llvm-capstone/mlir/lib/IR/BuiltinAttributes.cpp
Okwan Kwon f79f430d4b Fold Tensor.extract_slice into a constant splat.
Fold arith.extract_slice into arith.constant when the source is a constant
splat and the result type is statically shaped.
2022-02-22 21:39:57 +00:00

1390 lines
56 KiB
C++

//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinAttributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/Types.h"
#include "mlir/Interfaces/DecodeAttributesInterfaces.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Endian.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
/// Tablegen Attribute Definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/IR/BuiltinAttributes.cpp.inc"
//===----------------------------------------------------------------------===//
// BuiltinDialect
//===----------------------------------------------------------------------===//
void BuiltinDialect::registerAttributes() {
addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
DenseStringElementsAttr, DictionaryAttr, FloatAttr,
SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
UnitAttr>();
}
//===----------------------------------------------------------------------===//
// ArrayAttr
//===----------------------------------------------------------------------===//
void ArrayAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
for (Attribute attr : getValue())
walkAttrsFn(attr);
}
SubElementAttrInterface ArrayAttr::replaceImmediateSubAttribute(
ArrayRef<std::pair<size_t, Attribute>> replacements) const {
std::vector<Attribute> vector = getValue().vec();
for (auto &it : replacements) {
vector[it.first] = it.second;
}
return get(getContext(), vector);
}
//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//
/// Helper function that does either an in place sort or sorts from source array
/// into destination. If inPlace then storage is both the source and the
/// destination, else value is the source and storage destination. Returns
/// whether source was sorted.
template <bool inPlace>
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
// Specialize for the common case.
switch (value.size()) {
case 0:
// Zero already sorted.
if (!inPlace)
storage.clear();
break;
case 1:
// One already sorted but may need to be copied.
if (!inPlace)
storage.assign({value[0]});
break;
case 2: {
bool isSorted = value[0] < value[1];
if (inPlace) {
if (!isSorted)
std::swap(storage[0], storage[1]);
} else if (isSorted) {
storage.assign({value[0], value[1]});
} else {
storage.assign({value[1], value[0]});
}
return !isSorted;
}
default:
if (!inPlace)
storage.assign(value.begin(), value.end());
// Check to see they are sorted already.
bool isSorted = llvm::is_sorted(value);
// If not, do a general sort.
if (!isSorted)
llvm::array_pod_sort(storage.begin(), storage.end());
return !isSorted;
}
return false;
}
/// Returns an entry with a duplicate name from the given sorted array of named
/// attributes. Returns llvm::None if all elements have unique names.
static Optional<NamedAttribute>
findDuplicateElement(ArrayRef<NamedAttribute> value) {
const Optional<NamedAttribute> none{llvm::None};
if (value.size() < 2)
return none;
if (value.size() == 2)
return value[0].getName() == value[1].getName() ? value[0] : none;
const auto *it = std::adjacent_find(value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) {
return l.getName() == r.getName();
});
return it != value.end() ? *it : none;
}
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
assert(!findDuplicateElement(storage) &&
"DictionaryAttr element names must be unique");
return isSorted;
}
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
assert(!findDuplicateElement(array) &&
"DictionaryAttr element names must be unique");
return isSorted;
}
Optional<NamedAttribute>
DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
bool isSorted) {
if (!isSorted)
dictionaryAttrSort</*inPlace=*/true>(array, array);
return findDuplicateElement(array);
}
DictionaryAttr DictionaryAttr::get(MLIRContext *context,
ArrayRef<NamedAttribute> value) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
// We need to sort the element list to canonicalize it.
SmallVector<NamedAttribute, 8> storage;
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
value = storage;
assert(!findDuplicateElement(value) &&
"DictionaryAttr element names must be unique");
return Base::get(context, value);
}
/// Construct a dictionary with an array of values that is known to already be
/// sorted by name and uniqued.
DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
ArrayRef<NamedAttribute> value) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
// Ensure that the attribute elements are unique and sorted.
assert(llvm::is_sorted(
value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) &&
"expected attribute values to be sorted");
assert(!findDuplicateElement(value) &&
"DictionaryAttr element names must be unique");
return Base::get(context, value);
}
/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
auto it = impl::findAttrSorted(begin(), end(), name);
return it.second ? it.first->getValue() : Attribute();
}
Attribute DictionaryAttr::get(StringAttr name) const {
auto it = impl::findAttrSorted(begin(), end(), name);
return it.second ? it.first->getValue() : Attribute();
}
/// Return the specified named attribute if present, None otherwise.
