Zachary Turner 7f6a7a3752 Remove FileSpec::ReadFileContents.
This functionality is subsumed by DataBufferLLVM, which is
also more efficient since it will try to mmap.  However, we
don't yet support mmaping writable private sections, and in
some cases we were using ReadFileContents and then modifying
the buffer.  To address that I've added a flag to the
DataBufferLLVM methods that allow you to map privately, which
disables the mmaping path entirely.  Eventually we should teach
DataBufferLLVM to use mmap with writable private, but that is
orthogonal to this effort.

Differential Revision: https://reviews.llvm.org/D30622

llvm-svn: 297095
2017-03-06 23:42:14 +00:00

5055 lines
173 KiB
C++

//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "llvm/ADT/StringSwitch.h"
// Project includes
#include "RenderScriptRuntime.h"
#include "RenderScriptScriptGroup.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/DumpDataExtractor.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataBufferLLVM.h"
#include "lldb/Utility/Error.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegularExpression.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_renderscript;
#define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
namespace {
// The empirical_type adds a basic level of validation to arbitrary data
// allowing us to track if data has been discovered and stored or not. An
// empirical_type will be marked as valid only if it has been explicitly
// assigned to.
template <typename type_t> class empirical_type {
public:
// Ctor. Contents is invalid when constructed.
empirical_type() : valid(false) {}
// Return true and copy contents to out if valid, else return false.
bool get(type_t &out) const {
if (valid)
out = data;
return valid;
}
// Return a pointer to the contents or nullptr if it was not valid.
const type_t *get() const { return valid ? &data : nullptr; }
// Assign data explicitly.
void set(const type_t in) {
data = in;
valid = true;
}
// Mark contents as invalid.
void invalidate() { valid = false; }
// Returns true if this type contains valid data.
bool isValid() const { return valid; }
// Assignment operator.
empirical_type<type_t> &operator=(const type_t in) {
set(in);
return *this;
}
// Dereference operator returns contents.
// Warning: Will assert if not valid so use only when you know data is valid.
const type_t &operator*() const {
assert(valid);
return data;
}
protected:
bool valid;
type_t data;
};
// ArgItem is used by the GetArgs() function when reading function arguments
// from the target.
struct ArgItem {
enum { ePointer, eInt32, eInt64, eLong, eBool } type;
uint64_t value;
explicit operator uint64_t() const { return value; }
};
// Context structure to be passed into GetArgsXXX(), argument reading functions
// below.
struct GetArgsCtx {
RegisterContext *reg_ctx;
Process *process;
};
bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error err;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
ArgItem &arg = arg_list[i];
// advance up the stack by one argument
sp += sizeof(uint32_t);
// get the argument type size
size_t arg_size = sizeof(uint32_t);
// read the argument from memory
arg.value = 0;
Error err;
size_t read =
ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
if (read != arg_size || !err.Success()) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
__FUNCTION__, uint64_t(i), err.AsCString());
return false;
}
}
return true;
}
bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// number of arguments passed in registers
static const uint32_t args_in_reg = 6;
// register passing order
static const std::array<const char *, args_in_reg> reg_names{
{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
// argument type to size mapping
static const std::array<size_t, 5> arg_size{{
8, // ePointer,
4, // eInt32,
8, // eInt64,
8, // eLong,
4, // eBool,
}};
Error err;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
// step over the return address
sp += sizeof(uint64_t);
// check the stack alignment was correct (16 byte aligned)
if ((sp & 0xf) != 0x0) {
if (log)
log->Printf("%s - stack misaligned", __FUNCTION__);
return false;
}
// find the start of arguments on the stack
uint64_t sp_offset = 0;
for (uint32_t i = args_in_reg; i < num_args; ++i) {
sp_offset += arg_size[arg_list[i].type];
}
// round up to multiple of 16
sp_offset = (sp_offset + 0xf) & 0xf;
sp += sp_offset;
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < args_in_reg) {
const RegisterInfo *reg =
ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
RegisterValue reg_val;
if (ctx.reg_ctx->ReadRegister(reg, reg_val))
arg.value = reg_val.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t size = arg_size[arg_list[i].type];
// read the argument from memory
arg.value = 0;
// note: due to little endian layout reading 4 or 8 bytes will give the
// correct value.
size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
success = (err.Success() && read == size);
// advance past this argument
sp -= size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), err.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t args_in_reg = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error err;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < args_in_reg) {
const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
RegisterValue reg_val;
if (ctx.reg_ctx->ReadRegister(reg, reg_val))
arg.value = reg_val.GetAsUInt32(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t arg_size = sizeof(uint32_t);
// clear all 64bits
arg.value = 0;
// read this argument from memory
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
success = (err.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += sizeof(uint32_t);
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), err.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t args_in_reg = 8;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < args_in_reg) {
const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
RegisterValue reg_val;
if (ctx.reg_ctx->ReadRegister(reg, reg_val))
arg.value = reg_val.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
if (log)
log->Printf("%s - reading arguments spilled to stack not implemented",
__FUNCTION__);
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
uint64_t(i));
return false;
}
}
return true;
}
bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t args_in_reg = 4;
// register file offset to first argument
static const uint32_t reg_offset = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error err;
// find offset to arguments on the stack (+16 to skip over a0-a3 shadow space)
uint64_t sp = ctx.reg_ctx->GetSP() + 16;
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < args_in_reg) {
const RegisterInfo *reg =
ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
RegisterValue reg_val;
if (ctx.reg_ctx->ReadRegister(reg, reg_val))
arg.value = reg_val.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
const size_t arg_size = sizeof(uint32_t);
arg.value = 0;
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
success = (err.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += arg_size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), err.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t args_in_reg = 8;
// register file offset to first argument
static const uint32_t reg_offset = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error err;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < args_in_reg) {
const RegisterInfo *reg =
ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
RegisterValue reg_val;
if (ctx.reg_ctx->ReadRegister(reg, reg_val))
arg.value = reg_val.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t arg_size = sizeof(uint64_t);
// clear all 64bits
arg.value = 0;
// read this argument from memory
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
success = (err.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += arg_size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), err.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// verify that we have a target
if (!exe_ctx.GetTargetPtr()) {
if (log)
log->Printf("%s - invalid target", __FUNCTION__);
return false;
}
GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
assert(ctx.reg_ctx && ctx.process);
// dispatch based on architecture
switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
case llvm::Triple::ArchType::x86:
return GetArgsX86(ctx, arg_list, num_args);
case llvm::Triple::ArchType::x86_64:
return GetArgsX86_64(ctx, arg_list, num_args);
case llvm::Triple::ArchType::arm:
return GetArgsArm(ctx, arg_list, num_args);
case llvm::Triple::ArchType::aarch64:
return GetArgsAarch64(ctx, arg_list, num_args);
case llvm::Triple::ArchType::mipsel:
return GetArgsMipsel(ctx, arg_list, num_args);
case llvm::Triple::ArchType::mips64el:
return GetArgsMips64el(ctx, arg_list, num_args);
default:
// unsupported architecture
if (log) {
log->Printf(
"%s - architecture not supported: '%s'", __FUNCTION__,
exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
}
return false;
}
}
bool IsRenderScriptScriptModule(ModuleSP module) {
if (!module)
return false;
return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
eSymbolTypeData) != nullptr;
}
bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
// takes an argument of the form 'num[,num][,num]'.
// Where 'coord_s' is a comma separated 1,2 or 3-dimensional coordinate
// with the whitespace trimmed.
// Missing coordinates are defaulted to zero.
// If parsing of any elements fails the contents of &coord are undefined
// and `false` is returned, `true` otherwise
RegularExpression regex;
RegularExpression::Match regex_match(3);
bool matched = false;
if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) &&
regex.Execute(coord_s, &regex_match))
matched = true;
else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) &&
regex.Execute(coord_s, &regex_match))
matched = true;
else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) &&
regex.Execute(coord_s, &regex_match))
matched = true;
if (!matched)
return false;
auto get_index = [&](int idx, uint32_t &i) -> bool {
std::string group;
errno = 0;
if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group))
return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i);
return true;
};
return get_index(0, coord.x) && get_index(1, coord.y) &&
get_index(2, coord.z);
}
bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
SymbolContext sc;
uint32_t resolved_flags =
module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
if (resolved_flags & eSymbolContextFunction) {
if (sc.function) {
const uint32_t offset = sc.function->GetPrologueByteSize();
ConstString name = sc.GetFunctionName();
if (offset)
addr.Slide(offset);
if (log)
log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
name.AsCString(), offset);
}
return true;
} else
return false;
}
} // anonymous namespace
// The ScriptDetails class collects data associated with a single script
// instance.
struct RenderScriptRuntime::ScriptDetails {
~ScriptDetails() = default;
enum ScriptType { eScript, eScriptC };
// The derived type of the script.
empirical_type<ScriptType> type;
// The name of the original source file.
empirical_type<std::string> res_name;
// Path to script .so file on the device.
empirical_type<std::string> shared_lib;
// Directory where kernel objects are cached on device.
empirical_type<std::string> cache_dir;
// Pointer to the context which owns this script.
empirical_type<lldb::addr_t> context;
// Pointer to the script object itself.
empirical_type<lldb::addr_t> script;
};
// This Element class represents the Element object in RS, defining the type
// associated with an Allocation.
struct RenderScriptRuntime::Element {
// Taken from rsDefines.h
enum DataKind {
RS_KIND_USER,
RS_KIND_PIXEL_L = 7,
RS_KIND_PIXEL_A,
RS_KIND_PIXEL_LA,
RS_KIND_PIXEL_RGB,
RS_KIND_PIXEL_RGBA,
RS_KIND_PIXEL_DEPTH,
RS_KIND_PIXEL_YUV,
RS_KIND_INVALID = 100
};
// Taken from rsDefines.h
enum DataType {
RS_TYPE_NONE = 0,
RS_TYPE_FLOAT_16,
RS_TYPE_FLOAT_32,
RS_TYPE_FLOAT_64,
RS_TYPE_SIGNED_8,
RS_TYPE_SIGNED_16,
RS_TYPE_SIGNED_32,
RS_TYPE_SIGNED_64,
RS_TYPE_UNSIGNED_8,
RS_TYPE_UNSIGNED_16,
RS_TYPE_UNSIGNED_32,
RS_TYPE_UNSIGNED_64,
RS_TYPE_BOOLEAN,
RS_TYPE_UNSIGNED_5_6_5,
RS_TYPE_UNSIGNED_5_5_5_1,
RS_TYPE_UNSIGNED_4_4_4_4,
RS_TYPE_MATRIX_4X4,
RS_TYPE_MATRIX_3X3,
RS_TYPE_MATRIX_2X2,
RS_TYPE_ELEMENT = 1000,
RS_TYPE_TYPE,
RS_TYPE_ALLOCATION,
RS_TYPE_SAMPLER,
RS_TYPE_SCRIPT,
RS_TYPE_MESH,
RS_TYPE_PROGRAM_FRAGMENT,
RS_TYPE_PROGRAM_VERTEX,
RS_TYPE_PROGRAM_RASTER,
RS_TYPE_PROGRAM_STORE,
RS_TYPE_FONT,
RS_TYPE_INVALID = 10000
};
std::vector<Element> children; // Child Element fields for structs
empirical_type<lldb::addr_t>
element_ptr; // Pointer to the RS Element of the Type
empirical_type<DataType>
type; // Type of each data pointer stored by the allocation
empirical_type<DataKind>
type_kind; // Defines pixel type if Allocation is created from an image
empirical_type<uint32_t>
type_vec_size; // Vector size of each data point, e.g '4' for uchar4
empirical_type<uint32_t> field_count; // Number of Subelements
empirical_type<uint32_t> datum_size; // Size of a single Element with padding
empirical_type<uint32_t> padding; // Number of padding bytes
empirical_type<uint32_t>
array_size; // Number of items in array, only needed for strucrs
ConstString type_name; // Name of type, only needed for structs
static const ConstString &
GetFallbackStructName(); // Print this as the type name of a struct Element
// If we can't resolve the actual struct name
bool ShouldRefresh() const {
const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
const bool valid_type =
type.isValid() && type_vec_size.isValid() && type_kind.isValid();
return !valid_ptr || !valid_type || !datum_size.isValid();
}
};
// This AllocationDetails class collects data associated with a single
// allocation instance.
