mirror of
https://github.com/capstone-engine/llvm-capstone.git
synced 2025-01-14 20:22:30 +00:00
f79f430d4b
Fold arith.extract_slice into arith.constant when the source is a constant splat and the result type is statically shaped.
1390 lines
56 KiB
C++
1390 lines
56 KiB
C++
//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "AttributeDetail.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Interfaces/DecodeAttributesInterfaces.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Tablegen Attribute Definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/IR/BuiltinAttributes.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BuiltinDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BuiltinDialect::registerAttributes() {
|
|
addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
|
|
DenseStringElementsAttr, DictionaryAttr, FloatAttr,
|
|
SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
|
|
OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
|
|
UnitAttr>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArrayAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ArrayAttr::walkImmediateSubElements(
|
|
function_ref<void(Attribute)> walkAttrsFn,
|
|
function_ref<void(Type)> walkTypesFn) const {
|
|
for (Attribute attr : getValue())
|
|
walkAttrsFn(attr);
|
|
}
|
|
|
|
SubElementAttrInterface ArrayAttr::replaceImmediateSubAttribute(
|
|
ArrayRef<std::pair<size_t, Attribute>> replacements) const {
|
|
std::vector<Attribute> vector = getValue().vec();
|
|
for (auto &it : replacements) {
|
|
vector[it.first] = it.second;
|
|
}
|
|
return get(getContext(), vector);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DictionaryAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper function that does either an in place sort or sorts from source array
|
|
/// into destination. If inPlace then storage is both the source and the
|
|
/// destination, else value is the source and storage destination. Returns
|
|
/// whether source was sorted.
|
|
template <bool inPlace>
|
|
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
// Specialize for the common case.
|
|
switch (value.size()) {
|
|
case 0:
|
|
// Zero already sorted.
|
|
if (!inPlace)
|
|
storage.clear();
|
|
break;
|
|
case 1:
|
|
// One already sorted but may need to be copied.
|
|
if (!inPlace)
|
|
storage.assign({value[0]});
|
|
break;
|
|
case 2: {
|
|
bool isSorted = value[0] < value[1];
|
|
if (inPlace) {
|
|
if (!isSorted)
|
|
std::swap(storage[0], storage[1]);
|
|
} else if (isSorted) {
|
|
storage.assign({value[0], value[1]});
|
|
} else {
|
|
storage.assign({value[1], value[0]});
|
|
}
|
|
return !isSorted;
|
|
}
|
|
default:
|
|
if (!inPlace)
|
|
storage.assign(value.begin(), value.end());
|
|
// Check to see they are sorted already.
|
|
bool isSorted = llvm::is_sorted(value);
|
|
// If not, do a general sort.
|
|
if (!isSorted)
|
|
llvm::array_pod_sort(storage.begin(), storage.end());
|
|
return !isSorted;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns an entry with a duplicate name from the given sorted array of named
|
|
/// attributes. Returns llvm::None if all elements have unique names.
|
|
static Optional<NamedAttribute>
|
|
findDuplicateElement(ArrayRef<NamedAttribute> value) {
|
|
const Optional<NamedAttribute> none{llvm::None};
|
|
if (value.size() < 2)
|
|
return none;
|
|
|
|
if (value.size() == 2)
|
|
return value[0].getName() == value[1].getName() ? value[0] : none;
|
|
|
|
const auto *it = std::adjacent_find(value.begin(), value.end(),
|
|
[](NamedAttribute l, NamedAttribute r) {
|
|
return l.getName() == r.getName();
|
|
});
|
|
return it != value.end() ? *it : none;
|
|
}
|
|
|
|
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
|
|
assert(!findDuplicateElement(storage) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return isSorted;
|
|
}
|
|
|
|
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
|
|
bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
|
|
assert(!findDuplicateElement(array) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return isSorted;
|
|
}
|
|
|
|
Optional<NamedAttribute>
|
|
DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
|
|
bool isSorted) {
|
|
if (!isSorted)
|
|
dictionaryAttrSort</*inPlace=*/true>(array, array);
|
|
return findDuplicateElement(array);
|
|
}
|
|
|
|
DictionaryAttr DictionaryAttr::get(MLIRContext *context,
|
|
ArrayRef<NamedAttribute> value) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
|
|
// We need to sort the element list to canonicalize it.
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
|
|
value = storage;
|
|
assert(!findDuplicateElement(value) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return Base::get(context, value);
|
|
}
|
|
/// Construct a dictionary with an array of values that is known to already be
|
|
/// sorted by name and uniqued.
|
|
DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
|
|
ArrayRef<NamedAttribute> value) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
// Ensure that the attribute elements are unique and sorted.
|
|
assert(llvm::is_sorted(
|
|
value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) &&
|
|
"expected attribute values to be sorted");
|
|
assert(!findDuplicateElement(value) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return Base::get(context, value);
|
|
}
|
|
|
|
/// Return the specified attribute if present, null otherwise.
|
|
Attribute DictionaryAttr::get(StringRef name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? it.first->getValue() : Attribute();
|
|
}
|
|
Attribute DictionaryAttr::get(StringAttr name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? it.first->getValue() : Attribute();
|
|
}
|
|
|
|
/// Return the specified named attribute if present, None otherwise.