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
auto it = impl::findAttrSorted(begin(), end(), name);
return it.second ? *it.first : Optional<NamedAttribute>();
}
Optional<NamedAttribute> DictionaryAttr::getNamed(StringAttr name) const {
auto it = impl::findAttrSorted(begin(), end(), name);
return it.second ? *it.first : Optional<NamedAttribute>();
}
/// Return whether the specified attribute is present.
bool DictionaryAttr::contains(StringRef name) const {
return impl::findAttrSorted(begin(), end(), name).second;
}
bool DictionaryAttr::contains(StringAttr name) const {
return impl::findAttrSorted(begin(), end(), name).second;
}
DictionaryAttr::iterator DictionaryAttr::begin() const {
return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }
DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
return Base::get(context, ArrayRef<NamedAttribute>());
}
void DictionaryAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
for (const NamedAttribute &attr : getValue())
walkAttrsFn(attr.getValue());
}
SubElementAttrInterface DictionaryAttr::replaceImmediateSubAttribute(
ArrayRef<std::pair<size_t, Attribute>> replacements) const {
std::vector<NamedAttribute> vec = getValue().vec();
for (auto &it : replacements)
vec[it.first].setValue(it.second);
// The above only modifies the mapped value, but not the key, and therefore
// not the order of the elements. It remains sorted
return getWithSorted(getContext(), vec);
}
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
return Base::get(context, "", NoneType::get(context));
}
/// Twine support for StringAttr.
StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
// Fast-path empty twine.
if (twine.isTriviallyEmpty())
return get(context);
SmallVector<char, 32> tempStr;
return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
}
/// Twine support for StringAttr.
StringAttr StringAttr::get(const Twine &twine, Type type) {
SmallVector<char, 32> tempStr;
return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
}
StringRef StringAttr::getValue() const { return getImpl()->value; }
Dialect *StringAttr::getReferencedDialect() const {
return getImpl()->referencedDialect;
}
//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//
double FloatAttr::getValueAsDouble() const {
return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
bool losesInfo = false;
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Type type, APFloat value) {
// Verify that the type is correct.
if (!type.isa<FloatType>())
return emitError() << "expected floating point type";
// Verify that the type semantics match that of the value.
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
return emitError()
<< "FloatAttr type doesn't match the type implied by its value";
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//
SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value,
ArrayRef<FlatSymbolRefAttr> nestedRefs) {
return get(StringAttr::get(ctx, value), nestedRefs);
}
FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
return get(ctx, value, {}).cast<FlatSymbolRefAttr>();
}
FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) {
return get(value, {}).cast<FlatSymbolRefAttr>();
}
FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) {
auto symName =
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
assert(symName && "value does not have a valid symbol name");
return SymbolRefAttr::get(symName);
}
StringAttr SymbolRefAttr::getLeafReference() const {
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr();
}
//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//
int64_t IntegerAttr::getInt() const {
assert((getType().isIndex() || getType().isSignlessInteger()) &&
"must be signless integer");
return getValue().getSExtValue();
}
int64_t IntegerAttr::getSInt() const {
assert(getType().isSignedInteger() && "must be signed integer");
return getValue().getSExtValue();
}
uint64_t IntegerAttr::getUInt() const {
assert(getType().isUnsignedInteger() && "must be unsigned integer");
return getValue().getZExtValue();
}
/// Return the value as an APSInt which carries the signed from the type of
/// the attribute. This traps on signless integers types!
APSInt IntegerAttr::getAPSInt() const {
assert(!getType().isSignlessInteger() &&
"Signless integers don't carry a sign for APSInt");
return APSInt(getValue(), getType().isUnsignedInteger());
}
LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
Type type, APInt value) {
if (IntegerType integerType = type.dyn_cast<IntegerType>()) {
if (integerType.getWidth() != value.getBitWidth())
return emitError() << "integer type bit width (" << integerType.getWidth()
<< ") doesn't match value bit width ("
<< value.getBitWidth() << ")";
return success();
}
if (type.isa<IndexType>())
return success();
return emitError() << "expected integer or index type";
}
BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
return attr.cast<BoolAttr>();
}
//===----------------------------------------------------------------------===//
// BoolAttr
//===----------------------------------------------------------------------===//
bool BoolAttr::getValue() const {
auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
return storage->value.getBoolValue();
}
bool BoolAttr::classof(Attribute attr) {
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
return intAttr && intAttr.getType().isSignlessInteger(1);
}
//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//
LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
StringAttr dialect, StringRef attrData,
Type type) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitError() << "invalid dialect namespace '" << dialect << "'";
// Check that the dialect is actually registered.
