Greg Clayton e761213428 <rdar://problem/10997402>
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.

llvm-svn: 152244
2012-03-07 21:03:09 +00:00

931 lines
40 KiB
C++

//===-- ObjectFilePECOFF.cpp ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ObjectFilePECOFF.h"
#include "llvm/Support/MachO.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Timer.h"
#include "lldb/Core/UUID.h"
#include "lldb/Symbol/ObjectFile.h"
static uint32_t COFFMachineToMachCPU(uint16_t machine);
#define IMAGE_FILE_MACHINE_UNKNOWN 0x0000
#define IMAGE_FILE_MACHINE_AM33 0x01d3 // Matsushita AM33
#define IMAGE_FILE_MACHINE_AMD64 0x8664 // x64
#define IMAGE_FILE_MACHINE_ARM 0x01c0 // ARM little endian
#define IMAGE_FILE_MACHINE_EBC 0x0ebc // EFI byte code
#define IMAGE_FILE_MACHINE_I386 0x014c // Intel 386 or later processors and compatible processors
#define IMAGE_FILE_MACHINE_IA64 0x0200 // Intel Itanium processor family
#define IMAGE_FILE_MACHINE_M32R 0x9041 // Mitsubishi M32R little endian
#define IMAGE_FILE_MACHINE_MIPS16 0x0266 // MIPS16
#define IMAGE_FILE_MACHINE_MIPSFPU 0x0366 // MIPS with FPU
#define IMAGE_FILE_MACHINE_MIPSFPU16 0x0466 // MIPS16 with FPU
#define IMAGE_FILE_MACHINE_POWERPC 0x01f0 // Power PC little endian
#define IMAGE_FILE_MACHINE_POWERPCFP 0x01f1 // Power PC with floating point support
#define IMAGE_FILE_MACHINE_R4000 0x0166 // MIPS little endian
#define IMAGE_FILE_MACHINE_SH3 0x01a2 // Hitachi SH3
#define IMAGE_FILE_MACHINE_SH3DSP 0x01a3 // Hitachi SH3 DSP
#define IMAGE_FILE_MACHINE_SH4 0x01a6 // Hitachi SH4
#define IMAGE_FILE_MACHINE_SH5 0x01a8 // Hitachi SH5
#define IMAGE_FILE_MACHINE_THUMB 0x01c2 // Thumb
#define IMAGE_FILE_MACHINE_WCEMIPSV2 0x0169 // MIPS little-endian WCE v2
#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ
#define IMAGE_OS2_SIGNATURE 0x454E // NE
#define IMAGE_OS2_SIGNATURE_LE 0x454C // LE
#define IMAGE_NT_SIGNATURE 0x00004550 // PE00
#define OPT_HEADER_MAGIC_PE32 0x010b
#define OPT_HEADER_MAGIC_PE32_PLUS 0x020b
#define IMAGE_FILE_RELOCS_STRIPPED 0x0001
#define IMAGE_FILE_EXECUTABLE_IMAGE 0x0002
#define IMAGE_FILE_LINE_NUMS_STRIPPED 0x0004
#define IMAGE_FILE_LOCAL_SYMS_STRIPPED 0x0008
#define IMAGE_FILE_AGGRESSIVE_WS_TRIM 0x0010
#define IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020
//#define 0x0040 // Reserved
#define IMAGE_FILE_BYTES_REVERSED_LO 0x0080
#define IMAGE_FILE_32BIT_MACHINE 0x0100
#define IMAGE_FILE_DEBUG_STRIPPED 0x0200
#define IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400
#define IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800
#define IMAGE_FILE_SYSTEM 0x1000
#define IMAGE_FILE_DLL 0x2000
#define IMAGE_FILE_UP_SYSTEM_ONLY 0x4000
#define IMAGE_FILE_BYTES_REVERSED_HI 0x8000
// Section Flags
// The section flags in the Characteristics field of the section header indicate
// characteristics of the section.
#define IMAGE_SCN_TYPE_NO_PAD 0x00000008 // The section should not be padded to the next boundary. This flag is obsolete and is replaced by IMAGE_SCN_ALIGN_1BYTES. This is valid only for object files.
#define IMAGE_SCN_CNT_CODE 0x00000020 // The section contains executable code.
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 // The section contains initialized data.
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 // The section contains uninitialized data.
#define IMAGE_SCN_LNK_OTHER 0x00000100 // Reserved for future use.
#define IMAGE_SCN_LNK_INFO 0x00000200 // The section contains comments or other information. The .drectve section has this type. This is valid for object files only.