|
|
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? *it.first : Optional<NamedAttribute>();
|
|
}
|
|
Optional<NamedAttribute> DictionaryAttr::getNamed(StringAttr name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? *it.first : Optional<NamedAttribute>();
|
|
}
|
|
|
|
/// Return whether the specified attribute is present.
|
|
bool DictionaryAttr::contains(StringRef name) const {
|
|
return impl::findAttrSorted(begin(), end(), name).second;
|
|
}
|
|
bool DictionaryAttr::contains(StringAttr name) const {
|
|
return impl::findAttrSorted(begin(), end(), name).second;
|
|
}
|
|
|
|
DictionaryAttr::iterator DictionaryAttr::begin() const {
|
|
return getValue().begin();
|
|
}
|
|
DictionaryAttr::iterator DictionaryAttr::end() const {
|
|
return getValue().end();
|
|
}
|
|
size_t DictionaryAttr::size() const { return getValue().size(); }
|
|
|
|
DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
|
|
return Base::get(context, ArrayRef<NamedAttribute>());
|
|
}
|
|
|
|
void DictionaryAttr::walkImmediateSubElements(
|
|
function_ref<void(Attribute)> walkAttrsFn,
|
|
function_ref<void(Type)> walkTypesFn) const {
|
|
for (const NamedAttribute &attr : getValue())
|
|
walkAttrsFn(attr.getValue());
|
|
}
|
|
|
|
SubElementAttrInterface DictionaryAttr::replaceImmediateSubAttribute(
|
|
ArrayRef<std::pair<size_t, Attribute>> replacements) const {
|
|
std::vector<NamedAttribute> vec = getValue().vec();
|
|
for (auto &it : replacements)
|
|
vec[it.first].setValue(it.second);
|
|
|
|
// The above only modifies the mapped value, but not the key, and therefore
|
|
// not the order of the elements. It remains sorted
|
|
return getWithSorted(getContext(), vec);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StringAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
|
|
return Base::get(context, "", NoneType::get(context));
|
|
}
|
|
|
|
/// Twine support for StringAttr.
|
|
StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
|
|
// Fast-path empty twine.
|
|
if (twine.isTriviallyEmpty())
|
|
return get(context);
|
|
SmallVector<char, 32> tempStr;
|
|
return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
|
|
}
|
|
|
|
/// Twine support for StringAttr.
|
|
StringAttr StringAttr::get(const Twine &twine, Type type) {
|
|
SmallVector<char, 32> tempStr;
|
|
return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
|
|
}
|
|
|
|
StringRef StringAttr::getValue() const { return getImpl()->value; }
|
|
|
|
Dialect *StringAttr::getReferencedDialect() const {
|
|
return getImpl()->referencedDialect;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FloatAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
double FloatAttr::getValueAsDouble() const {
|
|
return getValueAsDouble(getValue());
|
|
}
|
|
double FloatAttr::getValueAsDouble(APFloat value) {
|
|
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
|
|
bool losesInfo = false;
|
|
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
}
|
|
return value.convertToDouble();
|
|
}
|
|
|
|
LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
Type type, APFloat value) {
|
|
// Verify that the type is correct.
|
|
if (!type.isa<FloatType>())
|
|
return emitError() << "expected floating point type";
|
|
|
|
// Verify that the type semantics match that of the value.
|
|
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
|
|
return emitError()
|
|
<< "FloatAttr type doesn't match the type implied by its value";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolRefAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value,
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs) {
|
|
return get(StringAttr::get(ctx, value), nestedRefs);
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
|
|
return get(ctx, value, {}).cast<FlatSymbolRefAttr>();
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) {
|
|
return get(value, {}).cast<FlatSymbolRefAttr>();
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) {
|
|
auto symName =
|
|
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
|
|
assert(symName && "value does not have a valid symbol name");
|
|
return SymbolRefAttr::get(symName);
|
|
}
|
|
|
|
StringAttr SymbolRefAttr::getLeafReference() const {
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
|
|
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int64_t IntegerAttr::getInt() const {
|
|
assert((getType().isIndex() || getType().isSignlessInteger()) &&
|
|
"must be signless integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
int64_t IntegerAttr::getSInt() const {
|
|
assert(getType().isSignedInteger() && "must be signed integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
uint64_t IntegerAttr::getUInt() const {
|
|
assert(getType().isUnsignedInteger() && "must be unsigned integer");
|
|
return getValue().getZExtValue();
|
|
}
|
|
|
|
/// Return the value as an APSInt which carries the signed from the type of
|
|
/// the attribute. This traps on signless integers types!
|
|
APSInt IntegerAttr::getAPSInt() const {
|
|
assert(!getType().isSignlessInteger() &&
|
|
"Signless integers don't carry a sign for APSInt");
|
|
return APSInt(getValue(), getType().isUnsignedInteger());
|
|
}
|
|
|
|
LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
Type type, APInt value) {
|
|
if (IntegerType integerType = type.dyn_cast<IntegerType>()) {
|
|
if (integerType.getWidth() != value.getBitWidth())
|
|
return emitError() << "integer type bit width (" << integerType.getWidth()
|
|
<< ") doesn't match value bit width ("
|
|
<< value.getBitWidth() << ")";
|
|
return success();
|
|
}
|
|
if (type.isa<IndexType>())
|
|
return success();
|
|
return emitError() << "expected integer or index type";
|
|
}
|
|
|
|
BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
|
|
auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
|
|
return attr.cast<BoolAttr>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool BoolAttr::getValue() const {
|
|
auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
|
|
return storage->value.getBoolValue();
|
|
}
|
|
|
|
bool BoolAttr::classof(Attribute attr) {
|
|
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
|
|
return intAttr && intAttr.getType().isSignlessInteger(1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpaqueAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
StringAttr dialect, StringRef attrData,
|
|
Type type) {
|
|
if (!Dialect::isValidNamespace(dialect.strref()))
|
|
return emitError() << "invalid dialect namespace '" << dialect << "'";
|
|
|
|
// Check that the dialect is actually registered.
