/* radare - LGPL - Copyright 2009-2016 - pancake, jduck, TheLemonMan */ #include #include #if __WINDOWS__ void w32_break_process(void *); #endif R_LIB_VERSION(r_debug); // Size of the lookahead buffers used in r_debug functions #define DBG_BUF_SIZE 512 R_API RDebugInfo *r_debug_info(RDebug *dbg, const char *arg) { if (!dbg || !dbg->h || !dbg->h->info) { return NULL; } return dbg->h->info (dbg, arg); } R_API void r_debug_info_free (RDebugInfo *rdi) { free (rdi->cwd); free (rdi->exe); free (rdi->cmdline); free (rdi->libname); } /* * Recoiling after a breakpoint has two stages: * 1. remove the breakpoint and fix the program counter. * 2. on resume, single step once and then replace the breakpoint. * * Thus, we have two functions to handle these situations. * r_debug_bp_hit handles stage 1. * r_debug_recoil handles stage 2. */ static int r_debug_bp_hit(RDebug *dbg, RRegItem *pc_ri, ut64 pc, RBreakpointItem **pb) { RBreakpointItem *b; if (!pb) { eprintf ("BreakpointItem is NULL!\n"); return false; } /* initialize the output parameter */ *pb = NULL; /* if we are tracing, update the tracing data */ if (dbg->trace->enabled) { r_debug_trace_pc (dbg, pc); } /* remove all sw breakpoints for now. we'll set them back in stage 2 * * this is necessary because while stopped we don't want any breakpoints in * the code messing up our analysis. */ if (!r_bp_restore (dbg->bp, false)) { // unset sw breakpoints return false; } /* if we are recoiling, tell r_debug_step that we ignored a breakpoint * event */ if (!dbg->swstep && dbg->recoil_mode != R_DBG_RECOIL_NONE) { dbg->reason.bp_addr = 0; return true; } /* see if we really have a breakpoint here... */ b = r_bp_get_at (dbg->bp, pc - dbg->bpsize); if (!b) { /* we don't. nothing left to do */ return true; } *pb = b; /* set the pc value back */ pc -= b->size; if (!r_reg_set_value (dbg->reg, pc_ri, pc)) { eprintf ("failed to set PC!\n"); return false; } if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, true)) { eprintf ("cannot set registers!\n"); return false; } /* if we are on a software stepping breakpoint, we hide what is going on... */ if (b->swstep) { dbg->reason.bp_addr = 0; return true; } /* setup our stage 2 */ dbg->reason.bp_addr = b->addr; /* inform the user of what happened */ eprintf ("hit %spoint at: %"PFMT64x "\n", b->trace ? "trace" : "break", pc); /* now that we've cleaned up after the breakpoint, call the other * potential breakpoint handlers */ if (dbg->corebind.core && dbg->corebind.bphit) { dbg->corebind.bphit (dbg->corebind.core, b); } return true; } /* enable all software breakpoints */ static int r_debug_bps_enable(RDebug *dbg) { /* restore all sw breakpoints. we are about to step/continue so these need * to be in place. */ if (!r_bp_restore (dbg->bp, true)) return false; /* done recoiling... */ dbg->recoil_mode = R_DBG_RECOIL_NONE; return true; } /* * replace breakpoints before we continue execution * * this is called from r_debug_step_hard or r_debug_continue_kill * * this is a trick process because of breakpoints/tracepoints. * * if a breakpoint was just hit, we need step over that instruction before * allowing the caller to proceed as desired. * * if the user wants to step, the single step here does the job. */ static int r_debug_recoil(RDebug *dbg, RDebugRecoilMode rc_mode) { /* if bp_addr is not set, we must not have actually hit a breakpoint */ if (!dbg->reason.bp_addr) { return r_debug_bps_enable (dbg); } /* don't do anything if we already are recoiling */ if (dbg->recoil_mode != R_DBG_RECOIL_NONE) { /* the first time recoil is called with swstep, we just need to * look up the bp and step past it. * the second