#define IMAGE_SCN_LNK_REMOVE 0x00000800 // The section will not become part of the image. This is valid only for object files.
#define IMAGE_SCN_LNK_COMDAT 0x00001000 // The section contains COMDAT data. For more information, see section 5.5.6, “COMDAT Sections (Object Only).” This is valid only for object files.
#define IMAGE_SCN_GPREL 0x00008000 // The section contains data referenced through the global pointer (GP).
#define IMAGE_SCN_MEM_PURGEABLE 0x00020000
#define IMAGE_SCN_MEM_16BIT 0x00020000 // For ARM machine types, the section contains Thumb code. Reserved for future use with other machine types.
#define IMAGE_SCN_MEM_LOCKED 0x00040000
#define IMAGE_SCN_MEM_PRELOAD 0x00080000
#define IMAGE_SCN_ALIGN_1BYTES 0x00100000 // Align data on a 1-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_2BYTES 0x00200000 // Align data on a 2-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_4BYTES 0x00300000 // Align data on a 4-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_8BYTES 0x00400000 // Align data on an 8-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_16BYTES 0x00500000 // Align data on a 16-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_32BYTES 0x00600000 // Align data on a 32-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_64BYTES 0x00700000 // Align data on a 64-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_128BYTES 0x00800000 // Align data on a 128-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_256BYTES 0x00900000 // Align data on a 256-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_512BYTES 0x00A00000 // Align data on a 512-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 // Align data on a 1024-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 // Align data on a 2048-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_4096BYTES 0x00D00000 // Align data on a 4096-byte boundary. Valid only for object files.
#define IMAGE_SCN_ALIGN_8192BYTES 0x00E00000 // Align data on an 8192-byte boundary. Valid only for object files.
#define IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 // The section contains extended relocations.
#define IMAGE_SCN_MEM_DISCARDABLE 0x02000000 // The section can be discarded as needed.
#define IMAGE_SCN_MEM_NOT_CACHED 0x04000000 // The section cannot be cached.
#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000 // The section is not pageable.
#define IMAGE_SCN_MEM_SHARED 0x10000000 // The section can be shared in memory.
#define IMAGE_SCN_MEM_EXECUTE 0x20000000 // The section can be executed as code.
#define IMAGE_SCN_MEM_READ 0x40000000 // The section can be read.
#define IMAGE_SCN_MEM_WRITE 0x80000000 // The section can be written to.
using namespace lldb;
using namespace lldb_private;
void
ObjectFilePECOFF::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance,
CreateMemoryInstance);
}
void
ObjectFilePECOFF::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
ObjectFilePECOFF::GetPluginNameStatic()
{
return "object-file.pe-coff";
}
const char *
ObjectFilePECOFF::GetPluginDescriptionStatic()
{
return "Portable Executable and Common Object File Format object file reader (32 and 64 bit)";
}
ObjectFile *
ObjectFilePECOFF::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length)
{
if (ObjectFilePECOFF::MagicBytesMatch(dataSP))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFilePECOFF (module_sp, dataSP, file, offset, length));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
ObjectFile *
ObjectFilePECOFF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
lldb::DataBufferSP& data_sp,
const lldb::ProcessSP &process_sp,
lldb::addr_t header_addr)
{
return NULL;
}
bool
ObjectFilePECOFF::MagicBytesMatch (DataBufferSP& dataSP)
{
DataExtractor data(dataSP, eByteOrderLittle, 4);
uint32_t offset = 0;
uint16_t magic = data.GetU16 (&offset);
return magic == IMAGE_DOS_SIGNATURE;
}
ObjectFilePECOFF::ObjectFilePECOFF (const lldb::ModuleSP &module_sp,
DataBufferSP& dataSP,
const FileSpec* file,
addr_t offset,
addr_t length) :
ObjectFile (module_sp, file, offset, length, dataSP),
m_mutex (Mutex::eMutexTypeRecursive),
m_dos_header (),
m_coff_header (),
m_coff_header_opt (),
m_sect_headers ()
{
::memset (&m_dos_header, 0, sizeof(m_dos_header));
::memset (&m_coff_header, 0, sizeof(m_coff_header));
::memset (&m_coff_header_opt, 0, sizeof(m_coff_header_opt));
}
ObjectFilePECOFF::~ObjectFilePECOFF()
{
}
bool
ObjectFilePECOFF::ParseHeader ()
{
Mutex::Locker locker(m_mutex);
m_sect_headers.clear();
m_data.SetByteOrder (eByteOrderLittle);
uint32_t offset = 0;
if (ParseDOSHeader())
{
offset = m_dos_header.e_lfanew;
uint32_t pe_signature = m_data.GetU32 (&offset);
if (pe_signature != IMAGE_NT_SIGNATURE)
return false;
if (ParseCOFFHeader(&offset))
{
if (m_coff_header.hdrsize > 0)
ParseCOFFOptionalHeader(&offset);
ParseSectionHeaders (offset);
}
StreamFile s(stdout, false);// REMOVE THIS LINE!!!