|
|
MLIRContext *context = dialect.getContext();
|
|
if (!context->allowsUnregisteredDialects() &&
|
|
!context->getLoadedDialect(dialect.strref())) {
|
|
return emitError()
|
|
<< "#" << dialect << "<\"" << attrData << "\"> : " << type
|
|
<< " attribute created with unregistered dialect. If this is "
|
|
"intended, please call allowUnregisteredDialects() on the "
|
|
"MLIRContext, or use -allow-unregistered-dialect with "
|
|
"the MLIR opt tool used";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get the bitwidth of a dense element type within the buffer.
|
|
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
|
|
static size_t getDenseElementStorageWidth(size_t origWidth) {
|
|
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
|
|
}
|
|
static size_t getDenseElementStorageWidth(Type elementType) {
|
|
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
|
|
}
|
|
|
|
/// Set a bit to a specific value.
|
|
static void setBit(char *rawData, size_t bitPos, bool value) {
|
|
if (value)
|
|
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
|
|
else
|
|
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
|
|
}
|
|
|
|
/// Return the value of the specified bit.
|
|
static bool getBit(const char *rawData, size_t bitPos) {
|
|
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
|
|
}
|
|
|
|
/// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
|
|
/// BE format.
|
|
static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
|
|
char *result) {
|
|
assert(llvm::support::endian::system_endianness() == // NOLINT
|
|
llvm::support::endianness::big); // NOLINT
|
|
assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
|
|
|
|
// Copy the words filled with data.
|
|
// For example, when `value` has 2 words, the first word is filled with data.
|
|
// `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
|
|
size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
|
|
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
|
|
numFilledWords, result);
|
|
// Convert last word of APInt to LE format and store it in char
|
|
// array(`valueLE`).
|
|
// ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------|
|
|
size_t lastWordPos = numFilledWords;
|
|
SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
|
|
valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
|
|
// Extract actual APInt data from `valueLE`, convert endianness to BE format,
|
|
// and store it in `result`.
|
|
// ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij|
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
valueLE.begin(), result + lastWordPos,
|
|
(numBytes - lastWordPos) * CHAR_BIT, 1);
|
|
}
|
|
|
|
/// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
|
|
/// format.
|
|
static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
|
|
APInt &result) {
|
|
assert(llvm::support::endian::system_endianness() == // NOLINT
|
|
llvm::support::endianness::big); // NOLINT
|
|
assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
|
|
|
|
// Copy the data that fills the word of `result` from `inArray`.
|
|
// For example, when `result` has 2 words, the first word will be filled with
|
|
// data. So, the first 8 bytes are copied from `inArray` here.
|
|
// `inArray` (10 bytes, BE): |abcdefgh|ij|
|
|
// ==> `result` (2 words, BE): |abcdefgh|--------|
|
|
size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
|
|
std::copy_n(
|
|
inArray, numFilledWords,
|
|
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
|
|
|
|
// Convert array data which will be last word of `result` to LE format, and
|
|
// store it in char array(`inArrayLE`).
|
|
// ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------|
|
|
size_t lastWordPos = numFilledWords;
|
|
SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
inArray + lastWordPos, inArrayLE.begin(),
|
|
(numBytes - lastWordPos) * CHAR_BIT, 1);
|
|
|
|
// Convert `inArrayLE` to BE format, and store it in last word of `result`.
|
|
// ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij|
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
inArrayLE.begin(),
|
|
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
|
|
lastWordPos,
|
|
APInt::APINT_BITS_PER_WORD, 1);
|
|
}
|
|
|
|
/// Writes value to the bit position `bitPos` in array `rawData`.
|
|
static void writeBits(char *rawData, size_t bitPos, APInt value) {
|
|
size_t bitWidth = value.getBitWidth();
|
|
|
|
// If the bitwidth is 1 we just toggle the specific bit.
|
|
if (bitWidth == 1)
|
|
return setBit(rawData, bitPos, value.isOneValue());
|
|
|
|
// Otherwise, the bit position is guaranteed to be byte aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
if (llvm::support::endian::system_endianness() ==
|
|
llvm::support::endianness::big) {
|
|
// Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
|
|
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
|
|
// work correctly in BE format.
|
|
// ex. `value` (2 words including 10 bytes)
|
|
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------|
|
|
copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
rawData + (bitPos / CHAR_BIT));
|
|
} else {
|
|
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
rawData + (bitPos / CHAR_BIT));
|
|
}
|
|
}
|
|
|
|
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
|
|
/// `rawData`.
|
|
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
|
|
// Handle a boolean bit position.