time it's called, the new sw breakpoint should exist * so we just restore all except what we originally hit and reset. */ if (dbg->swstep) { if (!r_bp_restore_except (dbg->bp, true, dbg->reason.bp_addr)) { return false; } return true; } /* otherwise, avoid recursion */ return true; } /* we have entered recoil! */ dbg->recoil_mode = rc_mode; /* step over the place with the breakpoint and let the caller resume */ if (r_debug_step (dbg, 1) != 1) { return false; } /* when stepping away from a breakpoint during recoil in stepping mode, * the r_debug_bp_hit function tells us that it was called * innapropriately by setting bp_addr back to zero. however, recoil_mode * is still set. we use this condition to know not to proceed but * pretend as if we had. */ if (!dbg->reason.bp_addr && dbg->recoil_mode == R_DBG_RECOIL_STEP) { return true; } return r_debug_bps_enable (dbg); } static int get_bpsz_arch(RDebug *dbg) { #define CMP_ARCH(x) strncmp (dbg->arch, (x), R_MIN (len_arch, strlen ((x)))) int bpsz , len_arch = strlen (dbg->arch); if (!CMP_ARCH ("arm")) { //TODO add better handle arm/thumb bpsz = 4; } else if (!CMP_ARCH ("mips")) { bpsz = 4; } else if (!CMP_ARCH ("ppc")) { bpsz = 4; } else if (!CMP_ARCH ("sparc")) { bpsz = 4; } else if (!CMP_ARCH ("sh")) { bpsz = 2; } else { bpsz = 1; } return bpsz; } /* add a breakpoint with some typical values */ R_API RBreakpointItem *r_debug_bp_add(RDebug *dbg, ut64 addr, int hw, char *module, st64 m_delta) { int bpsz = get_bpsz_arch (dbg); RBreakpointItem *bpi; const char *module_name = module; RListIter *iter; RDebugMap *map; if (!addr && module) { bool detect_module, valid = false; int perm; if (m_delta) { detect_module = false; RList *list = r_debug_modules_list (dbg); r_list_foreach (list, iter, map) { if (strstr (map->file, module)) { addr = map->addr + m_delta; module_name = map->file; break; } } } else { //module holds the address addr = (ut64)r_num_math (dbg->num, module); if (!addr) return NULL; detect_module = true; } r_debug_map_sync (dbg); r_list_foreach (dbg->maps, iter, map) { if (addr >= map->addr && addr < map->addr_end) { valid = true; if (detect_module) { module_name = map->file; m_delta = addr - map->addr; } perm = ((map->perm & 1) << 2) | (map->perm & 2) | ((map->perm & 4) >> 2); if (!(perm & R_BP_PROT_EXEC)) eprintf ("WARNING: setting bp within mapped memory without exec perm\n"); break; } } if (!valid) { eprintf ("WARNING: module's base addr + delta is not a valid address\n"); return NULL; } } if (!module) { //express db breakpoints as dbm due to ASLR when saving into project r_debug_map_sync (dbg); r_list_foreach (dbg->maps, iter, map) { if (addr >= map->addr && addr < map->addr_end) { module_name = map->file; m_delta = addr - map->addr; break; } } } bpi = hw ? r_bp_add_hw (dbg->bp, addr, bpsz, R_BP_PROT_EXEC) : r_bp_add_sw (dbg->bp, addr, bpsz, R_BP_PROT_EXEC); if (bpi) { if (module_name) { bpi->module_name = strdup (module_name); bpi->name = r_str_newf ("%s+0x%" PFMT64x, module_name, m_delta); } bpi->module_delta = m_delta; } return bpi; } R_API RDebug *r_debug_new(int hard) { RDebug *dbg = R_NEW0 (RDebug); if (!dbg) return NULL; // R_SYS_ARCH dbg->arch = strdup (R_SYS_ARCH); dbg->bits = R_SYS_BITS; dbg->trace_forks = 1; dbg->forked_pid = -1; dbg->trace_clone = 0; R_FREE (dbg->btalgo); dbg->trace_execs = 0; dbg->anal = NULL; dbg->snaps = r_list_newf (r_debug_snap_free); dbg->pid = -1; dbg->bpsize = 1; dbg->tid = -1; dbg->tree = r_tree_new (); dbg->tracenodes = sdb_new0 (); dbg->swstep = 0; dbg->stop_all_threads = false; dbg->trace = r_debug_trace_new (); dbg->cb_printf = (void *)printf; dbg->reg = r_reg_new (); dbg->num = r_num_new (r_debug_num_callback, dbg); dbg->h = NULL; dbg->threads = NULL; /* TODO: needs a redesign? */ dbg->maps = r_debug_map_list_new (); dbg->maps_user = r_debug_map_list_new (); r_debug_signal_init (dbg); if (hard) { dbg->bp = r_bp_new (); r_debug_plugin_init (dbg); dbg->bp->iob.init = false; } return dbg; } static int free_tracenodes_entry (RDebug *dbg, const char *k, const char *v) { ut64 v_num = r_num_get (NULL, v); free((void *)(size_t)v_num); return true; } R_API void r_debug_tracenodes_reset (RDebug *dbg) { sdb_foreach (dbg->tracenodes, (SdbForeachCallback)free_tracenodes_entry, dbg); sdb_reset (dbg->tracenodes); } R_API RDebug *r_debug_free(RDebug *dbg) { if (dbg) { // TODO: free it correctly.. we must ensure this is an instance and not a reference.. r_bp_free (dbg->bp); //r_reg_free(&dbg->reg); r_list_free (dbg->snaps); r_list_free (dbg->maps); r_list_free (dbg->maps_user); r_list_free (dbg->threads); r_num_free (dbg->num); sdb_free (dbg->sgnls); r_tree_free (dbg->tree); sdb_foreach (dbg->tracenodes, (SdbForeachCallback)free_tracenodes_entry, dbg); sdb_free (dbg->tracenodes); //r_debug_plugin_free(); free (dbg->btalgo); r_debug_trace_free (dbg->trace); dbg->trace = NULL; free (dbg->arch); free (dbg->glob_libs); free (dbg->glob_unlibs); free (dbg); } return NULL; } R_API int r_debug_attach(RDebug *dbg, int pid) { int ret = false; if (dbg && dbg->h && dbg->h->attach) { ret = dbg->h->attach (dbg, pid); if (ret != -1) { //eprintf ("Attached debugger to pid = %d, tid = %d\n", pid, ret); r_debug_select (dbg, pid, ret); //dbg->pid, dbg->tid); } } return ret; } /* stop execution of child process */ R_API int r_debug_stop(RDebug *dbg) { if (dbg && dbg->h && dbg->h->stop) { return dbg->h->stop (dbg); } return false; } R_API bool r_debug_set_arch(RDebug *dbg, const char *arch, int bits) { if (arch && dbg && dbg->h) { bool rc = r_sys_arch_match (dbg->h->arch, arch); if (rc) { switch (bits) { case 32: if (dbg->h->bits & R_SYS_BITS_32) { dbg->bits = R_SYS_BITS_32; } break; case 64: dbg->bits = R_SYS_BITS_64; break; } if (!dbg->h->bits) { dbg->bits = dbg->h->bits; } else if (!(dbg->h->bits & dbg->bits)) { dbg->bits = dbg->h->bits & R_SYS_BITS_64; if (!dbg->bits) { dbg->bits = dbg->h->bits & R_SYS_BITS_32; } if (!dbg->bits) { dbg->bits = R_SYS_BITS_32; } } free (dbg->arch); dbg->arch = strdup (arch); return true; } } return false; } /* * Save 4096 bytes from %esp * TODO: Add support for reverse stack architectures * Also known as r_debug_inject() */ R_API ut64 r_debug_execute(RDebug *dbg, const ut8 *buf, int len, int restore) { int orig_sz; ut8 stackbackup[4096]; ut8 *backup, *orig = NULL; RRegItem *ri, *risp, *ripc; ut64 rsp, rpc, ra0 = 0LL; if (r_debug_is_dead (dbg)) return false; ripc = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_PC], R_REG_TYPE_GPR); risp = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_SP], R_REG_TYPE_GPR); if (ripc) { r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false); orig = r_reg_get_bytes (dbg->reg, -1, &orig_sz); if (orig == NULL) { eprintf ("Cannot get register arena bytes\n"); return 0LL; } rpc = r_reg_get_value (dbg->reg, ripc); rsp = r_reg_get_value (dbg->reg, risp); backup = malloc (len); if (backup == NULL) { free (orig); return 0LL; } dbg->iob.read_at (dbg->iob.io, rpc, backup, len); dbg->iob.read_at (dbg->iob.io, rsp, stackbackup, len); r_bp_add_sw (dbg->bp, rpc+len, dbg->bpsize, R_BP_PROT_EXEC); /* execute code here */ dbg->iob.write_at (dbg->iob.io, rpc, buf, len); //r_bp_add_sw (dbg->bp, rpc+len, 4, R_BP_PROT_EXEC); r_debug_continue (dbg); //r_bp_del (dbg->bp, rpc+len); /* TODO: check if stopped in breakpoint