struct RenderScriptRuntime::AllocationDetails {
struct Dimension {
uint32_t dim_1;
uint32_t dim_2;
uint32_t dim_3;
uint32_t cube_map;
Dimension() {
dim_1 = 0;
dim_2 = 0;
dim_3 = 0;
cube_map = 0;
}
};
// The FileHeader struct specifies the header we use for writing allocations
// to a binary file. Our format begins with the ASCII characters "RSAD",
// identifying the file as an allocation dump. Member variables dims and
// hdr_size are then written consecutively, immediately followed by an
// instance of the ElementHeader struct. Because Elements can contain
// subelements, there may be more than one instance of the ElementHeader
// struct. With this first instance being the root element, and the other
// instances being the root's descendants. To identify which instances are an
// ElementHeader's children, each struct is immediately followed by a sequence
// of consecutive offsets to the start of its child structs. These offsets are
// 4 bytes in size, and the 0 offset signifies no more children.
struct FileHeader {
uint8_t ident[4]; // ASCII 'RSAD' identifying the file
uint32_t dims[3]; // Dimensions
uint16_t hdr_size; // Header size in bytes, including all element headers
};
struct ElementHeader {
uint16_t type; // DataType enum
uint32_t kind; // DataKind enum
uint32_t element_size; // Size of a single element, including padding
uint16_t vector_size; // Vector width
uint32_t array_size; // Number of elements in array
};
// Monotonically increasing from 1
static uint32_t ID;
// Maps Allocation DataType enum and vector size to printable strings
// using mapping from RenderScript numerical types summary documentation
static const char *RsDataTypeToString[][4];
// Maps Allocation DataKind enum to printable strings
static const char *RsDataKindToString[];
// Maps allocation types to format sizes for printing.
static const uint32_t RSTypeToFormat[][3];
// Give each allocation an ID as a way
// for commands to reference it.
const uint32_t id;
// Allocation Element type
RenderScriptRuntime::Element element;
// Dimensions of the Allocation
empirical_type<Dimension> dimension;
// Pointer to address of the RS Allocation
empirical_type<lldb::addr_t> address;
// Pointer to the data held by the Allocation
empirical_type<lldb::addr_t> data_ptr;
// Pointer to the RS Type of the Allocation
empirical_type<lldb::addr_t> type_ptr;
// Pointer to the RS Context of the Allocation
empirical_type<lldb::addr_t> context;
// Size of the allocation
empirical_type<uint32_t> size;
// Stride between rows of the allocation
empirical_type<uint32_t> stride;
// Give each allocation an id, so we can reference it in user commands.
AllocationDetails() : id(ID++) {}
bool ShouldRefresh() const {
bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
element.ShouldRefresh();
}
};
const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
static const ConstString FallbackStructName("struct");
return FallbackStructName;
}
uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
"User", "Undefined", "Undefined", "Undefined",
"Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
"L Pixel", "A Pixel", "LA Pixel", "RGB Pixel",
"RGBA Pixel", "Pixel Depth", "YUV Pixel"};
const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
{"None", "None", "None", "None"},
{"half", "half2", "half3", "half4"},
{"float", "float2", "float3", "float4"},
{"double", "double2", "double3", "double4"},
{"char", "char2", "char3", "char4"},
{"short", "short2", "short3", "short4"},
{"int", "int2", "int3", "int4"},
{"long", "long2", "long3", "long4"},
{"uchar", "uchar2", "uchar3", "uchar4"},
{"ushort", "ushort2", "ushort3", "ushort4"},
{"uint", "uint2", "uint3", "uint4"},
{"ulong", "ulong2", "ulong3", "ulong4"},
{"bool", "bool2", "bool3", "bool4"},
{"packed_565", "packed_565", "packed_565", "packed_565"},
{"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
{"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
{"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
{"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
{"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
// Handlers
{"RS Element", "RS Element", "RS Element", "RS Element"},
{"RS Type", "RS Type", "RS Type", "RS Type"},
{"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
{"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
{"RS Script", "RS Script", "RS Script", "RS Script"},
// Deprecated
{"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
{"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
"RS Program Fragment"},
{"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
"RS Program Vertex"},
{"RS Program Raster", "RS Program Raster", "RS Program Raster",
"RS Program Raster"},
{"RS Program Store", "RS Program Store", "RS Program Store",
"RS Program Store"},
{"RS Font", "RS Font", "RS Font", "RS Font"}};
// Used as an index into the RSTypeToFormat array elements
enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
// { format enum of single element, format enum of element vector, size of
// element}
const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
// RS_TYPE_NONE
{eFormatHex, eFormatHex, 1},
// RS_TYPE_FLOAT_16
{eFormatFloat, eFormatVectorOfFloat16, 2},
// RS_TYPE_FLOAT_32
{eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
// RS_TYPE_FLOAT_64
{eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
// RS_TYPE_SIGNED_8
{eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
// RS_TYPE_SIGNED_16
{eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
// RS_TYPE_SIGNED_32
{eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
// RS_TYPE_SIGNED_64
{eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
// RS_TYPE_UNSIGNED_8
{eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
// RS_TYPE_UNSIGNED_16
{eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
// RS_TYPE_UNSIGNED_32
{eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
// RS_TYPE_UNSIGNED_64
{eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
// RS_TYPE_BOOL
{eFormatBoolean, eFormatBoolean, 1},
// RS_TYPE_UNSIGNED_5_6_5
{eFormatHex, eFormatHex, sizeof(uint16_t)},
// RS_TYPE_UNSIGNED_5_5_5_1
{eFormatHex, eFormatHex, sizeof(uint16_t)},
// RS_TYPE_UNSIGNED_4_4_4_4
{eFormatHex, eFormatHex, sizeof(uint16_t)},
// RS_TYPE_MATRIX_4X4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
// RS_TYPE_MATRIX_3X3
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
// RS_TYPE_MATRIX_2X2
{eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
LanguageRuntime *
RenderScriptRuntime::CreateInstance(Process *process,
lldb::LanguageType language) {
if (language == eLanguageTypeExtRenderScript)
return new RenderScriptRuntime(process);
else
return nullptr;
}
// Callback with a module to search for matching symbols. We first check that
// the module contains RS kernels. Then look for a symbol which matches our
// kernel name. The breakpoint address is finally set using the address of this
// symbol.
Searcher::CallbackReturn
RSBreakpointResolver::SearchCallback(SearchFilter &filter,
SymbolContext &context, Address *, bool) {
ModuleSP module = context.module_sp;
if (!module || !IsRenderScriptScriptModule(module))
return Searcher::eCallbackReturnContinue;
// Attempt to set a breakpoint on the kernel name symbol within the module
// library. If it's not found, it's likely debug info is unavailable - try to
// set a breakpoint on <name>.expand.
const Symbol *kernel_sym =
module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
if (!kernel_sym) {
std::string kernel_name_expanded(m_kernel_name.AsCString());
kernel_name_expanded.append(".expand");
kernel_sym = module->FindFirstSymbolWithNameAndType(
ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
}
if (kernel_sym) {
Address bp_addr = kernel_sym->GetAddress();
if (filter.AddressPasses(bp_addr))
m_breakpoint->AddLocation(bp_addr);
}
return Searcher::eCallbackReturnContinue;
}
Searcher::CallbackReturn
RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
lldb_private::SymbolContext &context,
Address *, bool) {
// We need to have access to the list of reductions currently parsed, as
// reduce names don't actually exist as
// symbols in a module. They are only identifiable by parsing the .rs.info
// packet, or finding the expand symbol. We
// therefore need access to the list of parsed rs modules to properly resolve
// reduction names.
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
ModuleSP module = context.module_sp;
if (!module || !IsRenderScriptScriptModule(module))
return Searcher::eCallbackReturnContinue;
if (!m_rsmodules)
return Searcher::eCallbackReturnContinue;
for (const auto &module_desc : *m_rsmodules) {
if (module_desc->m_module != module)
continue;
for (const auto &reduction : module_desc->m_reductions) {
if (reduction.m_reduce_name != m_reduce_name)
continue;
std::array<std::pair<ConstString, int>, 5> funcs{
{{reduction.m_init_name, eKernelTypeInit},
{reduction.m_accum_name, eKernelTypeAccum},
{reduction.m_comb_name, eKernelTypeComb},
{reduction.m_outc_name, eKernelTypeOutC},
{reduction.m_halter_name, eKernelTypeHalter}}};
for (const auto &kernel : funcs) {
// Skip constituent functions that don't match our spec
if (!(m_kernel_types & kernel.second))
continue;
const auto kernel_name = kernel.first;
const auto symbol = module->FindFirstSymbolWithNameAndType(
kernel_name, eSymbolTypeCode);
if (!symbol)
continue;
auto address = symbol->GetAddress();
if (filter.AddressPasses(address)) {
bool new_bp;
if (!SkipPrologue(module, address)) {
if (log)
log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
}
m_breakpoint->AddLocation(address, &new_bp);
if (log)
log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__,
new_bp ? "new" : "existing", kernel_name.GetCString(),
address.GetModule()->GetFileSpec().GetCString());
}
}
}
}
return eCallbackReturnContinue;
}
Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
SearchFilter &filter, SymbolContext &context, Address *addr,
bool containing) {
if (!m_breakpoint)
return eCallbackReturnContinue;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
ModuleSP &module = context.module_sp;
if (!module || !IsRenderScriptScriptModule(module))
return Searcher::eCallbackReturnContinue;
std::vector<std::string> names;
m_breakpoint->GetNames(names);
if (names.empty())
return eCallbackReturnContinue;
for (auto &name : names) {
const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
if (!sg) {
if (log)
log->Printf("%s: could not find script group for %s", __FUNCTION__,
name.c_str());
continue;
}
if (log)
log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
if (log) {
log->Printf("%s: Adding breakpoint for %s", __FUNCTION__,
k.m_name.AsCString());
log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
}
const lldb_private::Symbol *sym =
module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
if (!sym) {
if (log)
log->Printf("%s: Unable to find symbol for %s", __FUNCTION__,
k.m_name.AsCString());
continue;
}
if (log) {
log->Printf("%s: Found symbol name is %s", __FUNCTION__,
sym->GetName().AsCString());
}
auto address = sym->GetAddress();
if (!SkipPrologue(module, address)) {
if (log)
log->Printf("%s: Error trying to skip prologue", __FUNCTION__);
}
bool new_bp;
m_breakpoint->AddLocation(address, &new_bp);
if (log)
log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__,
new_bp ? "new " : "", k.m_name.AsCString());
// exit after placing the first breakpoint if we do not intend to stop
// on all kernels making up this script group
if (!m_stop_on_all)
break;
}
}
return eCallbackReturnContinue;
}
void RenderScriptRuntime::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"RenderScript language support", CreateInstance,
GetCommandObject);
}
void RenderScriptRuntime::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
static ConstString plugin_name("renderscript");
return plugin_name;
}
RenderScriptRuntime::ModuleKind
RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
if (module_sp) {
if (IsRenderScriptScriptModule(module_sp))
return eModuleKindKernelObj;
// Is this the main RS runtime library
const ConstString rs_lib("libRS.so");
if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
return eModuleKindLibRS;
}
const ConstString rs_driverlib("libRSDriver.so");
if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
return eModuleKindDriver;
}
const ConstString rs_cpureflib("libRSCpuRef.so");
if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
return eModuleKindImpl;
}
}
return eModuleKindIgnored;
}
bool RenderScriptRuntime::IsRenderScriptModule(
const lldb::ModuleSP &module_sp) {
return GetModuleKind(module_sp) != eModuleKindIgnored;
}
void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++) {
auto mod = module_list.GetModuleAtIndex(i);
if (IsRenderScriptModule(mod)) {
LoadModule(mod);
}
}
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
bool RenderScriptRuntime::GetDynamicTypeAndAddress(
ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type) {
return false;
}
TypeAndOrName
RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
ValueObject &static_value) {
return type_and_or_name;
}
bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
return false;
}
lldb::BreakpointResolverSP
RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp,
bool throw_bp) {
BreakpointResolverSP resolver_sp;
return resolver_sp;
}
const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
{
// rsdScript
{"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
"NS0_7ScriptCEPKcS7_PKhjj",
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
"7ScriptCEPKcS7_PKhmj",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInit},
{"rsdScriptInvokeForEachMulti",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
"_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
"_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
{"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
"script7ContextEPKNS0_6ScriptEjPvj",
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
"6ScriptEjPvm",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
// rsdAllocation
{"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
"ontextEPNS0_10AllocationEb",
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
"10AllocationEb",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationInit},
{"rsdAllocationRead2D",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