|
|
if (bitWidth == 1)
|
|
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
|
|
|
|
// Otherwise, the bit position must be 8-bit aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
APInt result(bitWidth, 0);
|
|
if (llvm::support::endian::system_endianness() ==
|
|
llvm::support::endianness::big) {
|
|
// Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
|
|
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
|
|
// work correctly in BE format.
|
|
// ex. `result` (2 words including 10 bytes)
|
|
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function
|
|
copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT), result);
|
|
} else {
|
|
std::copy_n(rawData + (bitPos / CHAR_BIT),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
const_cast<char *>(
|
|
reinterpret_cast<const char *>(result.getRawData())));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
|
|
/// the same element count as 'type'.
|
|
template <typename Values>
|
|
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
|
|
return (values.size() == 1) ||
|
|
(type.getNumElements() == static_cast<int64_t>(values.size()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr Iterators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeElementIterator
|
|
|
|
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
|
|
DenseElementsAttr attr, size_t index)
|
|
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
|
|
Attribute, Attribute, Attribute>(
|
|
attr.getAsOpaquePointer(), index) {}
|
|
|
|
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
|
|
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
|
|
Type eltTy = owner.getElementType();
|
|
if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (eltTy.isa<IndexType>())
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
|
|
IntElementIterator intIt(owner, index);
|
|
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
|
|
return FloatAttr::get(eltTy, *floatIt);
|
|
}
|
|
if (auto complexTy = eltTy.dyn_cast<ComplexType>()) {
|
|
auto complexEltTy = complexTy.getElementType();
|
|
ComplexIntElementIterator complexIntIt(owner, index);
|
|
if (complexEltTy.isa<IntegerType>()) {
|
|
auto value = *complexIntIt;
|
|
auto real = IntegerAttr::get(complexEltTy, value.real());
|
|
auto imag = IntegerAttr::get(complexEltTy, value.imag());
|
|
return ArrayAttr::get(complexTy.getContext(),
|
|
ArrayRef<Attribute>{real, imag});
|
|
}
|
|
|
|
ComplexFloatElementIterator complexFloatIt(
|
|
complexEltTy.cast<FloatType>().getFloatSemantics(), complexIntIt);
|
|
auto value = *complexFloatIt;
|
|
auto real = FloatAttr::get(complexEltTy, value.real());
|
|
auto imag = FloatAttr::get(complexEltTy, value.imag());
|
|
return ArrayAttr::get(complexTy.getContext(),
|
|
ArrayRef<Attribute>{real, imag});
|
|
}
|
|
if (owner.isa<DenseStringElementsAttr>()) {
|
|
ArrayRef<StringRef> vals = owner.getRawStringData();
|
|
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
|
|
}
|
|
llvm_unreachable("unexpected element type");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolElementIterator
|
|
|
|
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
|
|
|
|
bool DenseElementsAttr::BoolElementIterator::operator*() const {
|
|
return getBit(getData(), getDataIndex());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntElementIterator
|
|
|
|
DenseElementsAttr::IntElementIterator::IntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex),
|
|
bitWidth(getDenseElementBitWidth(attr.getElementType())) {}
|
|
|
|
APInt DenseElementsAttr::IntElementIterator::operator*() const {
|
|
return readBits(getData(),
|
|
getDataIndex() * getDenseElementStorageWidth(bitWidth),
|
|
bitWidth);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexIntElementIterator
|
|
|
|
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
|
|
std::complex<APInt>, std::complex<APInt>,
|
|
std::complex<APInt>>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {
|
|
auto complexType = attr.getElementType().cast<ComplexType>();
|
|
bitWidth = getDenseElementBitWidth(complexType.getElementType());
|
|
}
|
|
|
|
std::complex<APInt>
|
|
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
|
|
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
|
|
size_t offset = getDataIndex() * storageWidth * 2;
|
|
return {readBits(getData(), offset, bitWidth),
|
|
readBits(getData(), offset + storageWidth, bitWidth)};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Method for support type inquiry through isa, cast and dyn_cast.
|
|
bool DenseElementsAttr::classof(Attribute attr) {
|
|
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>();
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<Attribute> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
|
|
// If the element type is not based on int/float/index, assume it is a string
|
|
// type.
|
|
auto eltType = type.getElementType();
|
|
if (!type.getElementType().isIntOrIndexOrFloat()) {
|
|
SmallVector<StringRef, 8> stringValues;
|
|
stringValues.reserve(values.size());
|
|
for (Attribute attr : values) {
|
|
assert(attr.isa<StringAttr>() &&
|
|
"expected string value for non integer/index/float element");
|
|
stringValues.push_back(attr.cast<StringAttr>().getValue());
|
|
}
|
|
return get(type, stringValues);
|
|
}
|
|
|
|
// Otherwise, get the raw storage width to use for the allocation.
|
|
size_t bitWidth = getDenseElementBitWidth(eltType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
// Compress the attribute values into a character buffer.