or not */ r_bp_del (dbg->bp, rpc+len); dbg->iob.write_at (dbg->iob.io, rpc, backup, len); if (restore) { dbg->iob.write_at (dbg->iob.io, rsp, stackbackup, len); } r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false); ri = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_A0], R_REG_TYPE_GPR); ra0 = r_reg_get_value (dbg->reg, ri); if (restore) { r_reg_read_regs (dbg->reg, orig, orig_sz); } else { r_reg_set_value (dbg->reg, ripc, rpc); } r_debug_reg_sync (dbg, R_REG_TYPE_GPR, true); free (backup); free (orig); eprintf ("ra0=0x%08"PFMT64x"\n", ra0); } else eprintf ("r_debug_execute: Cannot get program counter\n"); return (ra0); } R_API int r_debug_startv(struct r_debug_t *dbg, int argc, char **argv) { /* TODO : r_debug_startv unimplemented */ return false; } R_API int r_debug_start(RDebug *dbg, const char *cmd) { /* TODO: this argc/argv parser is done in r_io */ // TODO: parse cmd and generate argc and argv return false; } R_API int r_debug_detach(RDebug *dbg, int pid) { if (dbg->h && dbg->h->detach) return dbg->h->detach (dbg, pid); return false; } R_API int r_debug_select(RDebug *dbg, int pid, int tid) { if (tid < 0) { tid = pid; } if (pid != -1 && tid != -1) { if (pid != dbg->pid || tid != dbg->tid) eprintf ("attach %d %d\n", pid, tid); } else { if (dbg->pid != -1) eprintf ("Child %d is dead\n", dbg->pid); } if (dbg->h && dbg->h->select && !dbg->h->select (pid, tid)) return false; r_io_system (dbg->iob.io, sdb_fmt (0, "pid %d", pid)); dbg->pid = pid; dbg->tid = tid; return true; } R_API const char *r_debug_reason_to_string(int type) { switch (type) { case R_DEBUG_REASON_DEAD: return "dead"; case R_DEBUG_REASON_ABORT: return "abort"; case R_DEBUG_REASON_SEGFAULT: return "segfault"; case R_DEBUG_REASON_NONE: return "none"; case R_DEBUG_REASON_SIGNAL: return "signal"; case R_DEBUG_REASON_BREAKPOINT: return "breakpoint"; case R_DEBUG_REASON_TRACEPOINT: return "tracepoint"; case R_DEBUG_REASON_READERR: return "read-error"; case R_DEBUG_REASON_WRITERR: return "write-error"; case R_DEBUG_REASON_DIVBYZERO: return "div-by-zero"; case R_DEBUG_REASON_ILLEGAL: return "illegal"; case R_DEBUG_REASON_UNKNOWN: return "unknown"; case R_DEBUG_REASON_ERROR: return "error"; case R_DEBUG_REASON_NEW_PID: return "new-pid"; case R_DEBUG_REASON_NEW_TID: return "new-tid"; case R_DEBUG_REASON_NEW_LIB: return "new-lib"; case R_DEBUG_REASON_EXIT_PID: return "exit-pid"; case R_DEBUG_REASON_EXIT_TID: return "exit-tid"; case R_DEBUG_REASON_EXIT_LIB: return "exit-lib"; case R_DEBUG_REASON_TRAP: return "trap"; case R_DEBUG_REASON_SWI: return "software-interrupt"; case R_DEBUG_REASON_INT: return "interrupt"; case R_DEBUG_REASON_FPU: return "fpu"; case R_DEBUG_REASON_STEP: return "step"; } return "unhandled"; } R_API RDebugReasonType r_debug_stop_reason(RDebug *dbg) { // TODO: return reason to stop debugging // - new process // - trap instruction // - illegal instruction // - fpu exception // return dbg->reason return dbg->reason.type; } /* * wait for an event to happen on the selected pid/tid * * Returns R_DEBUG_REASON_* */ R_API RDebugReasonType r_debug_wait(RDebug *dbg) { RDebugReasonType reason = R_DEBUG_REASON_ERROR; if (!dbg) { return reason; } /* default to unknown */ dbg->reason.type = R_DEBUG_REASON_UNKNOWN; if (r_debug_is_dead (dbg)) { return R_DEBUG_REASON_DEAD; } /* if our debugger plugin has wait */ if (dbg->h && dbg->h->wait) { reason = dbg->h->wait (dbg, dbg->pid); if (reason == R_DEBUG_REASON_DEAD) { eprintf ("\n==> Process finished\n\n"); // XXX(jjd): TODO: handle fallback or something else //r_debug_select (dbg, -1, -1); return R_DEBUG_REASON_DEAD; } /* propagate errors from the