"10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
"10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
0, RenderScriptRuntime::eModuleKindDriver, nullptr},
{"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
"ript7ContextEPNS0_10AllocationE",
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
"10AllocationE",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
// renderscript script groups
{"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
"tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
"InfojjjEj",
"_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
"dKernelDriverInfojjjEj",
0, RenderScriptRuntime::eModuleKindImpl,
&lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
const size_t RenderScriptRuntime::s_runtimeHookCount =
sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
bool RenderScriptRuntime::HookCallback(void *baton,
StoppointCallbackContext *ctx,
lldb::user_id_t break_id,
lldb::user_id_t break_loc_id) {
RuntimeHook *hook = (RuntimeHook *)baton;
ExecutionContext exe_ctx(ctx->exe_ctx_ref);
RenderScriptRuntime *lang_rt =
(RenderScriptRuntime *)exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
lang_rt->HookCallback(hook, exe_ctx);
return false;
}
void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
ExecutionContext &exe_ctx) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name);
if (hook->defn->grabber) {
(this->*(hook->defn->grabber))(hook, exe_ctx);
}
}
void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
RuntimeHook *hook_info, ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eGroupName = 0,
eGroupNameSize,
eKernel,
eKernelCount,
};
std::array<ArgItem, 4> args{{
{ArgItem::ePointer, 0}, // const char *groupName
{ArgItem::eInt32, 0}, // const uint32_t groupNameSize
{ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
{ArgItem::eInt32, 0}, // const uint32_t kernelCount
}};
if (!GetArgs(context, args.data(), args.size())) {
if (log)
log->Printf("%s - Error while reading the function parameters",
__FUNCTION__);
return;
} else if (log) {
log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__,
addr_t(args[eGroupName]));
log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__,
uint64_t(args[eGroupNameSize]));
log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__,
addr_t(args[eKernel]));
log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__,
uint64_t(args[eKernelCount]));
}
// parse script group name
ConstString group_name;
{
Error err;
const uint64_t len = uint64_t(args[eGroupNameSize]);
std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
buffer.get()[len] = '\0';
if (!err.Success()) {
if (log)
log->Printf("Error reading scriptgroup name from target");
return;
} else {
if (log)
log->Printf("Extracted scriptgroup name %s", buffer.get());
}
// write back the script group name
group_name.SetCString(buffer.get());
}
// create or access existing script group
RSScriptGroupDescriptorSP group;
{
// search for existing script group
for (auto sg : m_scriptGroups) {
if (sg->m_name == group_name) {
group = sg;
break;
}
}
if (!group) {
group.reset(new RSScriptGroupDescriptor);
group->m_name = group_name;
m_scriptGroups.push_back(group);
} else {
// already have this script group
if (log)
log->Printf("Attempt to add duplicate script group %s",
group_name.AsCString());
return;
}
}
assert(group);
const uint32_t target_ptr_size = m_process->GetAddressByteSize();
std::vector<addr_t> kernels;
// parse kernel addresses in script group
for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
RSScriptGroupDescriptor::Kernel kernel;
// extract script group kernel addresses from the target
const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
uint64_t kernel_addr = 0;
Error err;
size_t read =
m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
if (!err.Success() || read != target_ptr_size) {
if (log)
log->Printf("Error parsing kernel address %" PRIu64 " in script group",
i);
return;
}
if (log)
log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64,
kernel_addr);
kernel.m_addr = kernel_addr;
// try to resolve the associated kernel name
if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
if (log)
log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
kernel_addr);
return;
}
// try to find the non '.expand' function
{
const llvm::StringRef expand(".expand");
const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
if (name_ref.endswith(expand)) {
const ConstString base_kernel(name_ref.drop_back(expand.size()));
// verify this function is a valid kernel
if (IsKnownKernel(base_kernel)) {
kernel.m_name = base_kernel;
if (log)
log->Printf("%s - found non expand version '%s'", __FUNCTION__,
base_kernel.GetCString());
}
}
}
// add to a list of script group kernels we know about
group->m_kernels.push_back(kernel);
}
// Resolve any pending scriptgroup breakpoints
{
Target &target = m_process->GetTarget();
const BreakpointList &list = target.GetBreakpointList();
const size_t num_breakpoints = list.GetSize();
if (log)
log->Printf("Resolving %zu breakpoints", num_breakpoints);
for (size_t i = 0; i < num_breakpoints; ++i) {
const BreakpointSP bp = list.GetBreakpointAtIndex(i);
if (bp) {
if (bp->MatchesName(group_name.AsCString())) {
if (log)
log->Printf("Found breakpoint with name %s",
group_name.AsCString());
bp->ResolveBreakpoint();
}
}
}
}
}
void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
RuntimeHook *hook, ExecutionContext &exe_ctx) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext = 0,
eRsScript,
eRsSlot,
eRsAIns,
eRsInLen,
eRsAOut,
eRsUsr,
eRsUsrLen,
eRsSc,
};
std::array<ArgItem, 9> args{{
ArgItem{ArgItem::ePointer, 0}, // const Context *rsc
ArgItem{ArgItem::ePointer, 0}, // Script *s
ArgItem{ArgItem::eInt32, 0}, // uint32_t slot
ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns
ArgItem{ArgItem::eInt32, 0}, // size_t inLen
ArgItem{ArgItem::ePointer, 0}, // Allocation *aout
ArgItem{ArgItem::ePointer, 0}, // const void *usr
ArgItem{ArgItem::eInt32, 0}, // size_t usrLen
ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc
}};
bool success = GetArgs(exe_ctx, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - Error while reading the function parameters",
__FUNCTION__);
return;
}
const uint32_t target_ptr_size = m_process->GetAddressByteSize();
Error err;
std::vector<uint64_t> allocs;
// traverse allocation list
for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
// calculate offest to allocation pointer
const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
// Note: due to little endian layout, reading 32bits or 64bits into res
// will give the correct results.
uint64_t result = 0;
size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
if (read != target_ptr_size || !err.Success()) {
if (log)
log->Printf(
"%s - Error while reading allocation list argument %" PRIu64,
__FUNCTION__, i);
} else {
allocs.push_back(result);
}
}
// if there is an output allocation track it
if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
allocs.push_back(alloc_out);
}
// for all allocations we have found
for (const uint64_t alloc_addr : allocs) {
AllocationDetails *alloc = LookUpAllocation(alloc_addr);
if (!alloc)
alloc = CreateAllocation(alloc_addr);
if (alloc) {
// save the allocation address
if (alloc->address.isValid()) {
// check the allocation address we already have matches
assert(*alloc->address.get() == alloc_addr);
} else {
alloc->address = alloc_addr;
}
// save the context
if (log) {
if (alloc->context.isValid() &&
*alloc->context.get() != addr_t(args[eRsContext]))
log->Printf("%s - Allocation used by multiple contexts",
__FUNCTION__);
}
alloc->context = addr_t(args[eRsContext]);
}
}
// make sure we track this script object
if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
LookUpScript(addr_t(args[eRsScript]), true)) {
if (log) {
if (script->context.isValid() &&
*script->context.get() != addr_t(args[eRsContext]))
log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
}
script->context = addr_t(args[eRsContext]);
}
}
void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext,
eRsScript,
eRsId,
eRsData,
eRsLength,
};
std::array<ArgItem, 5> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsScript
ArgItem{ArgItem::eInt32, 0}, // eRsId
ArgItem{ArgItem::ePointer, 0}, // eRsData
ArgItem{ArgItem::eInt32, 0}, // eRsLength
}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error reading the function parameters.", __FUNCTION__);
return;
}
if (log) {
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
":%" PRIu64 "bytes.",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
addr_t script_addr = addr_t(args[eRsScript]);
if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
auto rsm = m_scriptMappings[script_addr];
if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
rsg.m_name.AsCString(),
rsm->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
}
void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
ExecutionContext &exe_ctx) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum { eRsContext, eRsAlloc, eRsForceZero };
std::array<ArgItem, 3> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
ArgItem{ArgItem::eBool, 0}, // eRsForceZero
}};
bool success = GetArgs(exe_ctx, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error while reading the function parameters",
__FUNCTION__);
return;
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
if (alloc)
alloc->context = uint64_t(args[eRsContext]);
}
void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
ExecutionContext &exe_ctx) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext,
eRsAlloc,
};
std::array<ArgItem, 2> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
}};
bool success = GetArgs(exe_ctx, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error while reading the function parameters.",
__FUNCTION__);
return;
}
if (log)
log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
auto &allocation_ap = *iter; // get the unique pointer
if (allocation_ap->address.isValid() &&
*allocation_ap->address.get() == addr_t(args[eRsAlloc])) {
m_allocations.erase(iter);
if (log)
log->Printf("%s - deleted allocation entry.", __FUNCTION__);
return;
}
}
if (log)
log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
}
void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
ExecutionContext &exe_ctx) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error err;
Process *process = exe_ctx.GetProcessPtr();
enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
std::array<ArgItem, 4> args{
{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
bool success = GetArgs(exe_ctx, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error while reading the function parameters.",
__FUNCTION__);
return;
}
std::string res_name;
process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
if (err.Fail()) {
if (log)
log->Printf("%s - error reading res_name: %s.", __FUNCTION__,
err.AsCString());
}
std::string cache_dir;
process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
if (err.Fail()) {
if (log)
log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__,
err.AsCString());
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str());
if (res_name.size() > 0) {
StreamString strm;
strm.Printf("librs.%s.so", res_name.c_str());
ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
if (script) {
script->type = ScriptDetails::eScriptC;
script->cache_dir = cache_dir;
script->res_name = res_name;
script->shared_lib = strm.GetString();
script->context = addr_t(args[eRsContext]);
}
if (log)
log->Printf("%s - '%s' tagged with context 0x%" PRIx64
" and script 0x%" PRIx64 ".",
__FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]));
} else if (log) {
log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
}
}
void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
ModuleKind kind) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!module) {
return;
}
Target &target = GetProcess()->GetTarget();
const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
if (machine != llvm::Triple::ArchType::x86 &&
machine != llvm::Triple::ArchType::arm &&
machine != llvm::Triple::ArchType::aarch64 &&
machine != llvm::Triple::ArchType::mipsel &&
machine != llvm::Triple::ArchType::mips64el &&
machine != llvm::Triple::ArchType::x86_64) {
if (log)
log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
return;
}
const uint32_t target_ptr_size =
target.GetArchitecture().GetAddressByteSize();
std::array<bool, s_runtimeHookCount> hook_placed;
hook_placed.fill(false);
for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
if (hook_defn->kind != kind) {
continue;
}
const char *symbol_name = (target_ptr_size == 4)
? hook_defn->symbol_name_m32
: hook_defn->symbol_name_m64;
const Symbol *sym = module->FindFirstSymbolWithNameAndType(
ConstString(symbol_name), eSymbolTypeCode);
if (!sym) {
if (log) {
log->Printf("%s - symbol '%s' related to the function %s not found",
__FUNCTION__, symbol_name, hook_defn->name);
}
continue;
}
addr_t addr = sym->GetLoadAddress(&target);
if (addr == LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("%s - unable to resolve the address of hook function '%s' "
"with symbol '%s'.",
__FUNCTION__, hook_defn->name, symbol_name);
continue;
} else {
if (log)
log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
__FUNCTION__, hook_defn->name, addr);
}
RuntimeHookSP hook(new RuntimeHook());
hook->address = addr;
hook->defn = hook_defn;
hook->bp_sp = target.CreateBreakpoint(addr, true, false);
hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
m_runtimeHooks[addr] = hook;
if (log) {
log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
" at 0x%" PRIx64 ".",
__FUNCTION__, hook_defn->name,
module->GetFileSpec().GetFilename().AsCString(),
(uint64_t)hook_defn->version, (uint64_t)addr);
}
hook_placed[idx] = true;
}
// log any unhooked function
if (log) {
for (size_t i = 0; i < hook_placed.size(); ++i) {
if (hook_placed[i])
continue;
const HookDefn &hook_defn = s_runtimeHookDefns[i];
if (hook_defn.kind != kind)
continue;
log->Printf("%s - function %s was not hooked", __FUNCTION__,
hook_defn.name);
}
}
}
void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
if (!rsmodule_sp)
return;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const ModuleSP module = rsmodule_sp->m_module;
const FileSpec &file = module->GetPlatformFileSpec();
// Iterate over all of the scripts that we currently know of.
// Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
for (const auto &rs_script : m_scripts) {
// Extract the expected .so file path for this script.
std::string shared_lib;
if (!rs_script->shared_lib.get(shared_lib))
continue;
// Only proceed if the module that has loaded corresponds to this script.
if (file.GetFilename() != ConstString(shared_lib.c_str()))
continue;
// Obtain the script address which we use as a key.
lldb::addr_t script;
if (!rs_script->script.get(script))
continue;
// If we have a script mapping for the current script.
if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
// if the module we have stored is different to the one we just received.
if (m_scriptMappings[script] != rsmodule_sp) {
if (log)
log->Printf(
"%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
__FUNCTION__, (uint64_t)script,
rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
// We don't have a script mapping for the current script.
else {
// Obtain the script resource name.
std::string res_name;
if (rs_script->res_name.get(res_name))
// Set the modules resource name.
rsmodule_sp->m_resname = res_name;
// Add Script/Module pair to map.
m_scriptMappings[script] = rsmodule_sp;
if (log)
log->Printf(
"%s - script %" PRIx64 " associated with rsmodule '%s'.",
__FUNCTION__, (uint64_t)script,
rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
// Uses the Target API to evaluate the expression passed as a parameter to the
// function The result of that expression is returned an unsigned 64 bit int,
// via the result* parameter. Function returns true on success, and false on
// failure
bool RenderScriptRuntime::EvalRSExpression(const char *expr,
StackFrame *frame_ptr,
uint64_t *result) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s(%s)", __FUNCTION__, expr);
ValueObjectSP expr_result;
EvaluateExpressionOptions options;
options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
// Perform the actual expression evaluation
auto &target = GetProcess()->GetTarget();
target.EvaluateExpression(expr, frame_ptr, expr_result, options);
if (!expr_result) {
if (log)
log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
return false;
}
// The result of the expression is invalid
if (!expr_result->GetError().Success()) {
Error err = expr_result->GetError();
// Expression returned is void, so this is actually a success
if (err.GetError() == UserExpression::kNoResult) {
if (log)
log->Printf("%s - expression returned void.", __FUNCTION__);
result = nullptr;
return true;
}
if (log)
log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
err.AsCString());
return false;
}
bool success = false;
// We only read the result as an uint32_t.
*result = expr_result->GetValueAsUnsigned(0, &success);
if (!success) {
if (log)
log->Printf("%s - couldn't convert expression result to uint32_t",
__FUNCTION__);
return false;
}
return true;
}
namespace {
// Used to index expression format strings
enum ExpressionStrings {
eExprGetOffsetPtr = 0,
eExprAllocGetType,
eExprTypeDimX,
eExprTypeDimY,
eExprTypeDimZ,
eExprTypeElemPtr,
eExprElementType,
eExprElementKind,
eExprElementVec,
eExprElementFieldCount,
eExprSubelementsId,
eExprSubelementsName,
eExprSubelementsArrSize,
_eExprLast // keep at the end, implicit size of the array runtime_expressions
};
// max length of an expanded expression
const int jit_max_expr_size = 512;
// Retrieve the string to JIT for the given expression
const char *JITTemplate(ExpressionStrings e) {
// Format strings containing the expressions we may need to evaluate.
static std::array<const char *, _eExprLast> runtime_expressions = {
{// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"(int*)_"
"Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
"CubemapFace"
"(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
// data in the following way mHal.state.dimX; mHal.state.dimY;
// mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; into
// typeData Need to specify 32 or 64 bit for uint_t since this differs
// between devices
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[0]", // X dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
// elemData
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[0]", // Type
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[1]", // Kind
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
// *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about
// fields/Subelements Element* of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
// Name of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
// Array size of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}};
return runtime_expressions[e];
}
} // end of the anonymous namespace
// JITs the RS runtime for the internal data pointer of an allocation. Is passed
// x,y,z coordinates for the pointer to a specific element. Then sets the
// data_ptr member in Allocation with the result. Returns true on success, false
// otherwise
bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
StackFrame *frame_ptr, uint32_t x,
uint32_t y, uint32_t z) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!alloc->address.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
char expr_buf[jit_max_expr_size];
int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
*alloc->address.get(), x, y, z);
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(expr_buf, frame_ptr, &result))
return false;
addr_t data_ptr = static_cast<lldb::addr_t>(result);
alloc->data_ptr = data_ptr;
return true;
}
// JITs the RS runtime for the internal pointer to the RS Type of an allocation
// Then sets the type_ptr member in Allocation with the result. Returns true on
// success, false otherwise
bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!alloc->address.isValid() || !alloc->context.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *fmt_str = JITTemplate(eExprAllocGetType);
char expr_buf[jit_max_expr_size];
int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
*alloc->context.get(), *alloc->address.get());
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(expr_buf, frame_ptr, &result))
return false;
addr_t type_ptr = static_cast<lldb::addr_t>(result);
alloc->type_ptr = type_ptr;
return true;
}
// JITs the RS runtime for information about the dimensions and type of an
// allocation Then sets dimension and element_ptr members in Allocation with the
// result. Returns true on success, false otherwise
bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
if (log)
log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
return false;
}
// Expression is different depending on if device is 32 or 64 bit
uint32_t target_ptr_size =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
"Invalid number of expressions");
char expr_bufs[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; ++i) {
const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, bits,
*alloc->context.get(), *alloc->type_ptr.get());
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
AllocationDetails::Dimension dims;
dims.dim_1 = static_cast<uint32_t>(results[0]);
dims.dim_2 = static_cast<uint32_t>(results[1]);
dims.dim_3 = static_cast<uint32_t>(results[2]);
alloc->dimension = dims;
addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
alloc->element.element_ptr = element_ptr;
if (log)
log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") Element*: 0x%" PRIx64 ".",
__FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
return true;
}
// JITs the RS runtime for information about the Element of an allocation Then
// sets type, type_vec_size, field_count and type_kind members in Element with
// the result. Returns true on success, false otherwise
bool RenderScriptRuntime::JITElementPacked(Element &elem,
const lldb::addr_t context,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
"Invalid number of expressions");
char expr_bufs[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; i++) {
const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
*elem.element_ptr.get());
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
elem.type_kind =
static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
elem.type_vec_size = static_cast<uint32_t>(results[2]);
elem.field_count = static_cast<uint32_t>(results[3]);
if (log)
log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
", vector size %" PRIu32 ", field count %" PRIu32,
__FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
*elem.type_vec_size.get(), *elem.field_count.get());
// If this Element has subelements then JIT rsaElementGetSubElements() for
// details about its fields
if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
return false;
return true;
}
// JITs the RS runtime for information about the subelements/fields of a struct
// allocation This is necessary for infering the struct type so we can pretty
// print the allocation's contents. Returns true on success, false otherwise
bool RenderScriptRuntime::JITSubelements(Element &elem,
const lldb::addr_t context,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const short num_exprs = 3;
assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
"Invalid number of expressions");
char expr_buffer[jit_max_expr_size];
uint64_t results;
// Iterate over struct fields.
const uint32_t field_count = *elem.field_count.get();
for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
Element child;
for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
const char *fmt_str =
JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
field_count, field_count, field_count, context,
*elem.element_ptr.get(), field_count, field_index);
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
return false;
if (log)
log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
switch (expr_index) {
case 0: // Element* of child
child.element_ptr = static_cast<addr_t>(results);
break;
case 1: // Name of child
{
lldb::addr_t address = static_cast<addr_t>(results);
Error err;
std::string name;
GetProcess()->ReadCStringFromMemory(address, name, err);
if (!err.Fail())
child.type_name = ConstString(name);
else {
if (log)
log->Printf("%s - warning: Couldn't read field name.",
__FUNCTION__);
}
break;
}
case 2: // Array size of child
child.array_size = static_cast<uint32_t>(results);
break;
}
}
// We need to recursively JIT each Element field of the struct since
// structs can be nested inside structs.
if (!JITElementPacked(child, context, frame_ptr))
return false;
elem.children.push_back(child);
}
// Try to infer the name of the struct type so we can pretty print the
// allocation contents.
FindStructTypeName(elem, frame_ptr);
return true;
}
// JITs the RS runtime for the address of the last element in the allocation.
// The `elem_size` parameter represents the size of a single element, including
// padding. Which is needed as an offset from the last element pointer. Using
// this offset minus the starting address we can calculate the size of the
// allocation. Returns true on success, false otherwise
bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
!alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// Find dimensions
uint32_t dim_x = alloc->dimension.get()->dim_1;
uint32_t dim_y = alloc->dimension.get()->dim_2;
uint32_t dim_z = alloc->dimension.get()->dim_3;
// Our plan of jitting the last element address doesn't seem to work for
// struct Allocations` Instead try to infer the size ourselves without any
// inter element padding.
if (alloc->element.children.size() > 0) {
if (dim_x == 0)
dim_x = 1;
if (dim_y == 0)
dim_y = 1;
if (dim_z == 0)
dim_z = 1;
alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
if (log)
log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
__FUNCTION__, *alloc->size.get());
return true;
}
const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
char expr_buf[jit_max_expr_size];
// Calculate last element
dim_x = dim_x == 0 ? 0 : dim_x - 1;
dim_y = dim_y == 0 ? 0 : dim_y - 1;
dim_z = dim_z == 0 ? 0 : dim_z - 1;
int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
*alloc->address.get(), dim_x, dim_y, dim_z);
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(expr_buf, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
// Find pointer to last element and add on size of an element
alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
*alloc->element.datum_size.get();
return true;
}
// JITs the RS runtime for information about the stride between rows in the
// allocation. This is done to detect padding, since allocated memory is 16-byte
// aligned.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
char expr_buf[jit_max_expr_size];
int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
*alloc->address.get(), 0, 1, 0);
if (written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(expr_buf, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
return true;
}
// JIT all the current runtime info regarding an allocation
bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
StackFrame *frame_ptr) {
// GetOffsetPointer()
if (!JITDataPointer(alloc, frame_ptr))
return false;
// rsaAllocationGetType()
if (!JITTypePointer(alloc, frame_ptr))
return false;
// rsaTypeGetNativeData()
if (!JITTypePacked(alloc, frame_ptr))
return false;
// rsaElementGetNativeData()
if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
return false;
// Sets the datum_size member in Element
SetElementSize(alloc->element);
// Use GetOffsetPointer() to infer size of the allocation
if (!JITAllocationSize(alloc, frame_ptr))
return false;
return true;
}
// Function attempts to set the type_name member of the paramaterised Element
// object.
// This string should be the name of the struct type the Element represents.
// We need this string for pretty printing the Element to users.
void RenderScriptRuntime::FindStructTypeName(Element &elem,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.type_name.IsEmpty()) // Name already set
return;
else
elem.type_name = Element::GetFallbackStructName(); // Default type name if
// we don't succeed
// Find all the global variables from the script rs modules
VariableList var_list;
for (auto module_sp : m_rsmodules)
module_sp->m_module->FindGlobalVariables(
RegularExpression(llvm::StringRef(".")), true, UINT32_MAX, var_list);
// Iterate over all the global variables looking for one with a matching type
// to the Element.
// We make the assumption a match exists since there needs to be a global
// variable to reflect the struct type back into java host code.
for (uint32_t i = 0; i < var_list.GetSize(); ++i) {
const VariableSP var_sp(var_list.GetVariableAtIndex(i));
if (!var_sp)
continue;
ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
if (!valobj_sp)
continue;
// Find the number of variable fields.
// If it has no fields, or more fields than our Element, then it can't be
// the struct we're looking for.
// Don't check for equality since RS can add extra struct members for
// padding.
size_t num_children = valobj_sp->GetNumChildren();
if (num_children > elem.children.size() || num_children == 0)
continue;
// Iterate over children looking for members with matching field names.
// If all the field names match, this is likely the struct we want.
// TODO: This could be made more robust by also checking children data
// sizes, or array size
bool found = true;
for (size_t i = 0; i < num_children; ++i) {
ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
if (!child || (child->GetName() != elem.children[i].type_name)) {
found = false;
break;
}
}
// RS can add extra struct members for padding in the format
// '#rs_padding_[0-9]+'
if (found && num_children < elem.children.size()) {
const uint32_t size_diff = elem.children.size() - num_children;
if (log)
log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
size_diff);
for (uint32_t i = 0; i < size_diff; ++i) {
const ConstString &name = elem.children[num_children + i].type_name;
if (strcmp(name.AsCString(), "#rs_padding") < 0)
found = false;
}
}
// We've found a global variable with matching type
if (found) {
// Dereference since our Element type isn't a pointer.
if (valobj_sp->IsPointerType()) {
Error err;
ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
if (!err.Fail())
valobj_sp = deref_valobj;
}
// Save name of variable in Element.
elem.type_name = valobj_sp->GetTypeName();
if (log)
log->Printf("%s - element name set to %s", __FUNCTION__,
elem.type_name.AsCString());
return;
}
}
}
// Function sets the datum_size member of Element. Representing the size of a
// single instance including padding.