|
|
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
|
|
values.size());
|
|
APInt intVal;
|
|
for (unsigned i = 0, e = values.size(); i < e; ++i) {
|
|
assert(eltType == values[i].getType() &&
|
|
"expected attribute value to have element type");
|
|
if (eltType.isa<FloatType>())
|
|
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
|
|
else if (eltType.isa<IntegerType, IndexType>())
|
|
intVal = values[i].cast<IntegerAttr>().getValue();
|
|
else
|
|
llvm_unreachable("unexpected element type");
|
|
|
|
assert(intVal.getBitWidth() == bitWidth &&
|
|
"expected value to have same bitwidth as element type");
|
|
writeBits(data.data(), i * storageBitWidth, intVal);
|
|
}
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<bool> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
assert(type.getElementType().isInteger(1));
|
|
|
|
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
|
|
for (int i = 0, e = values.size(); i != e; ++i)
|
|
setBit(buff.data(), i, values[i]);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, buff,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<StringRef> values) {
|
|
assert(!type.getElementType().isIntOrFloat());
|
|
return DenseStringElementsAttr::get(type, values);
|
|
}
|
|
|
|
/// Constructs a dense integer elements attribute from an array of APInt
|
|
/// values. Each APInt value is expected to have the same bitwidth as the
|
|
/// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APInt> values) {
|
|
assert(type.getElementType().isIntOrIndex());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APInt>> values) {
|
|
ComplexType complex = type.getElementType().cast<ComplexType>();
|
|
assert(complex.getElementType().isa<IntegerType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
|
|
values.size() * 2);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
// Constructs a dense float elements attribute from an array of APFloat
|
|
// values. Each APFloat value is expected to have the same bitwidth as the
|
|
// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APFloat> values) {
|
|
assert(type.getElementType().isa<FloatType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
DenseElementsAttr
|
|
DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APFloat>> values) {
|
|
ComplexType complex = type.getElementType().cast<ComplexType>();
|
|
assert(complex.getElementType().isa<FloatType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
|
|
values.size() * 2);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
/// Construct a dense elements attribute from a raw buffer representing the
|
|
/// data for this attribute. Users should generally not use this methods as
|
|
/// the expected buffer format may not be a form the user expects.
|
|
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
|
|
ArrayRef<char> rawBuffer,
|
|
bool isSplatBuffer) {
|
|
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
|
|
}
|
|
|
|
/// Returns true if the given buffer is a valid raw buffer for the given type.
|
|
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
|
|
ArrayRef<char> rawBuffer,
|
|
bool &detectedSplat) {
|
|
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
|
|
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
|
|
|
|
// Storage width of 1 is special as it is packed by the bit.
|
|
if (storageWidth == 1) {
|
|
// Check for a splat, or a buffer equal to the number of elements which
|
|
// consists of either all 0's or all 1's.
|
|
detectedSplat = false;
|
|
if (rawBuffer.size() == 1) {
|
|
auto rawByte = static_cast<uint8_t>(rawBuffer[0]);
|
|
if (rawByte == 0 || rawByte == 0xff) {
|
|
detectedSplat = true;
|
|
return true;
|
|
}
|
|
}
|
|
return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
|
|
}
|
|
// All other types are 8-bit aligned.
|
|
if ((detectedSplat = rawBufferWidth == storageWidth))
|
|
return true;
|
|
return rawBufferWidth == (storageWidth * type.getNumElements());
|
|
}
|
|
|
|
/// Check the information for a C++ data type, check if this type is valid for
|
|
/// the current attribute. This method is used to verify specific type
|
|
/// invariants that the templatized 'getValues' method cannot.
|
|
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
// Make sure that the data element size is the same as the type element width.
|
|
if (getDenseElementBitWidth(type) !=
|
|
static_cast<size_t>(dataEltSize * CHAR_BIT))
|
|
return false;
|
|
|
|
// Check that the element type is either float or integer or index.
|
|
if (!isInt)
|
|
return type.isa<FloatType>();
|
|
if (type.isIndex())
|
|
return true;
|
|
|
|
auto intType = type.dyn_cast<IntegerType>();
|
|
if (!intType)
|
|
return false;
|
|
|
|
// Make sure signedness semantics is consistent.
|
|
if (intType.isSignless())
|
|
return true;
|
|
return intType.isSigned() ? isSigned : !isSigned;
|
|
}
|
|
|
|
/// Defaults down the subclass implementation.
|
|
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt, bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
|
|
isSigned);
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
|
|
isInt, isSigned);
|
|
}
|
|
|
|
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned);
|
|
}
|
|
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(
|
|
getElementType().cast<ComplexType>().getElementType(), dataEltSize / 2,
|
|
isInt, isSigned);
|
|
}
|
|
|
|
/// Returns true if this attribute corresponds to a splat, i.e. if all element
|
|
/// values are the same.
|
|
bool DenseElementsAttr::isSplat() const {
|
|
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
|
|
}
|
|
|
|
/// Return if the given complex type has an integer element type.