Dump(&s);// REMOVE THIS LINE!!!
return true;
}
return false;
}
ByteOrder
ObjectFilePECOFF::GetByteOrder () const
{
return eByteOrderLittle;
}
bool
ObjectFilePECOFF::IsExecutable() const
{
return (m_coff_header.flags & IMAGE_FILE_DLL) == 0;
}
size_t
ObjectFilePECOFF::GetAddressByteSize () const
{
if (m_coff_header_opt.magic == OPT_HEADER_MAGIC_PE32_PLUS)
return 8;
else if (m_coff_header_opt.magic == OPT_HEADER_MAGIC_PE32)
return 4;
return 4;
}
//----------------------------------------------------------------------
// NeedsEndianSwap
//
// Return true if an endian swap needs to occur when extracting data
// from this file.
//----------------------------------------------------------------------
bool
ObjectFilePECOFF::NeedsEndianSwap() const
{
#if defined(__LITTLE_ENDIAN__)
return false;
#else
return true;
#endif
}
//----------------------------------------------------------------------
// ParseDOSHeader
//----------------------------------------------------------------------
bool
ObjectFilePECOFF::ParseDOSHeader ()
{
bool success = false;
uint32_t offset = 0;
success = m_data.ValidOffsetForDataOfSize(0, sizeof(m_dos_header));
if (success)
{
m_dos_header.e_magic = m_data.GetU16(&offset); // Magic number
success = m_dos_header.e_magic == IMAGE_DOS_SIGNATURE;
if (success)
{
m_dos_header.e_cblp = m_data.GetU16(&offset); // Bytes on last page of file
m_dos_header.e_cp = m_data.GetU16(&offset); // Pages in file
m_dos_header.e_crlc = m_data.GetU16(&offset); // Relocations
m_dos_header.e_cparhdr = m_data.GetU16(&offset); // Size of header in paragraphs
m_dos_header.e_minalloc = m_data.GetU16(&offset); // Minimum extra paragraphs needed
m_dos_header.e_maxalloc = m_data.GetU16(&offset); // Maximum extra paragraphs needed
m_dos_header.e_ss = m_data.GetU16(&offset); // Initial (relative) SS value
m_dos_header.e_sp = m_data.GetU16(&offset); // Initial SP value
m_dos_header.e_csum = m_data.GetU16(&offset); // Checksum
m_dos_header.e_ip = m_data.GetU16(&offset); // Initial IP value
m_dos_header.e_cs = m_data.GetU16(&offset); // Initial (relative) CS value
m_dos_header.e_lfarlc = m_data.GetU16(&offset); // File address of relocation table
m_dos_header.e_ovno = m_data.GetU16(&offset); // Overlay number
m_dos_header.e_res[0] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res[1] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res[2] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res[3] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_oemid = m_data.GetU16(&offset); // OEM identifier (for e_oeminfo)
m_dos_header.e_oeminfo = m_data.GetU16(&offset); // OEM information; e_oemid specific
m_dos_header.e_res2[0] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[1] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[2] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[3] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[4] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[5] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[6] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[7] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[8] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_res2[9] = m_data.GetU16(&offset); // Reserved words
m_dos_header.e_lfanew = m_data.GetU32(&offset); // File address of new exe header
}
}
if (!success)
memset(&m_dos_header, 0, sizeof(m_dos_header));
return success;
}
//----------------------------------------------------------------------
// ParserCOFFHeader
//----------------------------------------------------------------------
bool
ObjectFilePECOFF::ParseCOFFHeader(uint32_t* offset_ptr)
{
bool success = m_data.ValidOffsetForDataOfSize (*offset_ptr, sizeof(m_coff_header));
if (success)
{
m_coff_header.machine = m_data.GetU16(offset_ptr);
m_coff_header.nsects = m_data.GetU16(offset_ptr);