MLIRContext *context = dialect.getContext();
if (!context->allowsUnregisteredDialects() &&
!context->getLoadedDialect(dialect.strref())) {
return emitError()
<< "#" << dialect << "<\"" << attrData << "\"> : " << type
<< " attribute created with unregistered dialect. If this is "
"intended, please call allowUnregisteredDialects() on the "
"MLIRContext, or use -allow-unregistered-dialect with "
"the MLIR opt tool used";
}
return success();
}
//===----------------------------------------------------------------------===//
// DenseElementsAttr Utilities
//===----------------------------------------------------------------------===//
/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
static size_t getDenseElementStorageWidth(Type elementType) {
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
}
/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
if (value)
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
else
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}
/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}
/// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
/// BE format.
static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
char *result) {
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
// Copy the words filled with data.
// For example, when `value` has 2 words, the first word is filled with data.
// `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
numFilledWords, result);
// Convert last word of APInt to LE format and store it in char
// array(`valueLE`).
// ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------|
size_t lastWordPos = numFilledWords;
SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
// Extract actual APInt data from `valueLE`, convert endianness to BE format,
// and store it in `result`.
// ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
valueLE.begin(), result + lastWordPos,
(numBytes - lastWordPos) * CHAR_BIT, 1);
}
/// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
/// format.
static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
APInt &result) {
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
// Copy the data that fills the word of `result` from `inArray`.
// For example, when `result` has 2 words, the first word will be filled with
// data. So, the first 8 bytes are copied from `inArray` here.
// `inArray` (10 bytes, BE): |abcdefgh|ij|
// ==> `result` (2 words, BE): |abcdefgh|--------|
size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
std::copy_n(
inArray, numFilledWords,
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
// Convert array data which will be last word of `result` to LE format, and
// store it in char array(`inArrayLE`).
// ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------|
size_t lastWordPos = numFilledWords;
SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
inArray + lastWordPos, inArrayLE.begin(),
(numBytes - lastWordPos) * CHAR_BIT, 1);
// Convert `inArrayLE` to BE format, and store it in last word of `result`.
// ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
inArrayLE.begin(),
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
lastWordPos,
APInt::APINT_BITS_PER_WORD, 1);
}
/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1)
return setBit(rawData, bitPos, value.isOneValue());
// Otherwise, the bit position is guaranteed to be byte aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
// work correctly in BE format.
// ex. `value` (2 words including 10 bytes)
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------|
copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
} else {
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
}
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
// Handle a boolean bit position.
if (bitWidth == 1)
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
// Otherwise, the bit position must be 8-bit aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
APInt result(bitWidth, 0);
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big) {
// Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
// work correctly in BE format.
// ex. `result` (2 words including 10 bytes)
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function
copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
llvm::divideCeil(bitWidth, CHAR_BIT), result);
} else {
std::copy_n(rawData + (bitPos / CHAR_BIT),
llvm::divideCeil(bitWidth, CHAR_BIT),
const_cast<char *>(
reinterpret_cast<const char *>(result.getRawData())));
}
return result;
}
/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
/// the same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
return (values.size() == 1) ||
(type.getNumElements() == static_cast<int64_t>(values.size()));
}
//===----------------------------------------------------------------------===//
// DenseElementsAttr Iterators
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AttributeElementIterator
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
DenseElementsAttr attr, size_t index)
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
Attribute, Attribute, Attribute>(
attr.getAsOpaquePointer(), index) {}
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
Type eltTy = owner.getElementType();
if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (eltTy.isa<IndexType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
IntElementIterator intIt(owner, index);
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
return FloatAttr::get(eltTy, *floatIt);
}
if (auto complexTy = eltTy.dyn_cast<ComplexType>()) {
auto complexEltTy = complexTy.getElementType();
ComplexIntElementIterator complexIntIt(owner, index);
