFrom)
continue;
if (InstInfo->hasSideEffects_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer hasSideEffects from patterns");
if (InstInfo->mayStore_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer mayStore from patterns");
if (InstInfo->mayLoad_Unset)
PrintError(InstInfo->TheDef->getLoc(),
"Can't infer mayLoad from patterns");
}
}
/// Verify instruction flags against pattern node properties.
void CodeGenDAGPatterns::VerifyInstructionFlags() {
unsigned Errors = 0;
for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
const PatternToMatch &PTM = *I;
SmallVector<Record*, 8> Instrs;
getInstructionsInTree(PTM.getDstPattern(), Instrs);
if (Instrs.empty())
continue;
// Count the number of instructions with each flag set.
unsigned NumSideEffects = 0;
unsigned NumStores = 0;
unsigned NumLoads = 0;
for (const Record *Instr : Instrs) {
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
NumSideEffects += InstInfo.hasSideEffects;
NumStores += InstInfo.mayStore;
NumLoads += InstInfo.mayLoad;
}
// Analyze the source pattern.
InstAnalyzer PatInfo(*this);
PatInfo.Analyze(PTM);
// Collect error messages.
SmallVector<std::string, 4> Msgs;
// Check for missing flags in the output.
// Permit extra flags for now at least.
if (PatInfo.hasSideEffects && !NumSideEffects)
Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
// Don't verify store flags on instructions with side effects. At least for
// intrinsics, side effects implies mayStore.
if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
Msgs.push_back("pattern may store, but mayStore isn't set");
// Similarly, mayStore implies mayLoad on intrinsics.
if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
Msgs.push_back("pattern may load, but mayLoad isn't set");
// Print error messages.
if (Msgs.empty())
continue;
++Errors;
for (const std::string &Msg : Msgs)
PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
(Instrs.size() == 1 ?
"instruction" : "output instructions"));
// Provide the location of the relevant instruction definitions.
for (const Record *Instr : Instrs) {
if (Instr != PTM.getSrcRecord())
PrintError(Instr->getLoc(), "defined here");
const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
if (InstInfo.InferredFrom &&
InstInfo.InferredFrom != InstInfo.TheDef &&
InstInfo.InferredFrom != PTM.getSrcRecord())
PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
}
}
if (Errors)
PrintFatalError("Errors in DAG patterns");
}
/// Given a pattern result with an unresolved type, see if we can find one
/// instruction with an unresolved result type. Force this result type to an
/// arbitrary element if it's possible types to converge results.
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
if (N->isLeaf())
return false;
// Analyze children.
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
if (ForceArbitraryInstResultType(N->getChild(i), TP))
return true;
if (!N->getOperator()->isSubClassOf("Instruction"))
return false;
// If this type is already concrete or completely unknown we can't do
// anything.
TypeInfer &TI = TP.getInfer();
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
continue;
// Otherwise, force its type to an arbitrary choice.
if (TI.forceArbitrary(N->getExtType(i)))
return true;
}
return false;
}
// Promote xform function to be an explicit node wherever set.
static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
if (Record *Xform = N->getTransformFn()) {
N->setTransformFn(nullptr);
std::vector<TreePatternNodePtr> Children;
Children.push_back(PromoteXForms(N));
return std::make_shared<TreePatternNode>(Xform, std::move(Children),
N->getNumTypes());
}
if (!N->isLeaf())
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNodePtr Child = N->getChildShared(i);
N->setChild(i, PromoteXForms(Child));
}
return N;
}
void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
TreePattern &Pattern, TreePattern &Result,
const std::vector<Record *> &InstImpResults) {
// Inline pattern fragments and expand multiple alternatives.
Pattern.InlinePatternFragments();
Result.InlinePatternFragments();
if (Result.getNumTrees() != 1)
Result.error("Cannot use multi-alternative fragments in result pattern!");
// Infer types.
bool IterateInference;
bool InferredAllPatternTypes, InferredAllResultTypes;
do {
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllPatternTypes =
Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllResultTypes =
Result.InferAllTypes(&Pattern.getNamedNodesMap());
IterateInference = false;
// Apply the type of the result to the source pattern. This helps us
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
for (auto T : Pattern.getTrees())
for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
T->getNumTypes());
i != e; ++i) {
IterateInference |= T->UpdateNodeType(
i, Result.getOnlyTree()->getExtType(i), Result);
IterateInference |= Result.getOnlyTree()->UpdateNodeType(
i, T->getExtType(i), Result);
}
// If our iteration has converged and the input pattern's types are fully
// resolved but the result pattern is not fully resolved, we may have a
// situation where we have two instructions in the result pattern and
// the instructions require a common register class, but don't care about
// what actual MVT is used. This is actually a bug in our modelling:
// output patterns should have register classes, not MVTs.