m_coff_header.modtime = m_data.GetU32(offset_ptr);
m_coff_header.symoff = m_data.GetU32(offset_ptr);
m_coff_header.nsyms = m_data.GetU32(offset_ptr);
m_coff_header.hdrsize = m_data.GetU16(offset_ptr);
m_coff_header.flags = m_data.GetU16(offset_ptr);
}
if (!success)
memset(&m_coff_header, 0, sizeof(m_coff_header));
return success;
}
bool
ObjectFilePECOFF::ParseCOFFOptionalHeader(uint32_t* offset_ptr)
{
bool success = false;
const uint32_t end_offset = *offset_ptr + m_coff_header.hdrsize;
if (*offset_ptr < end_offset)
{
success = true;
m_coff_header_opt.magic = m_data.GetU16(offset_ptr);
m_coff_header_opt.major_linker_version = m_data.GetU8 (offset_ptr);
m_coff_header_opt.minor_linker_version = m_data.GetU8 (offset_ptr);
m_coff_header_opt.code_size = m_data.GetU32(offset_ptr);
m_coff_header_opt.data_size = m_data.GetU32(offset_ptr);
m_coff_header_opt.bss_size = m_data.GetU32(offset_ptr);
m_coff_header_opt.entry = m_data.GetU32(offset_ptr);
m_coff_header_opt.code_offset = m_data.GetU32(offset_ptr);
const uint32_t addr_byte_size = GetAddressByteSize ();
if (*offset_ptr < end_offset)
{
if (m_coff_header_opt.magic == OPT_HEADER_MAGIC_PE32)
{
// PE32 only
m_coff_header_opt.data_offset = m_data.GetU32(offset_ptr);
}
else
m_coff_header_opt.data_offset = 0;
if (*offset_ptr < end_offset)
{
m_coff_header_opt.image_base = m_data.GetMaxU64 (offset_ptr, addr_byte_size);
m_coff_header_opt.sect_alignment = m_data.GetU32(offset_ptr);
m_coff_header_opt.file_alignment = m_data.GetU32(offset_ptr);
m_coff_header_opt.major_os_system_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.minor_os_system_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.major_image_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.minor_image_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.major_subsystem_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.minor_subsystem_version = m_data.GetU16(offset_ptr);
m_coff_header_opt.reserved1 = m_data.GetU32(offset_ptr);
m_coff_header_opt.image_size = m_data.GetU32(offset_ptr);
m_coff_header_opt.header_size = m_data.GetU32(offset_ptr);
m_coff_header_opt.checksum = m_data.GetU32(offset_ptr);
m_coff_header_opt.subsystem = m_data.GetU16(offset_ptr);
m_coff_header_opt.dll_flags = m_data.GetU16(offset_ptr);
m_coff_header_opt.stack_reserve_size = m_data.GetMaxU64 (offset_ptr, addr_byte_size);
m_coff_header_opt.stack_commit_size = m_data.GetMaxU64 (offset_ptr, addr_byte_size);
m_coff_header_opt.heap_reserve_size = m_data.GetMaxU64 (offset_ptr, addr_byte_size);
m_coff_header_opt.heap_commit_size = m_data.GetMaxU64 (offset_ptr, addr_byte_size);
m_coff_header_opt.loader_flags = m_data.GetU32(offset_ptr);
uint32_t num_data_dir_entries = m_data.GetU32(offset_ptr);
m_coff_header_opt.data_dirs.clear();
m_coff_header_opt.data_dirs.resize(num_data_dir_entries);
uint32_t i;
for (i=0; i<num_data_dir_entries; i++)
{
m_coff_header_opt.data_dirs[i].vmaddr = m_data.GetU32(offset_ptr);
m_coff_header_opt.data_dirs[i].vmsize = m_data.GetU32(offset_ptr);
}
}
}
}
// Make sure we are on track for section data which follows
*offset_ptr = end_offset;
return success;
}
//----------------------------------------------------------------------
// ParseSectionHeaders
//----------------------------------------------------------------------
bool
ObjectFilePECOFF::ParseSectionHeaders (uint32_t section_header_data_offset)
{
const uint32_t nsects = m_coff_header.nsects;
m_sect_headers.clear();
if (nsects > 0)
{
const uint32_t addr_byte_size = GetAddressByteSize ();
const size_t section_header_byte_size = nsects * sizeof(section_header_t);
DataBufferSP section_header_data_sp(m_file.ReadFileContents (section_header_data_offset, section_header_byte_size));
DataExtractor section_header_data (section_header_data_sp, GetByteOrder(), addr_byte_size);
