llvm with tablegen backend for capstone disassembler
Go to file
Michael Trent f72d001e09 llvm-objdump should ignore Mach-O stab symbols for disassembly.
Summary:
llvm-objdump will commonly error out when disassembling a Mach-O binary with
stab symbols, or when printing a Mach-O symbol table that includesstab symbols.
That is because the Mach-O N_OSO symbol has been modified to include the
bottom 8-bit value of the Mach-O's cpusubtype value in the section field. In
general, one cannot blindly assume a stab symbol's section field is valid
unless one has actually consulted the specification for the specific stab.

Since objdump mostly just walks the symbol table to get mnemonics for code
disassembly it's best for objdump to just ignore stab symbols. llvm-nm will
do a more complete and correct job of displaying Mach-O symbol table contents.

Reviewers: pete, lhames, ab, thegameg, jhenderson, MaskRay

Reviewed By: thegameg, MaskRay

Subscribers: MaskRay, rupprecht, seiya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71394
2019-12-20 15:20:53 -08:00
clang Revert "Customize simplified dumping and matching of LambdaExpr" 2019-12-20 21:33:31 +00:00
clang-tools-extra Fix the links to clang analyzers checkers 2019-12-19 22:31:24 +01:00
compiler-rt [iOS sim] Ensure simulator device is booted in iossim_prepare.py 2019-12-20 13:44:01 -08:00
debuginfo-tests [debuginfo] Update test to account for missing __debug_macinfo 2019-11-11 10:40:47 -08:00
libc [libc] Add implementation of errno and define the other macros of errno.h. 2019-12-09 13:34:08 -08:00
libclc
libcxx [libc++] Update feature list for NetBSD 2019-12-20 17:50:47 +01:00
libcxxabi [libc++abi] Fix non-constant initialization of default terminate 2019-12-11 20:32:14 -05:00
libunwind [libunwind] Fix evaluating DWARF operation DW_OP_pick 2019-12-18 12:22:21 -08:00
lld [LLD] [COFF] Fix reporting duplicate errors for absolute symbols 2019-12-19 12:14:08 +02:00
lldb Temporarily restrict the test for D71372 to darwin till we fix it on other systems. 2019-12-20 14:31:41 -08:00
llgo
llvm llvm-objdump should ignore Mach-O stab symbols for disassembly. 2019-12-20 15:20:53 -08:00
openmp [libomptarget][nfc] Provide target_impl malloc/free 2019-12-19 16:54:28 +00:00
parallel-libs
polly [IR] Include more target specific intrinsic headers 2019-12-14 19:19:35 -08:00
pstl
.arcconfig
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
CONTRIBUTING.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00
README.md Add contributing info to CONTRIBUTING.md and README.md 2019-12-02 15:47:15 +00:00

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.