// Assumes the relevant allocation information has already been jitted.
void RenderScriptRuntime::SetElementSize(Element &elem) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Element::DataType type = *elem.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
"Invalid allocation type");
const uint32_t vec_size = *elem.type_vec_size.get();
uint32_t data_size = 0;
uint32_t padding = 0;
// Element is of a struct type, calculate size recursively.
if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
for (Element &child : elem.children) {
SetElementSize(child);
const uint32_t array_size =
child.array_size.isValid() ? *child.array_size.get() : 1;
data_size += *child.datum_size.get() * array_size;
}
}
// These have been packed already
else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
} else if (type < Element::RS_TYPE_ELEMENT) {
data_size =
vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
if (vec_size == 3)
padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
} else
data_size =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
elem.padding = padding;
elem.datum_size = data_size + padding;
if (log)
log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
data_size + padding);
}
// Given an allocation, this function copies the allocation contents from device
// into a buffer on the heap.
// Returning a shared pointer to the buffer containing the data.
std::shared_ptr<uint8_t>
RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// JIT all the allocation details
if (alloc->ShouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info",
__FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return nullptr;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
"Allocation information not available");
// Allocate a buffer to copy data into
const uint32_t size = *alloc->size.get();
std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
if (!buffer) {
if (log)
log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
__FUNCTION__, size);
return nullptr;
}
// Read the inferior memory
Error err;
lldb::addr_t data_ptr = *alloc->data_ptr.get();
GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
if (err.Fail()) {
if (log)
log->Printf("%s - '%s' Couldn't read %" PRIu32
" bytes of allocation data from 0x%" PRIx64,
__FUNCTION__, err.AsCString(), size, data_ptr);
return nullptr;
}
return buffer;
}
// Function copies data from a binary file into an allocation.
// There is a header at the start of the file, FileHeader, before the data
// content itself.
// Information from this header is used to display warnings to the user about
// incompatibilities
bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
const char *path,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
*alloc->address.get());
// JIT all the allocation details
if (alloc->ShouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
alloc->element.datum_size.isValid() &&
"Allocation information not available");
// Check we can read from file
FileSpec file(path, true);
if (!file.Exists()) {
strm.Printf("Error: File %s does not exist", path);
strm.EOL();
return false;
}
if (!file.Readable()) {
strm.Printf("Error: File %s does not have readable permissions", path);
strm.EOL();
return false;
}
// Read file into data buffer
auto data_sp = DataBufferLLVM::CreateFromPath(file.GetPath());
// Cast start of buffer to FileHeader and use pointer to read metadata
void *file_buf = data_sp->GetBytes();
if (file_buf == nullptr ||
data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
sizeof(AllocationDetails::ElementHeader))) {
strm.Printf("Error: File %s does not contain enough data for header", path);
strm.EOL();
return false;
}
const AllocationDetails::FileHeader *file_header =
static_cast<AllocationDetails::FileHeader *>(file_buf);
// Check file starts with ascii characters "RSAD"
if (memcmp(file_header->ident, "RSAD", 4)) {
strm.Printf("Error: File doesn't contain identifier for an RS allocation "
"dump. Are you sure this is the correct file?");
strm.EOL();
return false;
}
// Look at the type of the root element in the header
AllocationDetails::ElementHeader root_el_hdr;
memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) +
sizeof(AllocationDetails::FileHeader),
sizeof(AllocationDetails::ElementHeader));
if (log)
log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
__FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
// Check if the target allocation and file both have the same number of bytes
// for an Element
if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
" bytes, allocation %" PRIu32 " bytes",
root_el_hdr.element_size, *alloc->element.datum_size.get());
strm.EOL();
}
// Check if the target allocation and file both have the same type
const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
const uint32_t file_type = root_el_hdr.type;
if (file_type > Element::RS_TYPE_FONT) {
strm.Printf("Warning: File has unknown allocation type");
strm.EOL();
} else if (alloc_type != file_type) {
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString
// array
uint32_t target_type_name_idx = alloc_type;
uint32_t head_type_name_idx = file_type;
if (alloc_type >= Element::RS_TYPE_ELEMENT &&
alloc_type <= Element::RS_TYPE_FONT)
target_type_name_idx = static_cast<Element::DataType>(
(alloc_type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (file_type >= Element::RS_TYPE_ELEMENT &&
file_type <= Element::RS_TYPE_FONT)
head_type_name_idx = static_cast<Element::DataType>(
(file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
1);
const char *head_type_name =
AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
const char *target_type_name =
AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
strm.Printf(
"Warning: Mismatched Types - file '%s' type, allocation '%s' type",
head_type_name, target_type_name);
strm.EOL();
}
// Advance buffer past header
file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size;
// Calculate size of allocation data in file
size_t size = data_sp->GetByteSize() - file_header->hdr_size;
// Check if the target allocation and file both have the same total data size.
const uint32_t alloc_size = *alloc->size.get();
if (alloc_size != size) {
strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
" bytes, allocation 0x%" PRIx32 " bytes",
(uint64_t)size, alloc_size);
strm.EOL();
// Set length to copy to minimum
size = alloc_size < size ? alloc_size : size;
}
// Copy file data from our buffer into the target allocation.
lldb::addr_t alloc_data = *alloc->data_ptr.get();
Error err;
size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
if (!err.Success() || written != size) {
strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
strm.EOL();
return false;
}
strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
alloc->id);
strm.EOL();
return true;
}
// Function takes as parameters a byte buffer, which will eventually be written
// to file as the element header, an offset into that buffer, and an Element
// that will be saved into the buffer at the parametrised offset.
// Return value is the new offset after writing the element into the buffer.
// Elements are saved to the file as the ElementHeader struct followed by
// offsets to the structs of all the element's children.
size_t RenderScriptRuntime::PopulateElementHeaders(
const std::shared_ptr<uint8_t> header_buffer, size_t offset,
const Element &elem) {
// File struct for an element header with all the relevant details copied from
// elem. We assume members are valid already.
AllocationDetails::ElementHeader elem_header;
elem_header.type = *elem.type.get();
elem_header.kind = *elem.type_kind.get();
elem_header.element_size = *elem.datum_size.get();
elem_header.vector_size = *elem.type_vec_size.get();
elem_header.array_size =
elem.array_size.isValid() ? *elem.array_size.get() : 0;
const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
// Copy struct into buffer and advance offset
// We assume that header_buffer has been checked for nullptr before this
// method is called
memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
offset += elem_header_size;
// Starting offset of child ElementHeader struct
size_t child_offset =
offset + ((elem.children.size() + 1) * sizeof(uint32_t));
for (const RenderScriptRuntime::Element &child : elem.children) {
// Recursively populate the buffer with the element header structs of
// children. Then save the offsets where they were set after the parent
// element header.
memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
offset += sizeof(uint32_t);
child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
}
// Zero indicates no more children
memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
return child_offset;
}
// Given an Element object this function returns the total size needed in the
// file header to store the element's details. Taking into account the size of
// the element header struct, plus the offsets to all the element's children.
// Function is recursive so that the size of all ancestors is taken into
// account.
size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
// Offsets to children plus zero terminator
size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
// Size of header struct with type details
size += sizeof(AllocationDetails::ElementHeader);
// Calculate recursively for all descendants
for (const Element &child : elem.children)
size += CalculateElementHeaderSize(child);
return size;
}
// Function copies allocation contents into a binary file. This file can then be
// loaded later into a different allocation. There is a header, FileHeader,
// before the allocation data containing meta-data.
bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
const char *path,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
*alloc->address.get());
// JIT all the allocation details
if (alloc->ShouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
alloc->element.type_vec_size.isValid() &&
alloc->element.datum_size.get() &&
alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
"Allocation information not available");
// Check we can create writable file
FileSpec file_spec(path, true);
File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate |
File::eOpenOptionTruncate);
if (!file) {
strm.Printf("Error: Failed to open '%s' for writing", path);
strm.EOL();
return false;
}
// Read allocation into buffer of heap memory
const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer) {
strm.Printf("Error: Couldn't read allocation data into buffer");
strm.EOL();
return false;
}
// Create the file header
AllocationDetails::FileHeader head;
memcpy(head.ident, "RSAD", 4);
head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
UINT16_MAX &&
"Element header too large");
head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
element_header_size);
// Write the file header
size_t num_bytes = sizeof(AllocationDetails::FileHeader);
if (log)
log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
(uint64_t)num_bytes);
Error err = file.Write(&head, num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
strm.EOL();
return false;
}
// Create the headers describing the element type of the allocation.
std::shared_ptr<uint8_t> element_header_buffer(
new uint8_t[element_header_size]);
if (element_header_buffer == nullptr) {
strm.Printf("Internal Error: Couldn't allocate %" PRIu64
" bytes on the heap",
(uint64_t)element_header_size);
strm.EOL();
return false;
}
PopulateElementHeaders(element_header_buffer, 0, alloc->element);
// Write headers for allocation element type to file
num_bytes = element_header_size;
if (log)
log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
__FUNCTION__, (uint64_t)num_bytes);
err = file.Write(element_header_buffer.get(), num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
strm.EOL();
return false;
}
// Write allocation data to file
num_bytes = static_cast<size_t>(*alloc->size.get());
if (log)
log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
(uint64_t)num_bytes);
err = file.Write(buffer.get(), num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
strm.EOL();
return false;
}
strm.Printf("Allocation written to file '%s'", path);
strm.EOL();
return true;
}
bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (module_sp) {
for (const auto &rs_module : m_rsmodules) {
if (rs_module->m_module == module_sp) {
// Check if the user has enabled automatically breaking on
// all RS kernels.
if (m_breakAllKernels)
BreakOnModuleKernels(rs_module);
return false;
}
}
bool module_loaded = false;
switch (GetModuleKind(module_sp)) {
case eModuleKindKernelObj: {
RSModuleDescriptorSP module_desc;
module_desc.reset(new RSModuleDescriptor(module_sp));
if (module_desc->ParseRSInfo()) {
m_rsmodules.push_back(module_desc);
module_desc->WarnIfVersionMismatch(GetProcess()
->GetTarget()
.GetDebugger()
.GetAsyncOutputStream()
.get());
module_loaded = true;
}
if (module_loaded) {
FixupScriptDetails(module_desc);
}
break;
}
case eModuleKindDriver: {
if (!m_libRSDriver) {
m_libRSDriver = module_sp;
LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
}
break;
}
case eModuleKindImpl: {
if (!m_libRSCpuRef) {
m_libRSCpuRef = module_sp;
LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
}
break;
}
case eModuleKindLibRS: {
if (!m_libRS) {
m_libRS = module_sp;
static ConstString gDbgPresentStr("gDebuggerPresent");
const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
gDbgPresentStr, eSymbolTypeData);
if (debug_present) {
Error err;
uint32_t flag = 0x00000001U;
Target &target = GetProcess()->GetTarget();
addr_t addr = debug_present->GetLoadAddress(&target);
GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
if (err.Success()) {
if (log)
log->Printf("%s - debugger present flag set on debugee.",
__FUNCTION__);
m_debuggerPresentFlagged = true;
} else if (log) {
log->Printf("%s - error writing debugger present flags '%s' ",
__FUNCTION__, err.AsCString());
}
} else if (log) {
log->Printf(
"%s - error writing debugger present flags - symbol not found",
__FUNCTION__);
}
}
break;
}
default:
break;
}
if (module_loaded)
Update();
return module_loaded;
}
return false;
}
void RenderScriptRuntime::Update() {
if (m_rsmodules.size() > 0) {
if (!m_initiated) {
Initiate();
}
}
}
void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
if (!s)
return;
if (m_slang_version.empty() || m_bcc_version.empty()) {
s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
"experience may be unreliable");
s->EOL();
} else if (m_slang_version != m_bcc_version) {
s->Printf("WARNING: The debug info emitted by the slang frontend "
"(llvm-rs-cc) used to build this module (%s) does not match the "
"version of bcc used to generate the debug information (%s). "
"This is an unsupported configuration and may result in a poor "
"debugging experience; proceed with caution",
m_slang_version.c_str(), m_bcc_version.c_str());
s->EOL();
}
}
bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
size_t n_lines) {
// Skip the pragma prototype line
++lines;
for (; n_lines--; ++lines) {
const auto kv_pair = lines->split(" - ");
m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
}
return true;
}
bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
size_t n_lines) {
// The list of reduction kernels in the `.rs.info` symbol is of the form
// "signature - accumulatordatasize - reduction_name - initializer_name -
// accumulator_name - combiner_name -
// outconverter_name - halter_name"
// Where a function is not explicitly named by the user, or is not generated
// by the compiler, it is named "." so the
// dash separated list should always be 8 items long
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// Skip the exportReduceCount line
++lines;
for (; n_lines--; ++lines) {
llvm::SmallVector<llvm::StringRef, 8> spec;
lines->split(spec, " - ");
if (spec.size() != 8) {
if (spec.size() < 8) {
if (log)
log->Error("Error parsing RenderScript reduction spec. wrong number "
"of fields");
return false;
} else if (log)
log->Warning("Extraneous members in reduction spec: '%s'",
lines->str().c_str());
}
const auto sig_s = spec[0];
uint32_t sig;
if (sig_s.getAsInteger(10, sig)) {
if (log)
log->Error("Error parsing Renderscript reduction spec: invalid kernel "
"signature: '%s'",
sig_s.str().c_str());
return false;
}
const auto accum_data_size_s = spec[1];
uint32_t accum_data_size;
if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
if (log)
log->Error("Error parsing Renderscript reduction spec: invalid "
"accumulator data size %s",
accum_data_size_s.str().c_str());
return false;
}
if (log)
log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str());
m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
spec[2], spec[3], spec[4],
spec[5], spec[6], spec[7]));
}
return true;
}
bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
size_t n_lines) {
// Skip the versionInfo line
++lines;
for (; n_lines--; ++lines) {
// We're only interested in bcc and slang versions, and ignore all other
// versionInfo lines
const auto kv_pair = lines->split(" - ");
if (kv_pair.first == "slang")
m_slang_version = kv_pair.second.str();
else if (kv_pair.first == "bcc")
m_bcc_version = kv_pair.second.str();
}
return true;
}
bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
size_t n_lines) {
// Skip the exportForeachCount line
++lines;
for (; n_lines--; ++lines) {
uint32_t slot;
// `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
// pair per line
const auto kv_pair = lines->split(" - ");
if (kv_pair.first.getAsInteger(10, slot))
return false;
m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
}
return true;
}
bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
size_t n_lines) {
// Skip the ExportVarCount line
++lines;
for (; n_lines--; ++lines)
m_globals.push_back(RSGlobalDescriptor(this, *lines));
return true;
}
// The .rs.info symbol in renderscript modules contains a string which needs to
// be parsed.