if (complexEltTy.isa<IntegerType>()) {
auto value = *complexIntIt;
auto real = IntegerAttr::get(complexEltTy, value.real());
auto imag = IntegerAttr::get(complexEltTy, value.imag());
return ArrayAttr::get(complexTy.getContext(),
ArrayRef<Attribute>{real, imag});
}
ComplexFloatElementIterator complexFloatIt(
complexEltTy.cast<FloatType>().getFloatSemantics(), complexIntIt);
auto value = *complexFloatIt;
auto real = FloatAttr::get(complexEltTy, value.real());
auto imag = FloatAttr::get(complexEltTy, value.imag());
return ArrayAttr::get(complexTy.getContext(),
ArrayRef<Attribute>{real, imag});
}
if (owner.isa<DenseStringElementsAttr>()) {
ArrayRef<StringRef> vals = owner.getRawStringData();
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
}
llvm_unreachable("unexpected element type");
}
//===----------------------------------------------------------------------===//
// BoolElementIterator
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
bool DenseElementsAttr::BoolElementIterator::operator*() const {
return getBit(getData(), getDataIndex());
}
//===----------------------------------------------------------------------===//
// IntElementIterator
DenseElementsAttr::IntElementIterator::IntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
attr.getRawData().data(), attr.isSplat(), dataIndex),
bitWidth(getDenseElementBitWidth(attr.getElementType())) {}
APInt DenseElementsAttr::IntElementIterator::operator*() const {
return readBits(getData(),
getDataIndex() * getDenseElementStorageWidth(bitWidth),
bitWidth);
}
//===----------------------------------------------------------------------===//
// ComplexIntElementIterator
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
std::complex<APInt>, std::complex<APInt>,
std::complex<APInt>>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {
auto complexType = attr.getElementType().cast<ComplexType>();
bitWidth = getDenseElementBitWidth(complexType.getElementType());
}
std::complex<APInt>
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
size_t offset = getDataIndex() * storageWidth * 2;
return {readBits(getData(), offset, bitWidth),
readBits(getData(), offset + storageWidth, bitWidth)};
}
//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//
/// Method for support type inquiry through isa, cast and dyn_cast.
bool DenseElementsAttr::classof(Attribute attr) {
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>();
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<Attribute> values) {
assert(hasSameElementsOrSplat(type, values));
// If the element type is not based on int/float/index, assume it is a string
// type.
auto eltType = type.getElementType();
if (!type.getElementType().isIntOrIndexOrFloat()) {
SmallVector<StringRef, 8> stringValues;
stringValues.reserve(values.size());
for (Attribute attr : values) {
assert(attr.isa<StringAttr>() &&
"expected string value for non integer/index/float element");
stringValues.push_back(attr.cast<StringAttr>().getValue());
}
return get(type, stringValues);
}
// Otherwise, get the raw storage width to use for the allocation.
size_t bitWidth = getDenseElementBitWidth(eltType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
// Compress the attribute values into a character buffer.
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
APInt intVal;
for (unsigned i = 0, e = values.size(); i < e; ++i) {
assert(eltType == values[i].getType() &&
"expected attribute value to have element type");
if (eltType.isa<FloatType>())
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
else if (eltType.isa<IntegerType, IndexType>())
intVal = values[i].cast<IntegerAttr>().getValue();
else
llvm_unreachable("unexpected element type");
assert(intVal.getBitWidth() == bitWidth &&
"expected value to have same bitwidth as element type");
writeBits(data.data(), i * storageBitWidth, intVal);
}
return DenseIntOrFPElementsAttr::getRaw(type, data,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<bool> values) {
assert(hasSameElementsOrSplat(type, values));
assert(type.getElementType().isInteger(1));
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
for (int i = 0, e = values.size(); i != e; ++i)
setBit(buff.data(), i, values[i]);
return DenseIntOrFPElementsAttr::getRaw(type, buff,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<StringRef> values) {
assert(!type.getElementType().isIntOrFloat());
return DenseStringElementsAttr::get(type, values);
}
/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APInt> values) {
assert(type.getElementType().isIntOrIndex());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APInt>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<IntegerType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
values.size() * 2);
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
/*isSplat=*/(values.size() == 1));
}
// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APFloat> values) {
assert(type.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr
DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APFloat>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
values.size() * 2);
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
/*isSplat=*/(values.size() == 1));
}
/// Construct a dense elements attribute from a raw buffer representing the
/// data for this attribute. Users should generally not use this methods as
/// the expected buffer format may not be a form the user expects.
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool isSplatBuffer) {
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
}
/// Returns true if the given buffer is a valid raw buffer for the given type.