plugin */ if (reason == R_DEBUG_REASON_ERROR) { return R_DEBUG_REASON_ERROR; } /* read general purpose registers */ if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) { return R_DEBUG_REASON_ERROR; } /* if the underlying stop reason is a breakpoint, call the handlers */ if (reason == R_DEBUG_REASON_BREAKPOINT || reason == R_DEBUG_REASON_STEP) { RRegItem *pc_ri; RBreakpointItem *b = NULL; ut64 pc; /* get the program coounter */ pc_ri = r_reg_get (dbg->reg, dbg->reg->name[R_REG_NAME_PC], -1); if (!pc_ri) { /* couldn't find PC?! */ return R_DEBUG_REASON_ERROR; } /* get the value */ pc = r_reg_get_value (dbg->reg, pc_ri); if (!r_debug_bp_hit (dbg, pc_ri, pc, &b)) { return R_DEBUG_REASON_ERROR; } /* if we hit a tracing breakpoint, we need to continue in * whatever mode the user desired. */ if (b && b->trace) { reason = R_DEBUG_REASON_TRACEPOINT; } } dbg->reason.type = reason; if (reason == R_DEBUG_REASON_SIGNAL && dbg->reason.signum != -1) { /* handle signal on continuations here */ eprintf ("got signal...\n"); int what = r_debug_signal_what (dbg, dbg->reason.signum); const char *name = r_debug_signal_resolve_i (dbg, dbg->reason.signum); if (name && strcmp ("SIGTRAP", name)) { r_cons_printf ("[+] signal %d aka %s received %d\n", dbg->reason.signum, name, what); } } } return reason; } R_API int r_debug_step_soft(RDebug *dbg) { ut8 buf[32]; ut64 pc, sp, r; ut64 next[2]; ut64 memval; RAnalOp op; int br, i, ret; union { ut64 r64; ut32 r32[2]; } sp_top; if (dbg->recoil_mode == R_DBG_RECOIL_NONE) { dbg->recoil_mode = R_DBG_RECOIL_STEP; } if (r_debug_is_dead (dbg)) { return false; } pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); sp = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_SP]); if (!dbg->iob.read_at) { return false; } if (dbg->iob.read_at (dbg->iob.io, pc, buf, sizeof (buf)) < 0) { return false; } if (!r_anal_op (dbg->anal, &op, pc, buf, sizeof (buf))) { return false; } if (op.type == R_ANAL_OP_TYPE_ILL) { return false; } switch (op.type) { case R_ANAL_OP_TYPE_RET: dbg->iob.read_at (dbg->iob.io, sp, (ut8 *)&sp_top, 8); next[0] = (dbg->bits == R_SYS_BITS_32) ? sp_top.r32[0] : sp_top.r64; br = 1; break; case R_ANAL_OP_TYPE_CJMP: case R_ANAL_OP_TYPE_CCALL: next[0] = op.jump; next[1] = op.fail; br = 2; break; case R_ANAL_OP_TYPE_MJMP: if (!op.ireg) { next[0] = op.jump; br = 1; } else { r = r_debug_reg_get (dbg,op.ireg); if (dbg->iob.read_at (dbg->iob.io, r*op.scale + op.disp, (ut8*)&memval, 8) <0 ) { next[0] = op.addr + op.size; br = 1; break; } next[0] = memval; br = 1; } break; case R_ANAL_OP_TYPE_CALL: case R_ANAL_OP_TYPE_JMP: next[0] = op.jump; br = 1; break; case R_ANAL_OP_TYPE_UCALL: r = r_debug_reg_get (dbg,op.ireg); if (dbg->iob.read_at (dbg->iob.io, r*op.scale + op.disp, (ut8*)&memval, 8) <0 ) { next[0] = op.addr + op.size; br = 1; break; } next[0] = memval; br = 1; break; default: next[0] = op.addr + op.size; br = 1; break; } for (i = 0; i < br; i++) { RBreakpointItem *bpi = r_bp_add_sw (dbg->bp, next[i], dbg->bpsize, R_BP_PROT_EXEC); if (bpi) { bpi->swstep = true; } } ret = r_debug_continue (dbg); for (i = 0; i < br; i++) { r_bp_del (dbg->bp, next[i]); } return ret; } R_API int r_debug_step_hard(RDebug *dbg) { RDebugReasonType reason; dbg->reason.type = R_DEBUG_REASON_STEP; if (r_debug_is_dead (dbg)) { return false; } /* only handle recoils when not already in recoil mode. */ if (dbg->recoil_mode == R_DBG_RECOIL_NONE) { /* handle the stage-2 of breakpoints */ if (!r_debug_recoil (dbg, R_DBG_RECOIL_STEP)) { return false; } /* recoil already stepped once, so we don't step again. */ if (dbg->recoil_mode == R_DBG_RECOIL_STEP) { dbg->recoil_mode = R_DBG_RECOIL_NONE; return true; } } if (!dbg->h->step (dbg)) { return false; } reason = r_debug_wait (dbg); /* TODO: handle better */ if (reason == R_DEBUG_REASON_ERROR) { return false; } if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) { return false; } return true; } R_API int r_debug_step(RDebug *dbg, int steps) { int ret, steps_taken = 0; /* who calls this without giving a positive number? */ if (steps < 1) { steps = 1; } if (!dbg || !dbg->h) { return steps_taken; } if (r_debug_is_dead (dbg)) { return steps_taken; } dbg->reason.type = R_DEBUG_REASON_STEP; for (; steps_taken < steps; steps_taken++) { if (dbg->swstep) { ret = r_debug_step_soft (dbg); } else { ret = r_debug_step_hard (dbg); } if (!ret) { eprintf ("Stepping failed!\n"); return steps_taken; } dbg->steps++; dbg->reason.type = R_DEBUG_REASON_STEP; } return steps_taken; } R_API void r_debug_io_bind(RDebug *dbg, RIO *io) { r_io_bind (io, &dbg->bp->iob); r_io_bind (io, &dbg->iob); } R_API int r_debug_step_over(RDebug *dbg, int steps) { RAnalOp op; ut64 buf_pc, pc, ins_size; ut8 buf[DBG_BUF_SIZE]; int steps_taken = 0; if (r_debug_is_dead (dbg)) { return steps_taken; } if (steps < 1) { steps = 1; } if (dbg->h && dbg->h->step_over) { for (; steps_taken < steps; steps_taken++) if (!dbg->h->step_over (dbg)) return steps_taken; return steps_taken; } if (!dbg->anal || !dbg->reg) return steps_taken; // Initial refill buf_pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf)); for (; steps_taken < steps; steps_taken++) { pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); // Try to keep the buffer full if (pc - buf_pc > sizeof (buf)) { buf_pc = pc; dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf)); } // Analyze the opcode if (!r_anal_op (dbg->anal, &op, pc, buf + (pc - buf_pc), sizeof (buf) - (pc - buf_pc))) { eprintf ("Decode error at %"PFMT64x"\n", pc); return steps_taken; } if (op.fail == -1) { ins_size = pc + op.size; } else { // Use op.fail here instead of pc+op.size to enforce anal backends to fill in this field ins_size = op.fail; } // Skip over all the subroutine calls if (op.type == R_ANAL_OP_TYPE_CALL || op.type == R_ANAL_OP_TYPE_CCALL || op.type == R_ANAL_OP_TYPE_UCALL || op.type == R_ANAL_OP_TYPE_UCCALL) { if (!r_debug_continue_until (dbg, ins_size)) { eprintf ("Could not step over call @ 0x%"PFMT64x"\n", pc); return steps_taken; } } else if ((op.prefix & (R_ANAL_OP_PREFIX_REP | R_ANAL_OP_PREFIX_REPNE | R_ANAL_OP_PREFIX_LOCK))) { //eprintf ("REP: skip to next instruction...\n"); if (!r_debug_continue_until (dbg, ins_size)) { eprintf ("step over failed over rep\n"); return steps_taken; } } else { r_debug_step (dbg, 1); } } return steps_taken; } R_API int r_debug_continue_kill(RDebug *dbg, int sig) { RDebugReasonType reason, ret = false; if (!dbg) { return false; } #if __WINDOWS__ r_cons_break (w32_break_process, dbg); #endif repeat: if (r_debug_is_dead (dbg)) { return false; } if (dbg->h && dbg->h->cont) { /* handle the stage-2 of breakpoints */ if (!r_debug_recoil (dbg, R_DBG_RECOIL_CONTINUE)) return false; /* tell the inferior to go! */ ret = dbg->h->cont (dbg, dbg->pid, dbg->tid, sig); //XXX(jjd): why? //dbg->reason.signum = 0; reason = r_debug_wait (dbg); #if __WINDOWS__ if (reason != R_DEBUG_REASON_DEAD) { // XXX(jjd): returning a thread id?! ret = dbg->tid; } if (reason == R_DEBUG_REASON_NEW_LIB || reason == R_DEBUG_REASON_EXIT_LIB) { goto repeat; } #endif /* if continuing killed the inferior, we won't be able to get * the registers.. */ if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) { return false; } /* if we hit a tracing breakpoint, we need to continue in * whatever mode the