llvm-capstone/lld/ELF/InputSection.h
Peter Collingbourne 11dc7fcae2 ELF: Do not ICF two sections with different output sections.
Note that this doesn't do the right thing in the case where there is
a linker script. We probably need to move output section assignment
before ICF to get the correct behaviour here.

Differential Revision: https://reviews.llvm.org/D47241

llvm-svn: 333052
2018-05-23 01:58:43 +00:00

348 lines
12 KiB
C++

//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H
#include "Config.h"
#include "Relocations.h"
#include "Thunks.h"
#include "lld/Common/LLVM.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"
namespace lld {
namespace elf {
class Symbol;
struct SectionPiece;
class Defined;
class SyntheticSection;
class MergeSyntheticSection;
template <class ELFT> class ObjFile;
class OutputSection;
// This is the base class of all sections that lld handles. Some are sections in
// input files, some are sections in the produced output file and some exist
// just as a convenience for implementing special ways of combining some
// sections.
class SectionBase {
public:
enum Kind { Regular, EHFrame, Merge, Synthetic, Output };
Kind kind() const { return (Kind)SectionKind; }
StringRef Name;
// This pointer points to the "real" instance of this instance.
// Usually Repl == this. However, if ICF merges two sections,
// Repl pointer of one section points to another section. So,
// if you need to get a pointer to this instance, do not use
// this but instead this->Repl.
SectionBase *Repl;
unsigned SectionKind : 3;
// The next two bit fields are only used by InputSectionBase, but we
// put them here so the struct packs better.
// The garbage collector sets sections' Live bits.
// If GC is disabled, all sections are considered live by default.
unsigned Live : 1;
unsigned Bss : 1;
// Set for sections that should not be folded by ICF.
unsigned KeepUnique : 1;
// These corresponds to the fields in Elf_Shdr.
uint32_t Alignment;
uint64_t Flags;
uint64_t Entsize;
uint32_t Type;
uint32_t Link;
uint32_t Info;
OutputSection *getOutputSection();
const OutputSection *getOutputSection() const {
return const_cast<SectionBase *>(this)->getOutputSection();
}
// Translate an offset in the input section to an offset in the output
// section.
uint64_t getOffset(uint64_t Offset) const;
uint64_t getVA(uint64_t Offset = 0) const;
protected:
SectionBase(Kind SectionKind, StringRef Name, uint64_t Flags,
uint64_t Entsize, uint64_t Alignment, uint32_t Type,
uint32_t Info, uint32_t Link)
: Name(Name), Repl(this), SectionKind(SectionKind), Live(false),
Bss(false), KeepUnique(false), Alignment(Alignment), Flags(Flags),
Entsize(Entsize), Type(Type), Link(Link), Info(Info) {}
};
// This corresponds to a section of an input file.
class InputSectionBase : public SectionBase {
public:
template <class ELFT>
InputSectionBase(ObjFile<ELFT> &File, const typename ELFT::Shdr &Header,
StringRef Name, Kind SectionKind);
InputSectionBase(InputFile *File, uint64_t Flags, uint32_t Type,
uint64_t Entsize, uint32_t Link, uint32_t Info,
uint32_t Alignment, ArrayRef<uint8_t> Data, StringRef Name,
Kind SectionKind);
static bool classof(const SectionBase *S) { return S->kind() != Output; }
// The file which contains this section. It's dynamic type is always
// ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
// its static type.
InputFile *File;
template <class ELFT> ObjFile<ELFT> *getFile() const {
return cast_or_null<ObjFile<ELFT>>(File);
}
ArrayRef<uint8_t> Data;
uint64_t getOffsetInFile() const;
// True if this section has already been placed to a linker script
// output section. This is needed because, in a linker script, you
// can refer to the same section more than once. For example, in
// the following linker script,
//
// .foo : { *(.text) }
// .bar : { *(.text) }
//
// .foo takes all .text sections, and .bar becomes empty. To achieve
// this, we need to memorize whether a section has been placed or
// not for each input section.
bool Assigned = false;
// Input sections are part of an output section. Special sections
// like .eh_frame and merge sections are first combined into a
// synthetic section that is then added to an output section. In all
// cases this points one level up.
SectionBase *Parent = nullptr;
// Relocations that refer to this section.
const void *FirstRelocation = nullptr;
unsigned NumRelocations : 31;
unsigned AreRelocsRela : 1;
template <class ELFT> ArrayRef<typename ELFT::Rel> rels() const {
assert(!AreRelocsRela);
return llvm::makeArrayRef(
static_cast<const typename ELFT::Rel *>(FirstRelocation),
NumRelocations);
}
template <class ELFT> ArrayRef<typename ELFT::Rela> relas() const {
assert(AreRelocsRela);
return llvm::makeArrayRef(
static_cast<const typename ELFT::Rela *>(FirstRelocation),
NumRelocations);
}
// InputSections that are dependent on us (reverse dependency for GC)
llvm::TinyPtrVector<InputSection *> DependentSections;
// Returns the size of this section (even if this is a common or BSS.)
size_t getSize() const;
InputSection *getLinkOrderDep() const;
// Compilers emit zlib-compressed debug sections if the -gz option
// is given. This function checks if this section is compressed, and
// if so, decompress in memory.
void maybeDecompress();
// Returns a source location string. Used to construct an error message.
template <class ELFT> std::string getLocation(uint64_t Offset);
std::string getSrcMsg(const Symbol &Sym, uint64_t Offset);
std::string getObjMsg(uint64_t Offset);
// Each section knows how to relocate itself. These functions apply