uint32_t offset = 0;
if (section_header_data.ValidOffsetForDataOfSize (offset, section_header_byte_size))
{
m_sect_headers.resize(nsects);
for (uint32_t idx = 0; idx<nsects; ++idx)
{
const void *name_data = section_header_data.GetData(&offset, 8);
if (name_data)
{
memcpy(m_sect_headers[idx].name, name_data, 8);
m_sect_headers[idx].vmsize = section_header_data.GetU32(&offset);
m_sect_headers[idx].vmaddr = section_header_data.GetU32(&offset);
m_sect_headers[idx].size = section_header_data.GetU32(&offset);
m_sect_headers[idx].offset = section_header_data.GetU32(&offset);
m_sect_headers[idx].reloff = section_header_data.GetU32(&offset);
m_sect_headers[idx].lineoff = section_header_data.GetU32(&offset);
m_sect_headers[idx].nreloc = section_header_data.GetU16(&offset);
m_sect_headers[idx].nline = section_header_data.GetU16(&offset);
m_sect_headers[idx].flags = section_header_data.GetU32(&offset);
}
}
}
}
return m_sect_headers.empty() == false;
}
bool
ObjectFilePECOFF::GetSectionName(std::string& sect_name, const section_header_t& sect)
{
if (sect.name[0] == '/')
{
uint32_t stroff = strtoul(&sect.name[1], NULL, 10);
uint32_t string_file_offset = m_coff_header.symoff + (m_coff_header.nsyms * 18) + stroff;
const char *name = m_data.GetCStr (&string_file_offset);
if (name)
{
sect_name = name;
return true;
}
return false;
}
sect_name = sect.name;
return true;
}
//----------------------------------------------------------------------
// GetNListSymtab
//----------------------------------------------------------------------
Symtab *
ObjectFilePECOFF::GetSymtab()
{
Mutex::Locker symfile_locker(m_mutex);
if (m_symtab_ap.get() == NULL)
{
SectionList *sect_list = GetSectionList();
m_symtab_ap.reset(new Symtab(this));
Mutex::Locker symtab_locker (m_symtab_ap->GetMutex());
const uint32_t num_syms = m_coff_header.nsyms;
if (num_syms > 0 && m_coff_header.symoff > 0)
{
const uint32_t symbol_size = sizeof(section_header_t);
const uint32_t addr_byte_size = GetAddressByteSize ();
const size_t symbol_data_size = num_syms * symbol_size;
// Include the 4 bytes string table size at the end of the symbols
DataBufferSP symtab_data_sp(m_file.ReadFileContents (m_coff_header.symoff, symbol_data_size + 4));
DataExtractor symtab_data (symtab_data_sp, GetByteOrder(), addr_byte_size);
uint32_t offset = symbol_data_size;
const uint32_t strtab_size = symtab_data.GetU32 (&offset);
DataBufferSP strtab_data_sp(m_file.ReadFileContents (m_coff_header.symoff + symbol_data_size + 4, strtab_size));
DataExtractor strtab_data (strtab_data_sp, GetByteOrder(), addr_byte_size);
offset = 0;
std::string symbol_name;
Symbol *symbols = m_symtab_ap->Resize (num_syms);
for (uint32_t i=0; i<num_syms; ++i)
{
coff_symbol_t symbol;
const uint32_t symbol_offset = offset;
const char *symbol_name_cstr = NULL;
// If the first 4 bytes of the symbol string are zero, then we
// it is followed by a 4 byte string table offset. Else these
// 8 bytes contain the symbol name
if (symtab_data.GetU32 (&offset) == 0)
{
// Long string that doesn't fit into the symbol table name,
// so now we must read the 4 byte string table offset
uint32_t strtab_offset = symtab_data.GetU32 (&offset);
symbol_name_cstr = strtab_data.PeekCStr (strtab_offset);
symbol_name.assign (symbol_name_cstr);
}
else
{
// Short string that fits into the symbol table name which is 8 bytes
offset += sizeof(symbol.name) - 4; // Skip remaining
symbol_name_cstr = symtab_data.PeekCStr (symbol_offset);
if (symbol_name_cstr == NULL)
break;
symbol_name.assign (symbol_name_cstr, sizeof(symbol.name));
}
symbol.value = symtab_data.GetU32 (&offset);
symbol.sect = symtab_data.GetU16 (&offset);
symbol.type = symtab_data.GetU16 (&offset);
symbol.storage = symtab_data.GetU8 (&offset);