//
// In any case, to handle this, we just go through and disambiguate some
// arbitrary types to the result pattern's nodes.
if (!IterateInference && InferredAllPatternTypes &&
!InferredAllResultTypes)
IterateInference =
ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
} while (IterateInference);
// Verify that we inferred enough types that we can do something with the
// pattern and result. If these fire the user has to add type casts.
if (!InferredAllPatternTypes)
Pattern.error("Could not infer all types in pattern!");
if (!InferredAllResultTypes) {
Pattern.dump();
Result.error("Could not infer all types in pattern result!");
}
// Promote xform function to be an explicit node wherever set.
TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
TreePattern Temp(Result.getRecord(), DstShared, false, *this);
Temp.InferAllTypes();
ListInit *Preds = TheDef->getValueAsListInit("Predicates");
int Complexity = TheDef->getValueAsInt("AddedComplexity");
if (PatternRewriter)
PatternRewriter(&Pattern);
// A pattern may end up with an "impossible" type, i.e. a situation
// where all types have been eliminated for some node in this pattern.
// This could occur for intrinsics that only make sense for a specific
// value type, and use a specific register class. If, for some mode,
// that register class does not accept that type, the type inference
// will lead to a contradiction, which is not an error however, but
// a sign that this pattern will simply never match.
if (Temp.getOnlyTree()->hasPossibleType())
for (auto T : Pattern.getTrees())
if (T->hasPossibleType())
AddPatternToMatch(&Pattern,
PatternToMatch(TheDef, makePredList(Preds),
T, Temp.getOnlyTree(),
InstImpResults, Complexity,
TheDef->getID()));
}
void CodeGenDAGPatterns::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (Record *CurPattern : Patterns) {
DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
// If the pattern references the null_frag, there's nothing to do.
if (hasNullFragReference(Tree))
continue;
TreePattern Pattern(CurPattern, Tree, true, *this);
ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
if (LI->empty()) continue; // no pattern.
// Parse the instruction.
TreePattern Result(CurPattern, LI, false, *this);
if (Result.getNumTrees() != 1)
Result.error("Cannot handle instructions producing instructions "
"with temporaries yet!");
// Validate that the input pattern is correct.
std::map<std::string, TreePatternNodePtr> InstInputs;
MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
InstResults;
std::vector<Record*> InstImpResults;
for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
InstResults, InstImpResults);
ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
}
}
static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
for (const TypeSetByHwMode &VTS : N->getExtTypes())
for (const auto &I : VTS)
Modes.insert(I.first);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
collectModes(Modes, N->getChild(i));
}
void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
std::map<unsigned,std::vector<Predicate>> ModeChecks;
std::vector<PatternToMatch> Copy = PatternsToMatch;
PatternsToMatch.clear();
auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
TreePatternNodePtr NewSrc = P.SrcPattern->clone();
TreePatternNodePtr NewDst = P.DstPattern->clone();
if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
return;
}
std::vector<Predicate> Preds = P.Predicates;
const std::vector<Predicate> &MC = ModeChecks[Mode];
Preds.insert(Preds.end(), MC.begin(), MC.end());
PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
std::move(NewDst), P.getDstRegs(),
P.getAddedComplexity(), Record::getNewUID(),
Mode);
};
for (PatternToMatch &P : Copy) {
TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
if (P.SrcPattern->hasProperTypeByHwMode())
SrcP = P.SrcPattern;
if (P.DstPattern->hasProperTypeByHwMode())
DstP = P.DstPattern;
if (!SrcP && !DstP) {
PatternsToMatch.push_back(P);
continue;
}
std::set<unsigned> Modes;
if (SrcP)
collectModes(Modes, SrcP.get());
if (DstP)
collectModes(Modes, DstP.get());
// The predicate for the default mode needs to be constructed for each
// pattern separately.
// Since not all modes must be present in each pattern, if a mode m is
// absent, then there is no point in constructing a check for m. If such
// a check was created, it would be equivalent to checking the default
// mode, except not all modes' predicates would be a part of the checking
// code. The subsequently generated check for the default mode would then
// have the exact same patterns, but a different predicate code. To avoid
// duplicated patterns with different predicate checks, construct the
// default check as a negation of all predicates that are actually present
// in the source/destination patterns.
std::vector<Predicate> DefaultPred;
for (unsigned M : Modes) {
if (M == DefaultMode)
continue;
if (ModeChecks.find(M) != ModeChecks.end())
continue;
// Fill the map entry for this mode.
const HwMode &HM = CGH.getMode(M);
ModeChecks[M].emplace_back(Predicate(HM.Features, true));
// Add negations of the HM's predicates to the default predicate.