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool &detectedSplat) {
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
// Storage width of 1 is special as it is packed by the bit.
if (storageWidth == 1) {
// Check for a splat, or a buffer equal to the number of elements which
// consists of either all 0's or all 1's.
detectedSplat = false;
if (rawBuffer.size() == 1) {
auto rawByte = static_cast<uint8_t>(rawBuffer[0]);
if (rawByte == 0 || rawByte == 0xff) {
detectedSplat = true;
return true;
}
}
return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
}
// All other types are 8-bit aligned.
if ((detectedSplat = rawBufferWidth == storageWidth))
return true;
return rawBufferWidth == (storageWidth * type.getNumElements());
}
/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
bool isSigned) {
// Make sure that the data element size is the same as the type element width.
if (getDenseElementBitWidth(type) !=
static_cast<size_t>(dataEltSize * CHAR_BIT))
return false;
// Check that the element type is either float or integer or index.
if (!isInt)
return type.isa<FloatType>();
if (type.isIndex())
return true;
auto intType = type.dyn_cast<IntegerType>();
if (!intType)
return false;
// Make sure signedness semantics is consistent.
if (intType.isSignless())
return true;
return intType.isSigned() ? isSigned : !isSigned;
}
/// Defaults down the subclass implementation.
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt, bool isSigned) {
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
isSigned);
}
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
isInt, isSigned);
}
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned);
}
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(
getElementType().cast<ComplexType>().getElementType(), dataEltSize / 2,
isInt, isSigned);
}
/// Returns true if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const {
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
}
/// Return if the given complex type has an integer element type.
LLVM_ATTRIBUTE_UNUSED static bool isComplexOfIntType(Type type) {
return type.cast<ComplexType>().getElementType().isa<IntegerType>();
}
auto DenseElementsAttr::getComplexIntValues() const
-> iterator_range_impl<ComplexIntElementIterator> {
assert(isComplexOfIntType(getElementType()) &&
"expected complex integral type");
return {getType(), ComplexIntElementIterator(*this, 0),
ComplexIntElementIterator(*this, getNumElements())};
}
auto DenseElementsAttr::complex_value_begin() const
-> ComplexIntElementIterator {
assert(isComplexOfIntType(getElementType()) &&
"expected complex integral type");
return ComplexIntElementIterator(*this, 0);
}
auto DenseElementsAttr::complex_value_end() const -> ComplexIntElementIterator {
assert(isComplexOfIntType(getElementType()) &&
"expected complex integral type");
return ComplexIntElementIterator(*this, getNumElements());
}
/// Return the held element values as a range of APFloat. The element type of
/// this attribute must be of float type.
auto DenseElementsAttr::getFloatValues() const
-> iterator_range_impl<FloatElementIterator> {
auto elementType = getElementType().cast<FloatType>();
const auto &elementSemantics = elementType.getFloatSemantics();
return {getType(), FloatElementIterator(elementSemantics, raw_int_begin()),
FloatElementIterator(elementSemantics, raw_int_end())};
}
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
auto elementType = getElementType().cast<FloatType>();
return FloatElementIterator(elementType.getFloatSemantics(), raw_int_begin());
}
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
auto elementType = getElementType().cast<FloatType>();
return FloatElementIterator(elementType.getFloatSemantics(), raw_int_end());
}
auto DenseElementsAttr::getComplexFloatValues() const
-> iterator_range_impl<ComplexFloatElementIterator> {
Type eltTy = getElementType().cast<ComplexType>().getElementType();
assert(eltTy.isa<FloatType>() && "expected complex float type");
const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
return {getType(),
{semantics, {*this, 0}},
{semantics, {*this, static_cast<size_t>(getNumElements())}}};
}
auto DenseElementsAttr::complex_float_value_begin() const
-> ComplexFloatElementIterator {
Type eltTy = getElementType().cast<ComplexType>().getElementType();
assert(eltTy.isa<FloatType>() && "expected complex float type");
return {eltTy.cast<FloatType>().getFloatSemantics(), {*this, 0}};
}
auto DenseElementsAttr::complex_float_value_end() const
-> ComplexFloatElementIterator {
Type eltTy = getElementType().cast<ComplexType>().getElementType();
assert(eltTy.isa<FloatType>() && "expected complex float type");
return {eltTy.cast<FloatType>().getFloatSemantics(),
{*this, static_cast<size_t>(getNumElements())}};
}
/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
}
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
ShapedType curType = getType();
if (curType == newType)
return *this;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
assert(newType.getNumElements() == curType.getNumElements() &&
"expected the same number of elements");
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
}
DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) {
assert(isSplat() && "expected a splat type");
ShapedType curType = getType();
if (curType == newType)
return *this;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), true);
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has bitcast elements such that it is now 'newType'. The new
/// type must have the same shape and element types of the same bitwidth as the
/// current type.
DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
ShapedType curType = getType();
Type curElType = curType.getElementType();
if (curElType == newElType)
return *this;
assert(getDenseElementBitWidth(newElType) ==
getDenseElementBitWidth(curElType) &&
"expected element types with the same bitwidth");
return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
getRawData(), isSplat());
}
DenseElementsAttr
DenseElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
}
ShapedType DenseElementsAttr::getType() const {
return Attribute::getType().cast<ShapedType>();
}
Type DenseElementsAttr::getElementType() const {
return getType().getElementType();
}
int64_t DenseElementsAttr::getNumElements() const {
return getType().getNumElements();
}
//===----------------------------------------------------------------------===//
// DenseIntOrFPElementsAttr
//===----------------------------------------------------------------------===//
/// Utility method to write a range of APInt values to a buffer.
template <typename APRangeT>
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
APRangeT &&values) {
data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
size_t offset = 0;
for (auto it = values.begin(), e = values.end(); it != e;
++it, offset += storageWidth) {
assert((*it).getBitWidth() <= storageWidth);
writeBits(data.data(), offset, *it);
}
}
/// Constructs a dense elements attribute from an array of raw APFloat values.
/// Each APFloat value is expected to have the same bitwidth as the element
/// type of 'type'. 'type' must be a vector or tensor with static shape.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APFloat> values,
bool isSplat) {
std::vector<char> data;
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
/// Constructs a dense elements attribute from an array of raw APInt values.
/// Each APInt value is expected to have the same bitwidth as the element type
/// of 'type'.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APInt> values,
bool isSplat) {
std::vector<char> data;
writeAPIntsToBuffer(storageWidth, data, values);
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
ArrayRef<char> data,
bool isSplat) {
assert((type.isa<RankedTensorType, VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), type, data, isSplat);
}
/// Overload of the raw 'get' method that asserts that the given type is of
/// complex type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
assert(::isValidIntOrFloat(
type.getElementType().cast<ComplexType>().getElementType(),
dataEltSize / 2, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
int64_t dataEltSize, bool isInt,
bool isSigned) {
assert(
::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
const char *inRawData, char *outRawData, size_t elementBitWidth,
size_t numElements) {
using llvm::support::ulittle16_t;
using llvm::support::ulittle32_t;
using llvm::support::ulittle64_t;
assert(llvm::support::endian::system_endianness() == // NOLINT
llvm::support::endianness::big); // NOLINT
// NOLINT to avoid warning message about replacing by static_assert()
// Following std::copy_n always converts endianness on BE machine.
switch (elementBitWidth) {
case 16: {
const ulittle16_t *inRawDataPos =
reinterpret_cast<const ulittle16_t *>(inRawData);
uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
case 32: {
const ulittle32_t *inRawDataPos =
reinterpret_cast<const ulittle32_t *>(inRawData);
uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
case 64: {
const ulittle64_t *inRawDataPos =
reinterpret_cast<const ulittle64_t *>(inRawData);
uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
std::copy_n(inRawDataPos, numElements, outDataPos);
break;
}
default: {
size_t nBytes = elementBitWidth / CHAR_BIT;
for (size_t i = 0; i < nBytes; i++)
std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
break;
}
}
}
void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
ShapedType type) {
size_t numElements = type.getNumElements();
Type elementType = type.getElementType();
if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) {
elementType = complexTy.getElementType();
numElements = numElements * 2;
}
size_t elementBitWidth = getDenseElementStorageWidth(elementType);
assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
inRawData.size() <= outRawData.size());
convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
elementBitWidth, numElements);
}
//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//
template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
Type newElementType,
llvm::SmallVectorImpl<char> &data) {
size_t bitWidth = getDenseElementBitWidth(newElementType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
ShapedType newArrayType;
if (inType.isa<RankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<UnrankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (auto vType = inType.dyn_cast<VectorType>())
newArrayType = VectorType::get(vType.getShape(), newElementType,
vType.getNumScalableDims());
else
assert(newArrayType && "Unhandled tensor type");
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
// Functor used to process a single element value of the attribute.
