llvm with tablegen backend for capstone disassembler
Go to file
Louis Dionne f29002a4b7 [libunwind] Add a _LIBUNWIND_VERSION macro
This allows us to detect whether we're being compiled with LLVM's libunwind
more easily, without CMake having to set explicit variables.

As discussed in https://llvm.org/D119538.

Differential Revision: https://reviews.llvm.org/D121015
2022-03-30 11:23:36 -04:00
.github
bolt [BOLT] Align constant islands to 8 bytes 2022-03-27 22:30:42 +03:00
clang [NFC] Use range based loop. 2022-03-30 22:44:34 +08:00
clang-tools-extra [clang-tidy] Make test work on architectures which do not provide a __int128_t 2022-03-30 08:03:32 +02:00
cmake [cmake] Demote fatal error to a warning when we don't know the Apple SDK in use 2022-03-22 15:36:47 -04:00
compiler-rt Revert "[scudo] Wrap clang pragma to avoid GCC error" 2022-03-29 17:52:20 -07:00
cross-project-tests DebugInfo: Don't allow type units to references types in the CU 2022-03-25 23:49:03 +00:00
flang Fix invalid overflow check in flang 2022-03-30 16:47:33 +02:00
libc [libc][obvious] Add mfma to log2f 2022-03-29 16:34:52 -07:00
libclc
libcxx [libunwind] Add a _LIBUNWIND_VERSION macro 2022-03-30 11:23:36 -04:00
libcxxabi [libunwind] Add a _LIBUNWIND_VERSION macro 2022-03-30 11:23:36 -04:00
libunwind [libunwind] Add a _LIBUNWIND_VERSION macro 2022-03-30 11:23:36 -04:00
lld [ELF] --emit-relocs: adjust offsets of .rel[a].eh_frame relocations 2022-03-29 09:51:41 -07:00
lldb Recommit [lldb/test] Make category-skipping logic "platform"-independent 2022-03-30 17:16:37 +02:00
llvm [SDAG] avoid libcalls to fmin/fmax for soft-float targets 2022-03-30 11:22:03 -04:00
llvm-libgcc
mlir [MLIR] Remove LLVMVectorType 2022-03-30 10:57:42 +02:00
openmp [libomptarget] x86 offloading fails map_back_race.cpp intermittently 2022-03-29 16:01:17 +00:00
polly [RuntimeDebugBuilder] Remove pointer element type accesses 2022-03-30 14:02:41 +02:00
pstl
runtimes [runtimes] Detect changes to Tests.cmake 2022-03-18 10:01:52 -07:00
test
third-party
utils [Bazel] Update zlib to 1.2.12 2022-03-28 15:16:39 -07:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md
README.md [README] Add hint, how to use automatically the optimal number of CPU cores 2022-03-07 12:07:11 +01:00
SECURITY.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.