symbol.naux = symtab_data.GetU8 (&offset);
Address symbol_addr(sect_list->GetSectionAtIndex(symbol.sect-1), symbol.value);
symbols[i].GetMangled ().SetValue (symbol_name.c_str(), symbol_name[0]=='_' && symbol_name[1] == 'Z');
symbols[i].GetAddress() = symbol_addr;
if (symbol.naux > 0)
i += symbol.naux;
}
}
}
return m_symtab_ap.get();
}
SectionList *
ObjectFilePECOFF::GetSectionList()
{
Mutex::Locker symfile_locker(m_mutex);
if (m_sections_ap.get() == NULL)
{
m_sections_ap.reset(new SectionList());
const uint32_t nsects = m_sect_headers.size();
ModuleSP module_sp (GetModule());
for (uint32_t idx = 0; idx<nsects; ++idx)
{
std::string sect_name;
GetSectionName (sect_name, m_sect_headers[idx]);
ConstString const_sect_name (sect_name.c_str());
static ConstString g_code_sect_name (".code");
static ConstString g_CODE_sect_name ("CODE");
static ConstString g_data_sect_name (".data");
static ConstString g_DATA_sect_name ("DATA");
static ConstString g_bss_sect_name (".bss");
static ConstString g_BSS_sect_name ("BSS");
static ConstString g_debug_sect_name (".debug");
static ConstString g_reloc_sect_name (".reloc");
static ConstString g_stab_sect_name (".stab");
static ConstString g_stabstr_sect_name (".stabstr");
SectionType section_type = eSectionTypeOther;
if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_CODE &&
((const_sect_name == g_code_sect_name) || (const_sect_name == g_CODE_sect_name)))
{
section_type = eSectionTypeCode;
}
else if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_INITIALIZED_DATA &&
((const_sect_name == g_data_sect_name) || (const_sect_name == g_DATA_sect_name)))
{
section_type = eSectionTypeData;
}
else if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA &&
((const_sect_name == g_bss_sect_name) || (const_sect_name == g_BSS_sect_name)))
{
if (m_sect_headers[idx].size == 0)
section_type = eSectionTypeZeroFill;
else
section_type = eSectionTypeData;
}
else if (const_sect_name == g_debug_sect_name)
{
section_type = eSectionTypeDebug;
}
else if (const_sect_name == g_stabstr_sect_name)
{
section_type = eSectionTypeDataCString;
}
else if (const_sect_name == g_reloc_sect_name)
{
section_type = eSectionTypeOther;
}
else if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_CODE)
{
section_type = eSectionTypeCode;
}
else if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_INITIALIZED_DATA)
{
section_type = eSectionTypeData;
}
else if (m_sect_headers[idx].flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA)
{
if (m_sect_headers[idx].size == 0)
section_type = eSectionTypeZeroFill;
else
section_type = eSectionTypeData;
}
// Use a segment ID of the segment index shifted left by 8 so they
// never conflict with any of the sections.
SectionSP section_sp (new Section (module_sp, // Module to which this section belongs
idx + 1, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
const_sect_name, // Name of this section
section_type, // This section is a container of other sections.
m_sect_headers[idx].vmaddr, // File VM address == addresses as they are found in the object file
m_sect_headers[idx].vmsize, // VM size in bytes of this section
m_sect_headers[idx].offset, // Offset to the data for this section in the file
m_sect_headers[idx].size, // Size in bytes of this section as found in the the file
m_sect_headers[idx].flags)); // Flags for this section
//section_sp->SetIsEncrypted (segment_is_encrypted);
m_sections_ap->AddSection(section_sp);
}
}
return m_sections_ap.get();
}
bool
ObjectFilePECOFF::GetUUID (UUID* uuid)
{
return false;
}
uint32_t
ObjectFilePECOFF::GetDependentModules (FileSpecList& files)
{
return 0;
}
//----------------------------------------------------------------------
// Dump
//
// Dump the specifics of the runtime file container (such as any headers
// segments, sections, etc).