DefaultPred.emplace_back(Predicate(HM.Features, false));
}
for (unsigned M : Modes) {
if (M == DefaultMode)
continue;
AppendPattern(P, M);
}
bool HasDefault = Modes.count(DefaultMode);
if (HasDefault)
AppendPattern(P, DefaultMode);
}
}
/// Dependent variable map for CodeGenDAGPattern variant generation
typedef StringMap<int> DepVarMap;
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
if (N->isLeaf()) {
if (N->hasName() && isa<DefInit>(N->getLeafValue()))
DepMap[N->getName()]++;
} else {
for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
FindDepVarsOf(N->getChild(i), DepMap);
}
}
/// Find dependent variables within child patterns
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
DepVarMap depcounts;
FindDepVarsOf(N, depcounts);
for (const auto &Pair : depcounts) {
if (Pair.getValue() > 1)
DepVars.insert(Pair.getKey());
}
}
#ifndef NDEBUG
/// Dump the dependent variable set:
static void DumpDepVars(MultipleUseVarSet &DepVars) {
if (DepVars.empty()) {
LLVM_DEBUG(errs() << "<empty set>");
} else {
LLVM_DEBUG(errs() << "[ ");
for (const auto &DepVar : DepVars) {
LLVM_DEBUG(errs() << DepVar.getKey() << " ");
}
LLVM_DEBUG(errs() << "]");
}
}
#endif
/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(
TreePatternNodePtr Orig,
const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// Make sure that each operand has at least one variant to choose from.
for (const auto &Variants : ChildVariants)
if (Variants.empty())
return;
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildVariants.size());
bool NotDone;
do {
#ifndef NDEBUG
LLVM_DEBUG(if (!Idxs.empty()) {
errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
for (unsigned Idx : Idxs) {
errs() << Idx << " ";
}
errs() << "]\n";
});
#endif
// Create the variant and add it to the output list.
std::vector<TreePatternNodePtr> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
TreePatternNodePtr R = std::make_shared<TreePatternNode>(
Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
// Copy over properties.
R->setName(Orig->getName());
R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
R->setPredicateCalls(Orig->getPredicateCalls());
R->setTransformFn(Orig->getTransformFn());
for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
R->setType(i, Orig->getExtType(i));
// If this pattern cannot match, do not include it as a variant.
std::string ErrString;
// Scan to see if this pattern has already been emitted. We can get
// duplication due to things like commuting:
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
// which are the same pattern. Ignore the dups.
if (R->canPatternMatch(ErrString, CDP) &&
none_of(OutVariants, [&](TreePatternNodePtr Variant) {
return R->isIsomorphicTo(Variant.get(), DepVars);
}))
OutVariants.push_back(R);
// Increment indices to the next permutation by incrementing the
// indices from last index backward, e.g., generate the sequence
// [0, 0], [0, 1], [1, 0], [1, 1].
int IdxsIdx;
for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
Idxs[IdxsIdx] = 0;
else
break;
}
NotDone = (IdxsIdx >= 0);
} while (NotDone);
}
/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNodePtr Orig,
const std::vector<TreePatternNodePtr> &LHS,
const std::vector<TreePatternNodePtr> &RHS,
std::vector<TreePatternNodePtr> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
ChildVariants.push_back(LHS);
ChildVariants.push_back(RHS);
CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
}
static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
std::vector<TreePatternNodePtr> &Children) {
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
Record *Operator = N->getOperator();
// Only permit raw nodes.
if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
N->getTransformFn()) {
Children.push_back(N);
return;
}
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
Children.push_back(N->getChildShared(0));
else
GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
Children.push_back(N->getChildShared(1));
else
GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
}
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNodePtr N,
std::vector<TreePatternNodePtr> &OutVariants,
CodeGenDAGPatterns &CDP,
const MultipleUseVarSet &DepVars) {
// We cannot permute leaves or ComplexPattern uses.
if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
OutVariants.push_back(N);
return;
}
// Look up interesting info about the node.
const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
// If this node is associative, re-associate.
if (NodeInfo.hasProperty(SDNPAssociative)) {
// Re-associate by pulling together all of the linked operators
std::vector<TreePatternNodePtr> MaximalChildren;
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
// Only handle child sizes of 3. Otherwise we'll end up trying too many
// permutations.
if (MaximalChildren.size() == 3) {
// Find the variants of all of our maximal children.
std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
// There are only two ways we can permute the tree:
// (A op B) op C and A op (B op C)
// Within these forms, we can also permute A/B/C.