// relocations, assuming that Buf points to this section's copy in
// the mmap'ed output buffer.
template <class ELFT> void relocate(uint8_t *Buf, uint8_t *BufEnd);
void relocateAlloc(uint8_t *Buf, uint8_t *BufEnd);
// The native ELF reloc data type is not very convenient to handle.
// So we convert ELF reloc records to our own records in Relocations.cpp.
// This vector contains such "cooked" relocations.
std::vector<Relocation> Relocations;
template <typename T> llvm::ArrayRef<T> getDataAs() const {
size_t S = Data.size();
assert(S % sizeof(T) == 0);
return llvm::makeArrayRef<T>((const T *)Data.data(), S / sizeof(T));
}
private:
// A pointer that owns decompressed data if a section is compressed by zlib.
// Since the feature is not used often, this is usually a nullptr.
std::unique_ptr<char[]> DecompressBuf;
};
// SectionPiece represents a piece of splittable section contents.
// We allocate a lot of these and binary search on them. This means that they
// have to be as compact as possible, which is why we don't store the size (can
// be found by looking at the next one).
struct SectionPiece {
SectionPiece(size_t Off, uint32_t Hash, bool Live)
: InputOff(Off), Hash(Hash), OutputOff(0),
Live(Live || !Config->GcSections) {}
uint32_t InputOff;
uint32_t Hash;
int64_t OutputOff : 63;
uint64_t Live : 1;
};
static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
// This corresponds to a SHF_MERGE section of an input file.
class MergeInputSection : public InputSectionBase {
public:
template <class ELFT>
MergeInputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
StringRef Name);
MergeInputSection(uint64_t Flags, uint32_t Type, uint64_t Entsize,
ArrayRef<uint8_t> Data, StringRef Name);
static bool classof(const SectionBase *S) { return S->kind() == Merge; }
void splitIntoPieces();
// Translate an offset in the input section to an offset in the parent
// MergeSyntheticSection.
uint64_t getParentOffset(uint64_t Offset) const;
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<SectionPiece> Pieces;
llvm::DenseMap<uint32_t, uint32_t> OffsetMap;
// Returns I'th piece's data. This function is very hot when
// string merging is enabled, so we want to inline.
LLVM_ATTRIBUTE_ALWAYS_INLINE
llvm::CachedHashStringRef getData(size_t I) const {
size_t Begin = Pieces[I].InputOff;
size_t End =
(Pieces.size() - 1 == I) ? Data.size() : Pieces[I + 1].InputOff;
return {toStringRef(Data.slice(Begin, End - Begin)), Pieces[I].Hash};
}
// Returns the SectionPiece at a given input section offset.
SectionPiece *getSectionPiece(uint64_t Offset);
const SectionPiece *getSectionPiece(uint64_t Offset) const {
return const_cast<MergeInputSection *>(this)->getSectionPiece(Offset);
}
SyntheticSection *getParent() const;
private:
void splitStrings(ArrayRef<uint8_t> A, size_t Size);
void splitNonStrings(ArrayRef<uint8_t> A, size_t Size);
};
struct EhSectionPiece {
EhSectionPiece(size_t Off, InputSectionBase *Sec, uint32_t Size,
unsigned FirstRelocation)
: InputOff(Off), Sec(Sec), Size(Size), FirstRelocation(FirstRelocation) {}
ArrayRef<uint8_t> data() { return {Sec->Data.data() + this->InputOff, Size}; }
size_t InputOff;
ssize_t OutputOff = -1;
InputSectionBase *Sec;
uint32_t Size;
unsigned FirstRelocation;
};
// This corresponds to a .eh_frame section of an input file.
class EhInputSection : public InputSectionBase {
public:
template <class ELFT>
EhInputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
StringRef Name);
static bool classof(const SectionBase *S) { return S->kind() == EHFrame; }
template <class ELFT> void split();
template <class ELFT, class RelTy> void split(ArrayRef<RelTy> Rels);
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<EhSectionPiece> Pieces;
SyntheticSection *getParent() const;
};
// This is a section that is added directly to an output section
// instead of needing special combination via a synthetic section. This
// includes all input sections with the exceptions of SHF_MERGE and
// .eh_frame. It also includes the synthetic sections themselves.
class InputSection : public InputSectionBase {
public:
InputSection(InputFile *F, uint64_t Flags, uint32_t Type, uint32_t Alignment,
ArrayRef<uint8_t> Data, StringRef Name, Kind K = Regular);
template <class ELFT>
InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
StringRef Name);
// Write this section to a mmap'ed file, assuming Buf is pointing to
// beginning of the output section.
template <class ELFT> void writeTo(uint8_t *Buf);
uint64_t getOffset(uint64_t Offset) const { return OutSecOff + Offset; }
OutputSection *getParent() const;
// This variable has two usages. Initially, it represents an index in the
// OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
// sections. After assignAddresses is called, it represents the offset from
// the beginning of the output section this section was assigned to.
uint64_t OutSecOff = 0;
static bool classof(const SectionBase *S);
InputSectionBase *getRelocatedSection() const;
template <class ELFT, class RelTy>
void relocateNonAlloc(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
// Used by ICF.
uint32_t Class[2] = {0, 0};
// Called by ICF to merge two input sections.
void replace(InputSection *Other);
static InputSection Discarded;
private:
template <class ELFT, class RelTy>
void copyRelocations(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
template <class ELFT> void copyShtGroup(uint8_t *Buf);
};
// The list of all input sections.
extern std::vector<InputSectionBase *> InputSections;
} // namespace elf
std::string toString(const elf::InputSectionBase *);
} // namespace lld
#endif