// The string is basic and is parsed on a line by line basis.
bool RSModuleDescriptor::ParseRSInfo() {
assert(m_module);
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
ConstString(".rs.info"), eSymbolTypeData);
if (!info_sym)
return false;
const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
if (addr == LLDB_INVALID_ADDRESS)
return false;
const addr_t size = info_sym->GetByteSize();
const FileSpec fs = m_module->GetFileSpec();
auto buffer = DataBufferLLVM::CreateSliceFromPath(fs.GetPath(), size, addr);
if (!buffer)
return false;
// split rs.info. contents into lines
llvm::SmallVector<llvm::StringRef, 128> info_lines;
{
const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
raw_rs_info.split(info_lines, '\n');
if (log)
log->Printf("'.rs.info symbol for '%s':\n%s",
m_module->GetFileSpec().GetCString(),
raw_rs_info.str().c_str());
}
enum {
eExportVar,
eExportForEach,
eExportReduce,
ePragma,
eBuildChecksum,
eObjectSlot,
eVersionInfo,
};
const auto rs_info_handler = [](llvm::StringRef name) -> int {
return llvm::StringSwitch<int>(name)
// The number of visible global variables in the script
.Case("exportVarCount", eExportVar)
// The number of RenderScrip `forEach` kernels __attribute__((kernel))
.Case("exportForEachCount", eExportForEach)
// The number of generalreductions: This marked in the script by
// `#pragma reduce()`
.Case("exportReduceCount", eExportReduce)
// Total count of all RenderScript specific `#pragmas` used in the
// script
.Case("pragmaCount", ePragma)
.Case("objectSlotCount", eObjectSlot)
.Case("versionInfo", eVersionInfo)
.Default(-1);
};
// parse all text lines of .rs.info
for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
const auto kv_pair = line->split(": ");
const auto key = kv_pair.first;
const auto val = kv_pair.second.trim();
const auto handler = rs_info_handler(key);
if (handler == -1)
continue;
// getAsInteger returns `true` on an error condition - we're only interested
// in numeric fields at the moment
uint64_t n_lines;
if (val.getAsInteger(10, n_lines)) {
LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
line->str());
continue;
}
if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
return false;
bool success = false;
switch (handler) {
case eExportVar:
success = ParseExportVarCount(line, n_lines);
break;
case eExportForEach:
success = ParseExportForeachCount(line, n_lines);
break;
case eExportReduce:
success = ParseExportReduceCount(line, n_lines);
break;
case ePragma:
success = ParsePragmaCount(line, n_lines);
break;
case eVersionInfo:
success = ParseVersionInfo(line, n_lines);
break;
default: {
if (log)
log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
line->str().c_str());
continue;
}
}
if (!success)
return false;
line += n_lines;
}
return info_lines.size() > 0;
}
void RenderScriptRuntime::Status(Stream &strm) const {
if (m_libRS) {
strm.Printf("Runtime Library discovered.");
strm.EOL();
}
if (m_libRSDriver) {
strm.Printf("Runtime Driver discovered.");
strm.EOL();
}
if (m_libRSCpuRef) {
strm.Printf("CPU Reference Implementation discovered.");
strm.EOL();
}
if (m_runtimeHooks.size()) {
strm.Printf("Runtime functions hooked:");
strm.EOL();
for (auto b : m_runtimeHooks) {
strm.Indent(b.second->defn->name);
strm.EOL();
}
} else {
strm.Printf("Runtime is not hooked.");
strm.EOL();
}
}
void RenderScriptRuntime::DumpContexts(Stream &strm) const {
strm.Printf("Inferred RenderScript Contexts:");
strm.EOL();
strm.IndentMore();
std::map<addr_t, uint64_t> contextReferences;
// Iterate over all of the currently discovered scripts.
// Note: We cant push or pop from m_scripts inside this loop or it may
// invalidate script.
for (const auto &script : m_scripts) {
if (!script->context.isValid())
continue;
lldb::addr_t context = *script->context;
if (contextReferences.find(context) != contextReferences.end()) {
contextReferences[context]++;
} else {
contextReferences[context] = 1;
}
}
for (const auto &cRef : contextReferences) {
strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
cRef.first, cRef.second);
strm.EOL();
}
strm.IndentLess();
}
void RenderScriptRuntime::DumpKernels(Stream &strm) const {
strm.Printf("RenderScript Kernels:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules) {
strm.Printf("Resource '%s':", module->m_resname.c_str());
strm.EOL();
for (const auto &kernel : module->m_kernels) {
strm.Indent(kernel.m_name.AsCString());
strm.EOL();
}
}
strm.IndentLess();
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
AllocationDetails *alloc = nullptr;
// See if we can find allocation using id as an index;
if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
m_allocations[alloc_id - 1]->id == alloc_id) {
alloc = m_allocations[alloc_id - 1].get();
return alloc;
}
// Fallback to searching
for (const auto &a : m_allocations) {
if (a->id == alloc_id) {
alloc = a.get();
break;
}
}
if (alloc == nullptr) {
strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
alloc_id);
strm.EOL();
}
return alloc;
}
// Prints the contents of an allocation to the output stream, which may be a
// file
bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
const uint32_t id) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Check we can find the desired allocation
AllocationDetails *alloc = FindAllocByID(strm, id);
if (!alloc)
return false; // FindAllocByID() will print error message for us here
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
*alloc->address.get());
// Check we have information about the allocation, if not calculate it
if (alloc->ShouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
// JIT all the allocation information
if (!RefreshAllocation(alloc, frame_ptr)) {
strm.Printf("Error: Couldn't JIT allocation details");
strm.EOL();
return false;
}
}
// Establish format and size of each data element
const uint32_t vec_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
"Invalid allocation type");
lldb::Format format;
if (type >= Element::RS_TYPE_ELEMENT)
format = eFormatHex;
else
format = vec_size == 1
? static_cast<lldb::Format>(
AllocationDetails::RSTypeToFormat[type][eFormatSingle])
: static_cast<lldb::Format>(
AllocationDetails::RSTypeToFormat[type][eFormatVector]);
const uint32_t data_size = *alloc->element.datum_size.get();
if (log)
log->Printf("%s - element size %" PRIu32 " bytes, including padding",
__FUNCTION__, data_size);
// Allocate a buffer to copy data into
std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer) {
strm.Printf("Error: Couldn't read allocation data");
strm.EOL();
return false;
}
// Calculate stride between rows as there may be padding at end of rows since
// allocated memory is 16-byte aligned
if (!alloc->stride.isValid()) {
if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
alloc->stride = 0;
else if (!JITAllocationStride(alloc, frame_ptr)) {
strm.Printf("Error: Couldn't calculate allocation row stride");
strm.EOL();
return false;
}
}
const uint32_t stride = *alloc->stride.get();
const uint32_t size = *alloc->size.get(); // Size of whole allocation
const uint32_t padding =
alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
if (log)
log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
" bytes, padding %" PRIu32,
__FUNCTION__, stride, size, padding);
// Find dimensions used to index loops, so need to be non-zero
uint32_t dim_x = alloc->dimension.get()->dim_1;
dim_x = dim_x == 0 ? 1 : dim_x;
uint32_t dim_y = alloc->dimension.get()->dim_2;
dim_y = dim_y == 0 ? 1 : dim_y;
uint32_t dim_z = alloc->dimension.get()->dim_3;
dim_z = dim_z == 0 ? 1 : dim_z;
// Use data extractor to format output
const uint32_t target_ptr_size =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
target_ptr_size);
uint32_t offset = 0; // Offset in buffer to next element to be printed
uint32_t prev_row = 0; // Offset to the start of the previous row
// Iterate over allocation dimensions, printing results to user
strm.Printf("Data (X, Y, Z):");
for (uint32_t z = 0; z < dim_z; ++z) {
for (uint32_t y = 0; y < dim_y; ++y) {
// Use stride to index start of next row.
if (!(y == 0 && z == 0))
offset = prev_row + stride;
prev_row = offset;
// Print each element in the row individually
for (uint32_t x = 0; x < dim_x; ++x) {
strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
if ((type == Element::RS_TYPE_NONE) &&
(alloc->element.children.size() > 0) &&
(alloc->element.type_name != Element::GetFallbackStructName())) {
// Here we are dumping an Element of struct type.
// This is done using expression evaluation with the name of the
// struct type and pointer to element.
// Don't print the name of the resulting expression, since this will
// be '$[0-9]+'
DumpValueObjectOptions expr_options;
expr_options.SetHideName(true);
// Setup expression as derefrencing a pointer cast to element address.
char expr_char_buffer[jit_max_expr_size];
int written =
snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
alloc->element.type_name.AsCString(),
*alloc->data_ptr.get() + offset);
if (written < 0 || written >= jit_max_expr_size) {
if (log)
log->Printf("%s - error in snprintf().", __FUNCTION__);
continue;
}
// Evaluate expression
ValueObjectSP expr_result;
GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
frame_ptr, expr_result);
// Print the results to our stream.
expr_result->Dump(strm, expr_options);
} else {
DumpDataExtractor(alloc_data, &strm, offset, format,
data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
0);
}
offset += data_size;
}
}
}
strm.EOL();
return true;
}
// Function recalculates all our cached information about allocations by jitting
// the RS runtime regarding each allocation we know about. Returns true if all
// allocations could be recomputed, false otherwise.
bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
StackFrame *frame_ptr) {
bool success = true;
for (auto &alloc : m_allocations) {
// JIT current allocation information
if (!RefreshAllocation(alloc.get(), frame_ptr)) {
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
"\n",
alloc->id);
success = false;
}
}
if (success)
strm.Printf("All allocations successfully recomputed");
strm.EOL();
return success;
}
// Prints information regarding currently loaded allocations. These details are
// gathered by jitting the runtime, which has as latency. Index parameter
// specifies a single allocation ID to print, or a zero value to print them all
void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
const uint32_t index) {
strm.Printf("RenderScript Allocations:");
strm.EOL();
strm.IndentMore();
for (auto &alloc : m_allocations) {
// index will only be zero if we want to print all allocations
if (index != 0 && index != alloc->id)
continue;
// JIT current allocation information
if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
alloc->id);
strm.EOL();
continue;
}
strm.Printf("%" PRIu32 ":", alloc->id);
strm.EOL();
strm.IndentMore();
strm.Indent("Context: ");
if (!alloc->context.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
strm.Indent("Address: ");
if (!alloc->address.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
strm.Indent("Data pointer: ");
if (!alloc->data_ptr.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
strm.Indent("Dimensions: ");
if (!alloc->dimension.isValid())
strm.Printf("unknown\n");
else
strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
alloc->dimension.get()->dim_3);
strm.Indent("Data Type: ");
if (!alloc->element.type.isValid() ||
!alloc->element.type_vec_size.isValid())
strm.Printf("unknown\n");
else {
const int vector_size = *alloc->element.type_vec_size.get();
Element::DataType type = *alloc->element.type.get();
if (!alloc->element.type_name.IsEmpty())
strm.Printf("%s\n", alloc->element.type_name.AsCString());
else {
// Enum value isn't monotonous, so doesn't always index
// RsDataTypeToString array
if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
type =
static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
sizeof(AllocationDetails::RsDataTypeToString[0])) ||
vector_size > 4 || vector_size < 1)
strm.Printf("invalid type\n");
else
strm.Printf(
"%s\n",
AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
[vector_size - 1]);
}
}
strm.Indent("Data Kind: ");
if (!alloc->element.type_kind.isValid())
strm.Printf("unknown\n");
else {
const Element::DataKind kind = *alloc->element.type_kind.get();
if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
strm.Printf("invalid kind\n");
else
strm.Printf(
"%s\n",
AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
}
strm.EOL();
strm.IndentLess();
}
strm.IndentLess();
}
// Set breakpoints on every kernel found in RS module
void RenderScriptRuntime::BreakOnModuleKernels(
const RSModuleDescriptorSP rsmodule_sp) {
for (const auto &kernel : rsmodule_sp->m_kernels) {
// Don't set breakpoint on 'root' kernel
if (strcmp(kernel.m_name.AsCString(), "root") == 0)
continue;
CreateKernelBreakpoint(kernel.m_name);
}
}
// Method is internally called by the 'kernel breakpoint all' command to enable
// or disable breaking on all kernels. When do_break is true we want to enable
// this functionality. When do_break is false we want to disable it.
void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
InitSearchFilter(target);
// Set breakpoints on all the kernels
if (do_break && !m_breakAllKernels) {
m_breakAllKernels = true;
for (const auto &module : m_rsmodules)
BreakOnModuleKernels(module);
if (log)
log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
__FUNCTION__);
} else if (!do_break &&
m_breakAllKernels) // Breakpoints won't be set on any new kernels.
{
m_breakAllKernels = false;
if (log)
log->Printf("%s(False) - breakpoints no longer automatically set.",
__FUNCTION__);
}
}
// Given the name of a kernel this function creates a breakpoint using our
// own breakpoint resolver, and returns the Breakpoint shared pointer.
BreakpointSP
RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp) {
if (log)
log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(
m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a
// group.
Error err;
if (!bp->AddName("RenderScriptKernel", err))
if (log)
log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
err.AsCString());
return bp;
}
BreakpointSP
RenderScriptRuntime::CreateReductionBreakpoint(const ConstString &name,
int kernel_types) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp) {
if (log)
log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
nullptr, name, &m_rsmodules, kernel_types));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(
m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a
// group.
Error err;
if (!bp->AddName("RenderScriptReduction", err))
if (log)
log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
err.AsCString());
return bp;
}
// Given an expression for a variable this function tries to calculate the
// variable's value. If this is possible it returns true and sets the uint64_t
// parameter to the variables unsigned value. Otherwise function returns false.
bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
const char *var_name,
uint64_t &val) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error err;
VariableSP var_sp;
// Find variable in stack frame
ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
var_name, eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember |
StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
var_sp, err));
if (!err.Success()) {
if (log)
log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
var_name);
return false;
}
// Find the uint32_t value for the variable
bool success = false;
val = value_sp->GetValueAsUnsigned(0, &success);
if (!success) {
if (log)
log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
__FUNCTION__, var_name);
return false;
}
return true;
}
// Function attempts to find the current coordinate of a kernel invocation by
// investigating the values of frame variables in the .expand function. These
// coordinates are returned via the coord array reference parameter. Returns
// true if the coordinates could be found, and false otherwise.
bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
Thread *thread_ptr) {
static const char *const x_expr = "rsIndex";
static const char *const y_expr = "p->current.y";
static const char *const z_expr = "p->current.z";
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!thread_ptr) {
if (log)
log->Printf("%s - Error, No thread pointer", __FUNCTION__);
return false;
}
// Walk the call stack looking for a function whose name has the suffix
// '.expand' and contains the variables we're looking for.
for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
if (!thread_ptr->SetSelectedFrameByIndex(i))
continue;
StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
if (!frame_sp)
continue;
// Find the function name
const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
const ConstString func_name = sym_ctx.GetFunctionName();
if (!func_name)
continue;
if (log)
log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
func_name.GetCString());
// Check if function name has .expand suffix
if (!func_name.GetStringRef().endswith(".expand"))
continue;
if (log)
log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
func_name.GetCString());
// Get values for variables in .expand frame that tell us the current kernel
// invocation
uint64_t x, y, z;
bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
GetFrameVarAsUnsigned(frame_sp, z_expr, z);
if (found) {
// The RenderScript runtime uses uint32_t for these vars. If they're not
// within bounds, our frame parsing is garbage
assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
coord.x = (uint32_t)x;
coord.y = (uint32_t)y;
coord.z = (uint32_t)z;
return true;
}
}
return false;
}
// Callback when a kernel breakpoint hits and we're looking for a specific
// coordinate. Baton parameter contains a pointer to the target coordinate we
// want to break on.
// Function then checks the .expand frame for the current coordinate and breaks
// to user if it matches.
// Parameter 'break_id' is the id of the Breakpoint which made the callback.
// Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
// a single logical breakpoint can have multiple addresses.
bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
StoppointCallbackContext *ctx,
user_id_t break_id,
user_id_t break_loc_id) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
assert(baton &&
"Error: null baton in conditional kernel breakpoint callback");
// Coordinate we want to stop on
RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
if (log)
log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id,
target_coord.x, target_coord.y, target_coord.z);
// Select current thread
ExecutionContext context(ctx->exe_ctx_ref);
Thread *thread_ptr = context.GetThreadPtr();
assert(thread_ptr && "Null thread pointer");
// Find current kernel invocation from .expand frame variables
RSCoordinate current_coord{};
if (!GetKernelCoordinate(current_coord, thread_ptr)) {
if (log)
log->Printf("%s - Error, couldn't select .expand stack frame",
__FUNCTION__);
return false;
}
if (log)
log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x,
current_coord.y, current_coord.z);
// Check if the current kernel invocation coordinate matches our target
// coordinate
if (target_coord == current_coord) {
if (log)
log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
current_coord.y, current_coord.z);
BreakpointSP breakpoint_sp =
context.GetTargetPtr()->GetBreakpointByID(break_id);
assert(breakpoint_sp != nullptr &&
"Error: Couldn't find breakpoint matching break id for callback");
breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
// should only be hit once.
return true;
}
// No match on coordinate
return false;
}
void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
const RSCoordinate &coord) {
messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
coord.x, coord.y, coord.z);
messages.EOL();
// Allocate memory for the baton, and copy over coordinate
RSCoordinate *baton = new RSCoordinate(coord);
// Create a callback that will be invoked every time the breakpoint is hit.
// The baton object passed to the handler is the target coordinate we want to
// break on.
bp->SetCallback(KernelBreakpointHit, baton, true);
// Store a shared pointer to the baton, so the memory will eventually be
// cleaned up after destruction
m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
}
// Tries to set a breakpoint on the start of a kernel, resolved using the kernel
// name. Argument 'coords', represents a three dimensional coordinate which can
// be
// used to specify a single kernel instance to break on. If this is set then we
// add a callback
// to the breakpoint.
bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
Stream &messages,
const char *name,
const RSCoordinate *coord) {
if (!name)
return false;
InitSearchFilter(target);
ConstString kernel_name(name);
BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
if (!bp)
return false;
// We have a conditional breakpoint on a specific coordinate
if (coord)
SetConditional(bp, messages, *coord);
bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
return true;
}
BreakpointSP
RenderScriptRuntime::CreateScriptGroupBreakpoint(const ConstString &name,
bool stop_on_all) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp) {
if (log)
log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
nullptr, name, m_scriptGroups, stop_on_all));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(
m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a
// group.
Error err;
if (!bp->AddName(name.AsCString(), err))
if (log)
log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
err.AsCString());
// ask the breakpoint to resolve itself
bp->ResolveBreakpoint();
return bp;
}
bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
Stream &strm,
const ConstString &name,
bool multi) {
InitSearchFilter(target);
BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
if (bp)
bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
return bool(bp);
}
bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
Stream &messages,
const char *reduce_name,
const RSCoordinate *coord,
int kernel_types) {
if (!reduce_name)
return false;
InitSearchFilter(target);
BreakpointSP bp =
CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
if (!bp)
return false;
if (coord)
SetConditional(bp, messages, *coord);
bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
return true;
}
void RenderScriptRuntime::DumpModules(Stream &strm) const {
strm.Printf("RenderScript Modules:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules) {
module->Dump(strm);
}
strm.IndentLess();
}
RenderScriptRuntime::ScriptDetails *
RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
for (const auto &s : m_scripts) {
if (s->script.isValid())
if (*s->script == address)
return s.get();
}
if (create) {
std::unique_ptr<ScriptDetails> s(new ScriptDetails);
s->script = address;
m_scripts.push_back(std::move(s));
return m_scripts.back().get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::LookUpAllocation(addr_t address) {
for (const auto &a : m_allocations) {
if (a->address.isValid())
if (*a->address == address)
return a.get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::CreateAllocation(addr_t address) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// Remove any previous allocation which contains the same address
auto it = m_allocations.begin();
while (it != m_allocations.end()) {
if (*((*it)->address) == address) {
if (log)
log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
__FUNCTION__, (*it)->id, address);
it = m_allocations.erase(it);
} else {
it++;
}
}
std::unique_ptr<AllocationDetails> a(new AllocationDetails);
a->address = address;
m_allocations.push_back(std::move(a));
return m_allocations.back().get();
}
bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
ConstString &name) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS);
Target &target = GetProcess()->GetTarget();
Address resolved;
// RenderScript module
if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
if (log)
log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
__FUNCTION__, kernel_addr);
return false;
}
Symbol *sym = resolved.CalculateSymbolContextSymbol();
if (!sym)
return false;
name = sym->GetName();
assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
if (log)
log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
kernel_addr, name.GetCString());
return true;
}
void RSModuleDescriptor::Dump(Stream &strm) const {
int indent = strm.GetIndentLevel();
strm.Indent();
m_module->GetFileSpec().Dump(&strm);
strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
: "Debug info does not exist.");
strm.EOL();
strm.IndentMore();
strm.Indent();
strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
strm.EOL();
strm.IndentMore();
for (const auto &global : m_globals) {
global.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
strm.EOL();
strm.IndentMore();
for (const auto &kernel : m_kernels) {
kernel.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
strm.EOL();
strm.IndentMore();
for (const auto &key_val : m_pragmas) {
strm.Indent();
strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
strm.EOL();
}
strm.IndentLess();
strm.Indent();
strm.Printf("Reductions: %" PRIu64,
static_cast<uint64_t>(m_reductions.size()));
strm.EOL();
strm.IndentMore();
for (const auto &reduction : m_reductions) {
reduction.Dump(strm);
}
strm.SetIndentLevel(indent);
}
void RSGlobalDescriptor::Dump(Stream &strm) const {
strm.Indent(m_name.AsCString());
VariableList var_list;
m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
if (var_list.GetSize() == 1) {
auto var = var_list.GetVariableAtIndex(0);
auto type = var->GetType();
if (type) {
strm.Printf(" - ");
type->DumpTypeName(&strm);
} else {
strm.Printf(" - Unknown Type");
}
} else {
strm.Printf(" - variable identified, but not found in binary");
const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
m_name, eSymbolTypeData);
if (s) {
strm.Printf(" (symbol exists) ");
}
}
strm.EOL();
}
void RSKernelDescriptor::Dump(Stream &strm) const {
strm.Indent(m_name.AsCString());
strm.EOL();
}
void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
stream.Indent(m_reduce_name.AsCString());
stream.IndentMore();
stream.EOL();
stream.Indent();
stream.Printf("accumulator: %s", m_accum_name.AsCString());
stream.EOL();
stream.Indent();
stream.Printf("initializer: %s", m_init_name.AsCString());
stream.EOL();
stream.Indent();
stream.Printf("combiner: %s", m_comb_name.AsCString());
stream.EOL();
stream.Indent();
stream.Printf("outconverter: %s", m_outc_name.AsCString());
stream.EOL();
// XXX This is currently unspecified by RenderScript, and unused
// stream.Indent();
// stream.Printf("halter: '%s'", m_init_name.AsCString());
// stream.EOL();
stream.IndentLess();
}
class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript module dump",
"Dumps renderscript specific information for all modules.",
"renderscript module dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeModuleDump() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpModules(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript module",
"Commands that deal with RenderScript modules.",
nullptr) {
LoadSubCommand(
"dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
interpreter)));
}
~CommandObjectRenderScriptRuntimeModule() override = default;
};
class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel list",
"Lists renderscript kernel names and associated script resources.",
"renderscript kernel list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeKernelList() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpKernels(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
static OptionDefinition g_renderscript_reduction_bp_set_options[] = {
{LLDB_OPT_SET_1, false, "function-role", 't',
OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOneLiner,
"Break on a comma separated set of reduction kernel types "
"(accumulator,outcoverter,combiner,initializer"},
{LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
nullptr, nullptr, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified "
"coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
"integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."}};
class CommandObjectRenderScriptRuntimeReductionBreakpointSet
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeReductionBreakpointSet(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript reduction breakpoint set",
"Set a breakpoint on named RenderScript general reductions",
"renderscript reduction breakpoint set <kernel_name> [-t "
"<reduction_kernel_type,...>]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused),
m_options(){};
class CommandOptions : public Options {
public:
CommandOptions()
: Options(),
m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *exe_ctx) override {
Error err;
StreamString err_str;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 't':
if (!ParseReductionTypes(option_arg, err_str))
err.SetErrorStringWithFormat(
"Unable to deduce reduction types for %s: %s",
option_arg.str().c_str(), err_str.GetData());
break;
case 'c': {
auto coord = RSCoordinate{};
if (!ParseCoordinate(option_arg, coord))
err.SetErrorStringWithFormat("unable to parse coordinate for %s",
option_arg.str().c_str());
else {
m_have_coord = true;
m_coord = coord;
}
break;
}
default:
err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
}
return err;
}
void OptionParsingStarting(ExecutionContext *exe_ctx) override {
m_have_coord = false;
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options);
}
bool ParseReductionTypes(llvm::StringRef option_val,
StreamString &err_str) {
m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
return llvm::StringSwitch<int>(name)
.Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
.Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
.Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
.Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
.Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
// Currently not exposed by the runtime
// .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
.Default(0);
};
// Matching a comma separated list of known words is fairly
// straightforward with PCRE, but we're
// using ERE, so we end up with a little ugliness...