user desired. */ if (reason == R_DEBUG_REASON_TRACEPOINT) { r_debug_step (dbg, 1); goto repeat; } /* choose the thread that was returned from the continue function */ // XXX(jjd): there must be a cleaner way to do this... r_debug_select (dbg, dbg->pid, ret); sig = 0; // clear continuation after signal if needed /* handle general signals here based on the return from the wait * function */ if (reason == R_DEBUG_REASON_SIGNAL && dbg->reason.signum != -1) { int what = r_debug_signal_what (dbg, dbg->reason.signum); if (what & R_DBG_SIGNAL_CONT) { sig = dbg->reason.signum; eprintf ("Continue into the signal %d handler\n", sig); goto repeat; } else if (what & R_DBG_SIGNAL_SKIP) { // skip signal. requires skipping one instruction ut8 buf[64]; RAnalOp op = {0}; ut64 pc = r_debug_reg_get (dbg, "PC"); dbg->iob.read_at (dbg->iob.io, pc, buf, sizeof (buf)); r_anal_op (dbg->anal, &op, pc, buf, sizeof (buf)); if (op.size > 0) { const char *signame = r_debug_signal_resolve_i (dbg, dbg->reason.signum); r_debug_reg_set (dbg, "PC", pc+op.size); eprintf ("Skip signal %d handler %s\n", dbg->reason.signum, signame); goto repeat; } else { ut64 pc = r_debug_reg_get (dbg, "PC"); eprintf ("Stalled with an exception at 0x%08"PFMT64x"\n", pc); } } } } return ret; } R_API int r_debug_continue(RDebug *dbg) { return r_debug_continue_kill (dbg, 0); //dbg->reason.signum); } R_API int r_debug_continue_until_nontraced(RDebug *dbg) { eprintf ("TODO\n"); return false; } R_API int r_debug_continue_until_optype(RDebug *dbg, int type, int over) { int ret, n = 0; ut64 pc, buf_pc = 0; RAnalOp op; ut8 buf[DBG_BUF_SIZE]; if (r_debug_is_dead (dbg)) { return false; } if (!dbg->anal || !dbg->reg) { eprintf ("Undefined pointer at dbg->anal\n"); return false; } r_debug_step (dbg, 1); r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false); // Initial refill buf_pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf)); // step first, we dont want to check current optype for (;;) { if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) break; pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); // Try to keep the buffer full if (pc - buf_pc > sizeof (buf)) { buf_pc = pc; dbg->iob.read_at (dbg->iob.io, buf_pc, buf, sizeof (buf)); } // Analyze the opcode if (!r_anal_op (dbg->anal, &op, pc, buf + (pc - buf_pc), sizeof (buf) - (pc - buf_pc))) { eprintf ("Decode error at %"PFMT64x"\n", pc); return false; } if (op.type == type) break; // Step over and repeat ret = over ? r_debug_step_over (dbg, 1) : r_debug_step (dbg, 1); if (!ret) { eprintf ("r_debug_step: failed\n"); break; } n++; } return n; } R_API int r_debug_continue_until(RDebug *dbg, ut64 addr) { int has_bp; ut64 pc; if (r_debug_is_dead (dbg)) return false; // Check if there was another breakpoint set at addr has_bp = r_bp_get_in (dbg->bp, addr, R_BP_PROT_EXEC) != NULL; if (!has_bp) r_bp_add_sw (dbg->bp, addr, dbg->bpsize, R_BP_PROT_EXEC); // Continue until the bp is reached for (;;) { if (r_debug_is_dead (dbg)) break; pc = r_debug_reg_get (dbg, dbg->reg->name[R_REG_NAME_PC]); if (pc == addr) break; if (r_bp_get_at (dbg->bp, pc)) break; r_debug_continue (dbg); } // Clean up if needed if (!has_bp) { r_bp_del (dbg->bp, addr); } return true; } static int show_syscall(RDebug *dbg, const char *sysreg) { const char *sysname; char regname[8]; int reg, i, args; RSyscallItem *si; reg = (int)r_debug_reg_get (dbg, sysreg); si = r_syscall_get (dbg->anal->syscall, reg, -1); if (si) { sysname = si->name? si->name: "unknown"; args = si->args; } else { sysname = "unknown"; args = 3; } eprintf ("--> %s 0x%08"PFMT64x" syscall %d %s (", sysreg, r_debug_reg_get (dbg, "PC"), reg, sysname); for (i=0; i-0xffff)) { eprintf ("%"PFMT64d"%s", val, (i+1==args)?"":" "); } else { eprintf ("0x%"PFMT64x"%s", val, (i+1==args)?"":" "); } } eprintf (")\n"); r_syscall_item_free (si); return reg; } R_API int r_debug_continue_syscalls(RDebug *dbg, int *sc, int n_sc) { int i, err, reg, ret = false; if (!dbg || !dbg->h || r_debug_is_dead (dbg)) return false; if (!dbg->h->contsc) { /* user-level syscall tracing */ r_debug_continue_until_optype (dbg, R_ANAL_OP_TYPE_SWI, 0); return show_syscall (dbg, "A0"); } if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) { eprintf ("--> cannot read registers\n"); return -1; } reg = (int)r_debug_reg_get_err (dbg, "SN", &err); if (err) { eprintf ("Cannot find 'sn' register for current arch-os.\n"); return -1; } for (;;) { RDebugReasonType reason; if (r_cons_singleton()->breaked) break; #if __linux__ // step is needed to avoid dupped contsc results /* XXX(jjd): actually one stop is before the syscall, the other is * after. this allows you to inspect the arguments before and the * return value after... */ r_debug_step (dbg, 1); #endif dbg->h->contsc (dbg, dbg->pid, 0); // TODO handle return value // wait until continuation reason = r_debug_wait (dbg); if (reason == R_DEBUG_REASON_DEAD || r_debug_is_dead (dbg)) { break; } if (reason != R_DEBUG_REASON_STEP) { break; } if (!r_debug_reg_sync (dbg, R_REG_TYPE_GPR, false)) { eprintf ("--> cannot sync regs, process is probably dead\n"); return -1; } reg = show_syscall (dbg, "SN"); if (n_sc == -1) { continue; } if (n_sc == 0) { break; } for (i = 0; i < n_sc; i++) { if (sc[i] == reg) { return reg; } } // TODO: must use r_core_cmd(as)..import code from rcore } return ret; } R_API int r_debug_continue_syscall(RDebug *dbg, int sc) { return r_debug_continue_syscalls (dbg, &sc, 1); } // TODO: remove from here? this is code injection! R_API int r_debug_syscall(RDebug *dbg, int num) { bool ret = true; if (dbg->h->contsc) { ret = dbg->h->contsc (dbg, dbg->pid, num); } eprintf ("TODO: show syscall information\n"); /* r2rc task? ala inject? */ return (int)ret; } R_API int r_debug_kill(RDebug *dbg, int pid, int tid, int sig) { if (r_debug_is_dead (dbg)) return false; if (dbg->h && dbg->h->kill) { return dbg->h->kill (dbg, pid, tid, sig); } eprintf ("Backend does not implement kill()\n"); return false; } R_API RList *r_debug_frames(RDebug *dbg, ut64 at) { if (dbg && dbg->h && dbg->h->frames) { return dbg->h->frames (dbg, at); } return NULL; } /* TODO: Implement fork and clone */ R_API int r_debug_child_fork(RDebug *dbg) { //if (dbg && dbg->h && dbg->h->frames) //return dbg->h->frames (dbg); return 0; } R_API int r_debug_child_clone(RDebug *dbg) { //if (dbg && dbg->h && dbg->h->frames) //return dbg->h->frames (dbg); return 0; } R_API int r_debug_is_dead(RDebug *dbg) { int is_dead = (dbg->pid == -1); if (!is_dead && dbg->h && dbg->h->kill) { is_dead = !dbg->h->kill (dbg, dbg->pid, false, 0); } if (is_dead) { dbg->reason.type = R_DEBUG_REASON_DEAD; } return is_dead; } R_API int r_debug_map_protect(RDebug *dbg, ut64 addr, int size, int perms) { if (dbg && dbg->h && dbg->h->map_protect) { return dbg->h->map_protect (dbg, addr, size, perms); } return false; } R_API void r_debug_drx_list(RDebug *dbg) { if (dbg && dbg->h && dbg->h->drx) { dbg->h->drx (dbg, 0, 0, 0, 0, 0); } } R_API int r_debug_drx_set(RDebug *dbg, int idx, ut64 addr, int len, int rwx, int g) { if (dbg && dbg->h && dbg->h->drx) { return dbg->h->drx (dbg, idx, addr, len, rwx, g); } return false; } R_API int r_debug_drx_unset(RDebug *dbg, int idx) { if (dbg && dbg->h && dbg->h->drx) { return dbg->h->drx (dbg, idx, 0, -1, 0, 0); } return false; }