//----------------------------------------------------------------------
void
ObjectFilePECOFF::Dump(Stream *s)
{
Mutex::Locker locker(m_mutex);
s->Printf("%p: ", this);
s->Indent();
s->PutCString("ObjectFilePECOFF");
ArchSpec header_arch;
GetArchitecture (header_arch);
*s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n";
if (m_sections_ap.get())
m_sections_ap->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
if (m_dos_header.e_magic)
DumpDOSHeader (s, m_dos_header);
if (m_coff_header.machine)
{
DumpCOFFHeader (s, m_coff_header);
if (m_coff_header.hdrsize)
DumpOptCOFFHeader (s, m_coff_header_opt);
}
s->EOL();
DumpSectionHeaders(s);
s->EOL();
}
//----------------------------------------------------------------------
// DumpDOSHeader
//
// Dump the MS-DOS header to the specified output stream
//----------------------------------------------------------------------
void
ObjectFilePECOFF::DumpDOSHeader(Stream *s, const dos_header_t& header)
{
s->PutCString ("MSDOS Header\n");
s->Printf (" e_magic = 0x%4.4x\n", header.e_magic);
s->Printf (" e_cblp = 0x%4.4x\n", header.e_cblp);
s->Printf (" e_cp = 0x%4.4x\n", header.e_cp);
s->Printf (" e_crlc = 0x%4.4x\n", header.e_crlc);
s->Printf (" e_cparhdr = 0x%4.4x\n", header.e_cparhdr);
s->Printf (" e_minalloc = 0x%4.4x\n", header.e_minalloc);
s->Printf (" e_maxalloc = 0x%4.4x\n", header.e_maxalloc);
s->Printf (" e_ss = 0x%4.4x\n", header.e_ss);
s->Printf (" e_sp = 0x%4.4x\n", header.e_sp);
s->Printf (" e_csum = 0x%4.4x\n", header.e_csum);
s->Printf (" e_ip = 0x%4.4x\n", header.e_ip);
s->Printf (" e_cs = 0x%4.4x\n", header.e_cs);
s->Printf (" e_lfarlc = 0x%4.4x\n", header.e_lfarlc);
s->Printf (" e_ovno = 0x%4.4x\n", header.e_ovno);
s->Printf (" e_res[4] = { 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x }\n",
header.e_res[0],
header.e_res[1],
header.e_res[2],
header.e_res[3]);
s->Printf (" e_oemid = 0x%4.4x\n", header.e_oemid);
s->Printf (" e_oeminfo = 0x%4.4x\n", header.e_oeminfo);
s->Printf (" e_res2[10] = { 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x, 0x%4.4x }\n",
header.e_res2[0],
header.e_res2[1],
header.e_res2[2],
header.e_res2[3],
header.e_res2[4],
header.e_res2[5],
header.e_res2[6],
header.e_res2[7],
header.e_res2[8],
header.e_res2[9]);
s->Printf (" e_lfanew = 0x%8.8x\n", header.e_lfanew);
}
//----------------------------------------------------------------------
// DumpCOFFHeader
//
// Dump the COFF header to the specified output stream
//----------------------------------------------------------------------
void
ObjectFilePECOFF::DumpCOFFHeader(Stream *s, const coff_header_t& header)
{
s->PutCString ("COFF Header\n");
s->Printf (" machine = 0x%4.4x\n", header.machine);
s->Printf (" nsects = 0x%4.4x\n", header.nsects);
s->Printf (" modtime = 0x%8.8x\n", header.modtime);
s->Printf (" symoff = 0x%8.8x\n", header.symoff);
s->Printf (" nsyms = 0x%8.8x\n", header.nsyms);
s->Printf (" hdrsize = 0x%4.4x\n", header.hdrsize);
}
//----------------------------------------------------------------------
// DumpOptCOFFHeader
//
// Dump the optional COFF header to the specified output stream
//----------------------------------------------------------------------
void
ObjectFilePECOFF::DumpOptCOFFHeader(Stream *s, const coff_opt_header_t& header)
{
s->PutCString ("Optional COFF Header\n");
s->Printf (" magic = 0x%4.4x\n", header.magic);
s->Printf (" major_linker_version = 0x%2.2x\n", header.major_linker_version);
s->Printf (" minor_linker_version = 0x%2.2x\n", header.minor_linker_version);
s->Printf (" code_size = 0x%8.8x\n", header.code_size);
s->Printf (" data_size = 0x%8.8x\n", header.data_size);
s->Printf (" bss_size = 0x%8.8x\n", header.bss_size);
s->Printf (" entry = 0x%8.8x\n", header.entry);
s->Printf (" code_offset = 0x%8.8x\n", header.code_offset);
s->Printf (" data_offset = 0x%8.8x\n", header.data_offset);
s->Printf (" image_base = 0x%16.16llx\n", header.image_base);
s->Printf (" sect_alignment = 0x%8.8x\n", header.sect_alignment);
s->Printf (" file_alignment = 0x%8.8x\n", header.file_alignment);
s->Printf (" major_os_system_version = 0x%4.4x\n", header.major_os_system_version);
s->Printf (" minor_os_system_version = 0x%4.4x\n", header.minor_os_system_version);