RegularExpression::Match match(/* max_matches */ 5);
RegularExpression match_type_list(
llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
assert(match_type_list.IsValid());
if (!match_type_list.Execute(option_val, &match)) {
err_str.PutCString(
"a comma-separated list of kernel types is required");
return false;
}
// splitting on commas is much easier with llvm::StringRef than regex
llvm::SmallVector<llvm::StringRef, 5> type_names;
llvm::StringRef(option_val).split(type_names, ',');
for (const auto &name : type_names) {
const int type = reduce_name_to_type(name);
if (!type) {
err_str.Printf("unknown kernel type name %s", name.str().c_str());
return false;
}
m_kernel_types |= type;
}
return true;
}
int m_kernel_types;
llvm::StringRef m_reduce_name;
RSCoordinate m_coord;
bool m_have_coord;
};
Options *GetOptions() override { return &m_options; }
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc < 1) {
result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
"and an optional kernel type list",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
auto &outstream = result.GetOutputStream();
auto name = command.GetArgumentAtIndex(0);
auto &target = m_exe_ctx.GetTargetSP();
auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
m_options.m_kernel_types)) {
result.SetStatus(eReturnStatusFailed);
result.AppendError("Error: unable to place breakpoint on reduction");
return false;
}
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
static OptionDefinition g_renderscript_kernel_bp_set_options[] = {
{LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
nullptr, nullptr, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified "
"coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
"integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."}};
class CommandObjectRenderScriptRuntimeKernelBreakpointSet
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel breakpoint set",
"Sets a breakpoint on a renderscript kernel.",
"renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused),
m_options() {}
~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *exe_ctx) override {
Error err;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'c': {
auto coord = RSCoordinate{};
if (!ParseCoordinate(option_arg, coord))
err.SetErrorStringWithFormat(
"Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
option_arg.str().c_str());
else {
m_have_coord = true;
m_coord = coord;
}
break;
}
default:
err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return err;
}
void OptionParsingStarting(ExecutionContext *exe_ctx) override {
m_have_coord = false;
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options);
}
RSCoordinate m_coord;
bool m_have_coord;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc < 1) {
result.AppendErrorWithFormat(
"'%s' takes 1 argument of kernel name, and an optional coordinate.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
auto &outstream = result.GetOutputStream();
auto &target = m_exe_ctx.GetTargetSP();
auto name = command.GetArgumentAtIndex(0);
auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat(
"Error: unable to set breakpoint on kernel '%s'", name);
return false;
}
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
class CommandObjectRenderScriptRuntimeKernelBreakpointAll
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel breakpoint all",
"Automatically sets a breakpoint on all renderscript kernels that "
"are or will be loaded.\n"
"Disabling option means breakpoints will no longer be set on any "
"kernels loaded in the future, "
"but does not remove currently set breakpoints.",
"renderscript kernel breakpoint all <enable/disable>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused) {}
~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 1) {
result.AppendErrorWithFormat(
"'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
bool do_break = false;
const char *argument = command.GetArgumentAtIndex(0);
if (strcmp(argument, "enable") == 0) {
do_break = true;
result.AppendMessage("Breakpoints will be set on all kernels.");
} else if (strcmp(argument, "disable") == 0) {
do_break = false;
result.AppendMessage("Breakpoints will not be set on any new kernels.");
} else {
result.AppendErrorWithFormat(
"Argument must be either 'enable' or 'disable'");
result.SetStatus(eReturnStatusFailed);
return false;
}
runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeReductionBreakpoint
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeReductionBreakpoint(
CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
"Commands that manipulate breakpoints on "
"renderscript general reductions.",
nullptr) {
LoadSubCommand(
"set", CommandObjectSP(
new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
interpreter)));
}
~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernelCoordinate
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelCoordinate(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel coordinate",
"Shows the (x,y,z) coordinate of the current kernel invocation.",
"renderscript kernel coordinate",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused) {}
~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RSCoordinate coord{};
bool success = RenderScriptRuntime::GetKernelCoordinate(
coord, m_exe_ctx.GetThreadPtr());
Stream &stream = result.GetOutputStream();
if (success) {
stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
stream.EOL();
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
stream.Printf("Error: Coordinate could not be found.");
stream.EOL();
result.SetStatus(eReturnStatusFailed);
}
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpoint
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(
CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript kernel",
"Commands that generate breakpoints on renderscript kernels.",
nullptr) {
LoadSubCommand(
"set",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
interpreter)));
LoadSubCommand(
"all",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
interpreter)));
}
~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel",
"Commands that deal with RenderScript kernels.",
nullptr) {
LoadSubCommand(
"list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
interpreter)));
LoadSubCommand(
"coordinate",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
LoadSubCommand(
"breakpoint",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernel() override = default;
};
class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript context dump",
"Dumps renderscript context information.",
"renderscript context dump",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeContextDump() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpContexts(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
static OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
{LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
nullptr, nullptr, 0, eArgTypeFilename,
"Print results to specified file instead of command line."}};
class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript context",
"Commands that deal with RenderScript contexts.",
nullptr) {
LoadSubCommand(
"dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
interpreter)));
}
~CommandObjectRenderScriptRuntimeContext() override = default;
};
class CommandObjectRenderScriptRuntimeAllocationDump
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationDump(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation dump",
"Displays the contents of a particular allocation",
"renderscript allocation dump <ID>",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched),
m_options() {}
~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *exe_ctx) override {
Error err;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'f':
m_outfile.SetFile(option_arg, true);
if (m_outfile.Exists()) {
m_outfile.Clear();
err.SetErrorStringWithFormat("file already exists: '%s'",
option_arg.str().c_str());
}
break;
default:
err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return err;
}
void OptionParsingStarting(ExecutionContext *exe_ctx) override {
m_outfile.Clear();
}
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options);
}
FileSpec m_outfile;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc < 1) {
result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
"As well as an optional -f argument",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool success = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
if (!success) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream *output_strm = nullptr;
StreamFile outfile_stream;
const FileSpec &outfile_spec =
m_options.m_outfile; // Dump allocation to file instead
if (outfile_spec) {
// Open output file
char path[256];
outfile_spec.GetPath(path, sizeof(path));
if (outfile_stream.GetFile()
.Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate)
.Success()) {
output_strm = &outfile_stream;
result.GetOutputStream().Printf("Results written to '%s'", path);
result.GetOutputStream().EOL();
} else {
result.AppendErrorWithFormat("Couldn't open file '%s'", path);
result.SetStatus(eReturnStatusFailed);
return false;
}
} else
output_strm = &result.GetOutputStream();
assert(output_strm != nullptr);
bool dumped =
runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
if (dumped)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
private:
CommandOptions m_options;
};
static OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
{LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
nullptr, 0, eArgTypeIndex,
"Only show details of a single allocation with specified id."}};
class CommandObjectRenderScriptRuntimeAllocationList
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationList(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation list",
"List renderscript allocations and their information.",
"renderscript allocation list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_options() {}
~CommandObjectRenderScriptRuntimeAllocationList() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options(), m_id(0) {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
ExecutionContext *exe_ctx) override {
Error err;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'i':
if (option_arg.getAsInteger(0, m_id))
err.SetErrorStringWithFormat("invalid integer value for option '%c'",
short_option);
break;
default:
err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return err;
}
void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options);
}
uint32_t m_id;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
m_options.m_id);
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
class CommandObjectRenderScriptRuntimeAllocationLoad
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationLoad(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation load",
"Loads renderscript allocation contents from a file.",
"renderscript allocation load <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 2) {
result.AppendErrorWithFormat(
"'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool success = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
if (!success) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *path = command.GetArgumentAtIndex(1);
bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
m_exe_ctx.GetFramePtr());
if (loaded)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationSave
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationSave(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation save",
"Write renderscript allocation contents to a file.",
"renderscript allocation save <ID> <filename>",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 2) {
result.AppendErrorWithFormat(
"'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool success = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success);
if (!success) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *path = command.GetArgumentAtIndex(1);
bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
m_exe_ctx.GetFramePtr());
if (saved)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationRefresh
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationRefresh(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation refresh",
"Recomputes the details of all allocations.",
"renderscript allocation refresh",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
m_exe_ctx.GetFramePtr());
if (success) {
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
} else {
result.SetStatus(eReturnStatusFailed);
return false;
}
}
};
class CommandObjectRenderScriptRuntimeAllocation
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript allocation",
"Commands that deal with RenderScript allocations.", nullptr) {
LoadSubCommand(
"list",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
LoadSubCommand(
"dump",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
LoadSubCommand(
"save",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
LoadSubCommand(
"load",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
LoadSubCommand(
"refresh",
CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
interpreter)));
}
~CommandObjectRenderScriptRuntimeAllocation() override = default;
};
class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript status",
"Displays current RenderScript runtime status.",
"renderscript status",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeStatus() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->Status(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeReduction
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript reduction",
"Commands that handle general reduction kernels",
nullptr) {
LoadSubCommand(
"breakpoint",
CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
interpreter)));
}
~CommandObjectRenderScriptRuntimeReduction() override = default;
};
class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript",
"Commands for operating on the RenderScript runtime.",
"renderscript <subcommand> [<subcommand-options>]") {
LoadSubCommand(
"module", CommandObjectSP(
new CommandObjectRenderScriptRuntimeModule(interpreter)));
LoadSubCommand(
"status", CommandObjectSP(
new CommandObjectRenderScriptRuntimeStatus(interpreter)));
LoadSubCommand(
"kernel", CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernel(interpreter)));
LoadSubCommand("context",
CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
interpreter)));
LoadSubCommand(
"allocation",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
LoadSubCommand("scriptgroup",
NewCommandObjectRenderScriptScriptGroup(interpreter));
LoadSubCommand(
"reduction",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeReduction(interpreter)));
}
~CommandObjectRenderScriptRuntime() override = default;
};
void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
RenderScriptRuntime::RenderScriptRuntime(Process *process)
: lldb_private::CPPLanguageRuntime(process), m_initiated(false),
m_debuggerPresentFlagged(false), m_breakAllKernels(false),
m_ir_passes(nullptr) {
ModulesDidLoad(process->GetTarget().GetImages());
}
lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
lldb_private::CommandInterpreter &interpreter) {
return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
}
RenderScriptRuntime::~RenderScriptRuntime() = default;