|
|
LLVM_ATTRIBUTE_UNUSED static bool isComplexOfIntType(Type type) {
|
|
return type.cast<ComplexType>().getElementType().isa<IntegerType>();
|
|
}
|
|
|
|
auto DenseElementsAttr::getComplexIntValues() const
|
|
-> iterator_range_impl<ComplexIntElementIterator> {
|
|
assert(isComplexOfIntType(getElementType()) &&
|
|
"expected complex integral type");
|
|
return {getType(), ComplexIntElementIterator(*this, 0),
|
|
ComplexIntElementIterator(*this, getNumElements())};
|
|
}
|
|
auto DenseElementsAttr::complex_value_begin() const
|
|
-> ComplexIntElementIterator {
|
|
assert(isComplexOfIntType(getElementType()) &&
|
|
"expected complex integral type");
|
|
return ComplexIntElementIterator(*this, 0);
|
|
}
|
|
auto DenseElementsAttr::complex_value_end() const -> ComplexIntElementIterator {
|
|
assert(isComplexOfIntType(getElementType()) &&
|
|
"expected complex integral type");
|
|
return ComplexIntElementIterator(*this, getNumElements());
|
|
}
|
|
|
|
/// Return the held element values as a range of APFloat. The element type of
|
|
/// this attribute must be of float type.
|
|
auto DenseElementsAttr::getFloatValues() const
|
|
-> iterator_range_impl<FloatElementIterator> {
|
|
auto elementType = getElementType().cast<FloatType>();
|
|
const auto &elementSemantics = elementType.getFloatSemantics();
|
|
return {getType(), FloatElementIterator(elementSemantics, raw_int_begin()),
|
|
FloatElementIterator(elementSemantics, raw_int_end())};
|
|
}
|
|
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
|
|
auto elementType = getElementType().cast<FloatType>();
|
|
return FloatElementIterator(elementType.getFloatSemantics(), raw_int_begin());
|
|
}
|
|
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
|
|
auto elementType = getElementType().cast<FloatType>();
|
|
return FloatElementIterator(elementType.getFloatSemantics(), raw_int_end());
|
|
}
|
|
|
|
auto DenseElementsAttr::getComplexFloatValues() const
|
|
-> iterator_range_impl<ComplexFloatElementIterator> {
|
|
Type eltTy = getElementType().cast<ComplexType>().getElementType();
|
|
assert(eltTy.isa<FloatType>() && "expected complex float type");
|
|
const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
|
|
return {getType(),
|
|
{semantics, {*this, 0}},
|
|
{semantics, {*this, static_cast<size_t>(getNumElements())}}};
|
|
}
|
|
auto DenseElementsAttr::complex_float_value_begin() const
|
|
-> ComplexFloatElementIterator {
|
|
Type eltTy = getElementType().cast<ComplexType>().getElementType();
|
|
assert(eltTy.isa<FloatType>() && "expected complex float type");
|
|
return {eltTy.cast<FloatType>().getFloatSemantics(), {*this, 0}};
|
|
}
|
|
auto DenseElementsAttr::complex_float_value_end() const
|
|
-> ComplexFloatElementIterator {
|
|
Type eltTy = getElementType().cast<ComplexType>().getElementType();
|
|
assert(eltTy.isa<FloatType>() && "expected complex float type");
|
|
return {eltTy.cast<FloatType>().getFloatSemantics(),
|
|
{*this, static_cast<size_t>(getNumElements())}};
|
|
}
|
|
|
|
/// Return the raw storage data held by this attribute.
|
|
ArrayRef<char> DenseElementsAttr::getRawData() const {
|
|
return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
|
|
}
|
|
|
|
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
|
|
return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
|
|
}
|
|
|
|
/// Return a new DenseElementsAttr that has the same data as the current
|
|
/// attribute, but has been reshaped to 'newType'. The new type must have the
|
|
/// same total number of elements as well as element type.
|
|
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
|
|
ShapedType curType = getType();
|
|
if (curType == newType)
|
|
return *this;
|
|
|
|
assert(newType.getElementType() == curType.getElementType() &&
|
|
"expected the same element type");
|
|
assert(newType.getNumElements() == curType.getNumElements() &&
|
|
"expected the same number of elements");
|
|
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) {
|
|
assert(isSplat() && "expected a splat type");
|
|
|
|
ShapedType curType = getType();
|
|
if (curType == newType)
|
|
return *this;
|
|
|
|
assert(newType.getElementType() == curType.getElementType() &&
|
|
"expected the same element type");
|
|
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), true);
|
|
}
|
|
|
|
/// Return a new DenseElementsAttr that has the same data as the current
|
|
/// attribute, but has bitcast elements such that it is now 'newType'. The new
|
|
/// type must have the same shape and element types of the same bitwidth as the
|
|
/// current type.
|
|
DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
|
|
ShapedType curType = getType();
|
|
Type curElType = curType.getElementType();
|
|
if (curElType == newElType)
|
|
return *this;
|
|
|
|
assert(getDenseElementBitWidth(newElType) ==
|
|
getDenseElementBitWidth(curElType) &&
|
|
"expected element types with the same bitwidth");
|
|
return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
|
|
getRawData(), isSplat());
|
|
}
|
|
|
|
DenseElementsAttr
|
|
DenseElementsAttr::mapValues(Type newElementType,
|
|
function_ref<APInt(const APInt &)> mapping) const {
|
|
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
|
|
}
|
|
|
|
ShapedType DenseElementsAttr::getType() const {
|
|
return Attribute::getType().cast<ShapedType>();
|
|
}
|
|
|
|
Type DenseElementsAttr::getElementType() const {
|
|
return getType().getElementType();
|
|
}
|
|
|
|
int64_t DenseElementsAttr::getNumElements() const {
|
|
return getType().getNumElements();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntOrFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Utility method to write a range of APInt values to a buffer.