s->Printf (" major_image_version = 0x%4.4x\n", header.major_image_version);
s->Printf (" minor_image_version = 0x%4.4x\n", header.minor_image_version);
s->Printf (" major_subsystem_version = 0x%4.4x\n", header.major_subsystem_version);
s->Printf (" minor_subsystem_version = 0x%4.4x\n", header.minor_subsystem_version);
s->Printf (" reserved1 = 0x%8.8x\n", header.reserved1);
s->Printf (" image_size = 0x%8.8x\n", header.image_size);
s->Printf (" header_size = 0x%8.8x\n", header.header_size);
s->Printf (" checksum = 0x%8.8x\n", header.checksum);
s->Printf (" subsystem = 0x%4.4x\n", header.subsystem);
s->Printf (" dll_flags = 0x%4.4x\n", header.dll_flags);
s->Printf (" stack_reserve_size = 0x%16.16llx\n", header.stack_reserve_size);
s->Printf (" stack_commit_size = 0x%16.16llx\n", header.stack_commit_size);
s->Printf (" heap_reserve_size = 0x%16.16llx\n", header.heap_reserve_size);
s->Printf (" heap_commit_size = 0x%16.16llx\n", header.heap_commit_size);
s->Printf (" loader_flags = 0x%8.8x\n", header.loader_flags);
s->Printf (" num_data_dir_entries = 0x%8.8zx\n", header.data_dirs.size());
uint32_t i;
for (i=0; i<header.data_dirs.size(); i++)
{
s->Printf (" data_dirs[%2u] vmaddr = 0x%8.8x, vmsize = 0x%8.8x\n",
i,
header.data_dirs[i].vmaddr,
header.data_dirs[i].vmsize);
}
}
//----------------------------------------------------------------------
// DumpSectionHeader
//
// Dump a single ELF section header to the specified output stream
//----------------------------------------------------------------------
void
ObjectFilePECOFF::DumpSectionHeader(Stream *s, const section_header_t& sh)
{
std::string name;
GetSectionName(name, sh);
s->Printf ("%-16s 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x 0x%4.4x 0x%4.4x 0x%8.8x\n",
name.c_str(),
sh.vmaddr,
sh.vmsize,
sh.offset,
sh.size,
sh.reloff,
sh.lineoff,
sh.nreloc,
sh.nline,
sh.flags);
}
//----------------------------------------------------------------------
// DumpSectionHeaders
//
// Dump all of the ELF section header to the specified output stream
//----------------------------------------------------------------------
void
ObjectFilePECOFF::DumpSectionHeaders(Stream *s)
{
s->PutCString ("Section Headers\n");
s->PutCString ("IDX name vm addr vm size file off file size reloc off line off nreloc nline flags\n");
s->PutCString ("==== ---------------- ---------- ---------- ---------- ---------- ---------- ---------- ------ ------ ----------\n");
uint32_t idx = 0;
SectionHeaderCollIter pos, end = m_sect_headers.end();
for (pos = m_sect_headers.begin(); pos != end; ++pos, ++idx)
{
s->Printf ("[%2u] ", idx);
ObjectFilePECOFF::DumpSectionHeader(s, *pos);
}
}
static bool
COFFMachineToMachCPU (uint16_t machine, ArchSpec &arch)
{
switch (machine)
{
case IMAGE_FILE_MACHINE_AMD64:
case IMAGE_FILE_MACHINE_IA64:
arch.SetArchitecture (eArchTypeMachO,
llvm::MachO::CPUTypeX86_64,
llvm::MachO::CPUSubType_X86_64_ALL);
return true;
case IMAGE_FILE_MACHINE_I386:
arch.SetArchitecture (eArchTypeMachO,
llvm::MachO::CPUTypeI386,
llvm::MachO::CPUSubType_I386_ALL);
return true;
case IMAGE_FILE_MACHINE_POWERPC:
case IMAGE_FILE_MACHINE_POWERPCFP:
arch.SetArchitecture (eArchTypeMachO,
llvm::MachO::CPUTypePowerPC,
llvm::MachO::CPUSubType_POWERPC_ALL);
return true;
case IMAGE_FILE_MACHINE_ARM:
case IMAGE_FILE_MACHINE_THUMB:
arch.SetArchitecture (eArchTypeMachO,
llvm::MachO::CPUTypeARM,
llvm::MachO::CPUSubType_ARM_V7);
return true;
}
return false;
}
bool
ObjectFilePECOFF::GetArchitecture (ArchSpec &arch)
{
// For index zero return our cpu type
return COFFMachineToMachCPU (m_coff_header.machine, arch);
}
ObjectFile::Type
ObjectFilePECOFF::CalculateType()
{
if (m_coff_header.machine != 0)
{
if ((m_coff_header.flags & IMAGE_FILE_DLL) == 0)
return eTypeExecutable;
else
return eTypeSharedLibrary;
}
return eTypeExecutable;
}
ObjectFile::Strata
ObjectFilePECOFF::CalculateStrata()
{
return eStrataUser;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ObjectFilePECOFF::GetPluginName()
{
return "ObjectFilePECOFF";
}
const char *
ObjectFilePECOFF::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ObjectFilePECOFF::GetPluginVersion()
{
return 1;
}