// Generate legal pair permutations of A/B/C.
std::vector<TreePatternNodePtr> ABVariants;
std::vector<TreePatternNodePtr> BAVariants;
std::vector<TreePatternNodePtr> ACVariants;
std::vector<TreePatternNodePtr> CAVariants;
std::vector<TreePatternNodePtr> BCVariants;
std::vector<TreePatternNodePtr> CBVariants;
CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
// Combine those into the result: (x op x) op x
CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
// Combine those into the result: x op (x op x)
CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
return;
}
}
// Compute permutations of all children.
std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
ChildVariants.resize(N->getNumChildren());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
// Build all permutations based on how the children were formed.
CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
// If this node is commutative, consider the commuted order.
bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!");
// Don't count children which are actually register references.
unsigned NC = 0;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (Child->isLeaf())
if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register"))
continue;
}
NC++;
}
// Consider the commuted order.
if (isCommIntrinsic) {
// Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
// operands are the commutative operands, and there might be more operands
// after those.
assert(NC >= 3 &&
"Commutative intrinsic should have at least 3 children!");
std::vector<std::vector<TreePatternNodePtr>> Variants;
Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
Variants.push_back(std::move(ChildVariants[2]));
Variants.push_back(std::move(ChildVariants[1]));
for (unsigned i = 3; i != NC; ++i)
Variants.push_back(std::move(ChildVariants[i]));
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
} else if (NC == N->getNumChildren()) {
std::vector<std::vector<TreePatternNodePtr>> Variants;
Variants.push_back(std::move(ChildVariants[1]));
Variants.push_back(std::move(ChildVariants[0]));
for (unsigned i = 2; i != NC; ++i)
Variants.push_back(std::move(ChildVariants[i]));
CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
}
}
}
// GenerateVariants - Generate variants. For example, commutative patterns can
// match multiple ways. Add them to PatternsToMatch as well.
void CodeGenDAGPatterns::GenerateVariants() {
LLVM_DEBUG(errs() << "Generating instruction variants.\n");
// Loop over all of the patterns we've collected, checking to see if we can
// generate variants of the instruction, through the exploitation of
// identities. This permits the target to provide aggressive matching without
// the .td file having to contain tons of variants of instructions.
//
// Note that this loop adds new patterns to the PatternsToMatch list, but we
// intentionally do not reconsider these. Any variants of added patterns have
// already been added.
//
const unsigned NumOriginalPatterns = PatternsToMatch.size();
BitVector MatchedPatterns(NumOriginalPatterns);
std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
BitVector(NumOriginalPatterns));
typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
DepsAndVariants;
std::map<unsigned, DepsAndVariants> PatternsWithVariants;
// Collect patterns with more than one variant.
for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
MultipleUseVarSet DepVars;
std::vector<TreePatternNodePtr> Variants;
FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
LLVM_DEBUG(DumpDepVars(DepVars));
LLVM_DEBUG(errs() << "\n");
GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
*this, DepVars);
assert(!Variants.empty() && "Must create at least original variant!");
if (Variants.size() == 1) // No additional variants for this pattern.
continue;
LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
// Cache matching predicates.
if (MatchedPatterns[i])
continue;
const std::vector<Predicate> &Predicates =
PatternsToMatch[i].getPredicates();
BitVector &Matches = MatchedPredicates[i];
MatchedPatterns.set(i);
Matches.set(i);
// Don't test patterns that have already been cached - it won't match.
for (unsigned p = 0; p != NumOriginalPatterns; ++p)
if (!MatchedPatterns[p])
Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
// Copy this to all the matching patterns.
for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
if (p != (int)i) {
MatchedPatterns.set(p);
MatchedPredicates[p] = Matches;
}
}
for (auto it : PatternsWithVariants) {
unsigned i = it.first;
const MultipleUseVarSet &DepVars = it.second.first;
const std::vector<TreePatternNodePtr> &Variants = it.second.second;
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
TreePatternNodePtr Variant = Variants[v];
BitVector &Matches = MatchedPredicates[i];
LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
errs() << "\n");
// Scan to see if an instruction or explicit pattern already matches this.
bool AlreadyExists = false;
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
// Skip if the top level predicates do not match.
if (!Matches[p])
continue;
// Check to see if this variant already exists.
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
DepVars)) {
LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
AlreadyExists = true;
break;
}
}
// If we already have it, ignore the variant.
if (AlreadyExists) continue;
// Otherwise, add it to the list of patterns we have.
PatternsToMatch.push_back(PatternToMatch(
PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
Variant, PatternsToMatch[i].getDstPatternShared(),
PatternsToMatch[i].getDstRegs(),
PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
MatchedPredicates.push_back(Matches);
// Add a new match the same as this pattern.
for (auto &P : MatchedPredicates)
P.push_back(P[i]);
}
LLVM_DEBUG(errs() << "\n");
}
}