|
|
template <typename APRangeT>
|
|
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
|
|
APRangeT &&values) {
|
|
data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
|
|
size_t offset = 0;
|
|
for (auto it = values.begin(), e = values.end(); it != e;
|
|
++it, offset += storageWidth) {
|
|
assert((*it).getBitWidth() <= storageWidth);
|
|
writeBits(data.data(), offset, *it);
|
|
}
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APFloat values.
|
|
/// Each APFloat value is expected to have the same bitwidth as the element
|
|
/// type of 'type'. 'type' must be a vector or tensor with static shape.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APFloat> values,
|
|
bool isSplat) {
|
|
std::vector<char> data;
|
|
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
|
|
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APInt values.
|
|
/// Each APInt value is expected to have the same bitwidth as the element type
|
|
/// of 'type'.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APInt> values,
|
|
bool isSplat) {
|
|
std::vector<char> data;
|
|
writeAPIntsToBuffer(storageWidth, data, values);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
|
|
}
|
|
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
ArrayRef<char> data,
|
|
bool isSplat) {
|
|
assert((type.isa<RankedTensorType, VectorType>()) &&
|
|
"type must be ranked tensor or vector");
|
|
assert(type.hasStaticShape() && "type must have static shape");
|
|
return Base::get(type.getContext(), type, data, isSplat);
|
|
}
|
|
|
|
/// Overload of the raw 'get' method that asserts that the given type is of
|
|
/// complex type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
assert(::isValidIntOrFloat(
|
|
type.getElementType().cast<ComplexType>().getElementType(),
|
|
dataEltSize / 2, isInt, isSigned));
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
return getRaw(type, data, /*isSplat=*/numElements == 1);
|
|
}
|
|
|
|
/// Overload of the 'getRaw' method that asserts that the given type is of
|
|
/// integer type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr
|
|
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
|
|
int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
assert(
|
|
::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
return getRaw(type, data, /*isSplat=*/numElements == 1);
|
|
}
|
|
|
|
void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
const char *inRawData, char *outRawData, size_t elementBitWidth,
|
|
size_t numElements) {
|
|
using llvm::support::ulittle16_t;
|
|
using llvm::support::ulittle32_t;
|
|
using llvm::support::ulittle64_t;
|
|
|
|
assert(llvm::support::endian::system_endianness() == // NOLINT
|
|
llvm::support::endianness::big); // NOLINT
|
|
// NOLINT to avoid warning message about replacing by static_assert()
|
|
|
|
// Following std::copy_n always converts endianness on BE machine.
|
|
switch (elementBitWidth) {
|
|
case 16: {
|
|
const ulittle16_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle16_t *>(inRawData);
|
|
uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
case 32: {
|
|
const ulittle32_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle32_t *>(inRawData);
|
|
uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
case 64: {
|
|
const ulittle64_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle64_t *>(inRawData);
|
|
uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
default: {
|
|
size_t nBytes = elementBitWidth / CHAR_BIT;
|
|
for (size_t i = 0; i < nBytes; i++)
|
|
std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
|
|
ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
|
|
ShapedType type) {
|
|
size_t numElements = type.getNumElements();
|
|
Type elementType = type.getElementType();
|
|
if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) {
|
|
elementType = complexTy.getElementType();
|
|
numElements = numElements * 2;
|
|
}
|
|
size_t elementBitWidth = getDenseElementStorageWidth(elementType);
|
|
assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
|
|
inRawData.size() <= outRawData.size());
|
|
convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
|
|
elementBitWidth, numElements);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename Fn, typename Attr>
|
|
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
|
|
Type newElementType,
|
|
llvm::SmallVectorImpl<char> &data) {
|
|
size_t bitWidth = getDenseElementBitWidth(newElementType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
ShapedType newArrayType;
|
|
if (inType.isa<RankedTensorType>())
|
|
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
|
|
else if (inType.isa<UnrankedTensorType>())
|
|
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
|
|
else if (auto vType = inType.dyn_cast<VectorType>())
|
|
newArrayType = VectorType::get(vType.getShape(), newElementType,
|
|
vType.getNumScalableDims());
|
|
else
|
|
assert(newArrayType && "Unhandled tensor type");
|
|
|
|
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
|
|
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
|
|
|
|
// Functor used to process a single element value of the attribute.
|
|
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
|
|
auto newInt = mapping(value);
|
|
assert(newInt.getBitWidth() == bitWidth);
|
|
writeBits(data.data(), index * storageBitWidth, newInt);
|
|
};
|
|
|
|
// Check for the splat case.
|
|
if (attr.isSplat()) {
|
|
processElt(*attr.begin(), /*index=*/0);
|
|
return newArrayType;
|
|
}
|
|
|
|
// Otherwise, process all of the element values.