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
auto newInt = mapping(value);
assert(newInt.getBitWidth() == bitWidth);
writeBits(data.data(), index * storageBitWidth, newInt);
};
// Check for the splat case.
if (attr.isSplat()) {
processElt(*attr.begin(), /*index=*/0);
return newArrayType;
}
// Otherwise, process all of the element values.
uint64_t elementIdx = 0;
for (auto value : attr)
processElt(value, elementIdx++);
return newArrayType;
}
DenseElementsAttr DenseFPElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseIntElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
}
//===----------------------------------------------------------------------===//
// OpaqueElementsAttr
//===----------------------------------------------------------------------===//
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
Dialect *dialect = getContext()->getLoadedDialect(getDialect());
if (!dialect)
return true;
auto *interface = llvm::dyn_cast<DialectDecodeAttributesInterface>(dialect);
if (!interface)
return true;
return failed(interface->decode(*this, result));
}
LogicalResult
OpaqueElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
StringAttr dialect, StringRef value,
ShapedType type) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitError() << "invalid dialect namespace '" << dialect << "'";
return success();
}
//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//
/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
auto eltType = getElementType().cast<FloatType>();
return APFloat(eltType.getFloatSemantics());
}
/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
auto eltType = getElementType().cast<IntegerType>();
return APInt::getZero(eltType.getWidth());
}
/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
auto eltType = getElementType();
// Handle floating point elements.
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
// Handle string type.
if (getValues().isa<DenseStringElementsAttr>())
return StringAttr::get("", eltType);
// Otherwise, this is an integer.
return IntegerAttr::get(eltType, 0);
}
/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
std::vector<ptrdiff_t> flatSparseIndices;
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t, 8> indices(getType().getRank(),
*sparseIndexValues.begin());
flatSparseIndices.push_back(getFlattenedIndex(indices));
return flatSparseIndices;
}
// Otherwise, reinterpret each index as an ArrayRef when flattening.
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = getType().getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
flatSparseIndices.push_back(getFlattenedIndex(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
return flatSparseIndices;
}
LogicalResult
SparseElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
ShapedType type, DenseIntElementsAttr sparseIndices,
DenseElementsAttr values) {
ShapedType valuesType = values.getType();
if (valuesType.getRank() != 1)
return emitError() << "expected 1-d tensor for sparse element values";
// Verify the indices and values shape.
ShapedType indicesType = sparseIndices.getType();
auto emitShapeError = [&]() {
return emitError() << "expected shape ([" << type.getShape()
<< "]); inferred shape of indices literal (["
<< indicesType.getShape()
<< "]); inferred shape of values literal (["
<< valuesType.getShape() << "])";
};
// Verify indices shape.
size_t rank = type.getRank(), indicesRank = indicesType.getRank();
if (indicesRank == 2) {
if (indicesType.getDimSize(1) != static_cast<int64_t>(rank))
return emitShapeError();
} else if (indicesRank != 1 || rank != 1) {
return emitShapeError();
}
// Verify the values shape.
int64_t numSparseIndices = indicesType.getDimSize(0);
if (numSparseIndices != valuesType.getDimSize(0))
return emitShapeError();
// Verify that the sparse indices are within the value shape.
auto emitIndexError = [&](unsigned indexNum, ArrayRef<uint64_t> index) {
return emitError()
<< "sparse index #" << indexNum
<< " is not contained within the value shape, with index=[" << index
<< "], and type=" << type;
};
// Handle the case where the index values are a splat.
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t> indices(rank, *sparseIndexValues.begin());
if (!ElementsAttr::isValidIndex(type, indices))
return emitIndexError(0, indices);
return success();
}
// Otherwise, reinterpret each index as an ArrayRef.
for (size_t i = 0, e = numSparseIndices; i != e; ++i) {
ArrayRef<uint64_t> index(&*std::next(sparseIndexValues.begin(), i * rank),
rank);
if (!ElementsAttr::isValidIndex(type, index))
return emitIndexError(i, index);
}
return success();
}
//===----------------------------------------------------------------------===//
// TypeAttr
//===----------------------------------------------------------------------===//
void TypeAttr::walkImmediateSubElements(
function_ref<void(Attribute)> walkAttrsFn,
function_ref<void(Type)> walkTypesFn) const {
walkTypesFn(getValue());
}