|
|
uint64_t elementIdx = 0;
|
|
for (auto value : attr)
|
|
processElt(value, elementIdx++);
|
|
return newArrayType;
|
|
}
|
|
|
|
DenseElementsAttr DenseFPElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
|
|
return getRaw(newArrayType, elementData, isSplat());
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseFPElementsAttr::classof(Attribute attr) {
|
|
return attr.isa<DenseElementsAttr>() &&
|
|
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseElementsAttr DenseIntElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
|
|
return getRaw(newArrayType, elementData, isSplat());
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseIntElementsAttr::classof(Attribute attr) {
|
|
return attr.isa<DenseElementsAttr>() &&
|
|
attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpaqueElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
|
|
Dialect *dialect = getContext()->getLoadedDialect(getDialect());
|
|
if (!dialect)
|
|
return true;
|
|
auto *interface = llvm::dyn_cast<DialectDecodeAttributesInterface>(dialect);
|
|
if (!interface)
|
|
return true;
|
|
return failed(interface->decode(*this, result));
|
|
}
|
|
|
|
LogicalResult
|
|
OpaqueElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
StringAttr dialect, StringRef value,
|
|
ShapedType type) {
|
|
if (!Dialect::isValidNamespace(dialect.strref()))
|
|
return emitError() << "invalid dialect namespace '" << dialect << "'";
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get a zero APFloat for the given sparse attribute.
|
|
APFloat SparseElementsAttr::getZeroAPFloat() const {
|
|
auto eltType = getElementType().cast<FloatType>();
|
|
return APFloat(eltType.getFloatSemantics());
|
|
}
|
|
|
|
/// Get a zero APInt for the given sparse attribute.
|
|
APInt SparseElementsAttr::getZeroAPInt() const {
|
|
auto eltType = getElementType().cast<IntegerType>();
|
|
return APInt::getZero(eltType.getWidth());
|
|
}
|
|
|
|
/// Get a zero attribute for the given attribute type.
|
|
Attribute SparseElementsAttr::getZeroAttr() const {
|
|
auto eltType = getElementType();
|
|
|
|
// Handle floating point elements.
|
|
if (eltType.isa<FloatType>())
|
|
return FloatAttr::get(eltType, 0);
|
|
|
|
// Handle string type.
|
|
if (getValues().isa<DenseStringElementsAttr>())
|
|
return StringAttr::get("", eltType);
|
|
|
|
// Otherwise, this is an integer.
|
|
return IntegerAttr::get(eltType, 0);
|
|
}
|
|
|
|
/// Flatten, and return, all of the sparse indices in this attribute in
|
|
/// row-major order.
|
|
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
|
|
std::vector<ptrdiff_t> flatSparseIndices;
|
|
|
|
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
|
|
// as a 1-D index array.
|
|
auto sparseIndices = getIndices();
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
if (sparseIndices.isSplat()) {
|
|
SmallVector<uint64_t, 8> indices(getType().getRank(),
|
|
*sparseIndexValues.begin());
|
|
flatSparseIndices.push_back(getFlattenedIndex(indices));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
// Otherwise, reinterpret each index as an ArrayRef when flattening.
|
|
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
|
|
size_t rank = getType().getRank();
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
|
|
flatSparseIndices.push_back(getFlattenedIndex(
|
|
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
LogicalResult
|
|
SparseElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
ShapedType type, DenseIntElementsAttr sparseIndices,
|
|
DenseElementsAttr values) {
|
|
ShapedType valuesType = values.getType();
|
|
if (valuesType.getRank() != 1)
|
|
return emitError() << "expected 1-d tensor for sparse element values";
|
|
|
|
// Verify the indices and values shape.
|
|
ShapedType indicesType = sparseIndices.getType();
|
|
auto emitShapeError = [&]() {
|
|
return emitError() << "expected shape ([" << type.getShape()
|
|
<< "]); inferred shape of indices literal (["
|
|
<< indicesType.getShape()
|
|
<< "]); inferred shape of values literal (["
|
|
<< valuesType.getShape() << "])";
|
|
};
|
|
// Verify indices shape.
|
|
size_t rank = type.getRank(), indicesRank = indicesType.getRank();
|
|
if (indicesRank == 2) {
|
|
if (indicesType.getDimSize(1) != static_cast<int64_t>(rank))
|
|
return emitShapeError();
|
|
} else if (indicesRank != 1 || rank != 1) {
|
|
return emitShapeError();
|
|
}
|
|
// Verify the values shape.
|
|
int64_t numSparseIndices = indicesType.getDimSize(0);
|
|
if (numSparseIndices != valuesType.getDimSize(0))
|
|
return emitShapeError();
|
|
|
|
// Verify that the sparse indices are within the value shape.
|
|
auto emitIndexError = [&](unsigned indexNum, ArrayRef<uint64_t> index) {
|
|
return emitError()
|
|
<< "sparse index #" << indexNum
|
|
<< " is not contained within the value shape, with index=[" << index
|
|
<< "], and type=" << type;
|
|
};
|
|
|
|
// Handle the case where the index values are a splat.
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
if (sparseIndices.isSplat()) {
|
|
SmallVector<uint64_t> indices(rank, *sparseIndexValues.begin());
|
|
if (!ElementsAttr::isValidIndex(type, indices))
|
|
return emitIndexError(0, indices);
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, reinterpret each index as an ArrayRef.
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i) {
|
|
ArrayRef<uint64_t> index(&*std::next(sparseIndexValues.begin(), i * rank),
|
|
rank);
|
|
if (!ElementsAttr::isValidIndex(type, index))
|
|
return emitIndexError(i, index);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TypeAttr::walkImmediateSubElements(
|
|
function_ref<void(Attribute)> walkAttrsFn,
|
|
function_ref<void(Type)> walkTypesFn) const {
|
|
walkTypesFn(getValue());
|
|
}
|