/* * The contents of this file are subject to the Mozilla Public * License Version 1.1 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or * implied. See the License for the specific language governing * rights and limitations under the License. * * The Original Code is SHA 180-1 Reference Implementation (Compact version) * * The Initial Developer of the Original Code is Paul Kocher of * Cryptography Research. Portions created by Paul Kocher are * Copyright (C) 1995-9 by Cryptography Research, Inc. All * Rights Reserved. * * Contributor(s): * * Paul Kocher * * Alternatively, the contents of this file may be used under the * terms of the GNU General Public License Version 2 or later (the * "GPL"), in which case the provisions of the GPL are applicable * instead of those above. If you wish to allow use of your * version of this file only under the terms of the GPL and not to * allow others to use your version of this file under the MPL, * indicate your decision by deleting the provisions above and * replace them with the notice and other provisions required by * the GPL. If you do not delete the provisions above, a recipient * may use your version of this file under either the MPL or the * GPL. */ #include "r_hash.h" #include "sha1.h" #define SHA_ROT(X, n) (((X) << (n)) | ((X) >> (32 - (n)))) static void shaHashBlock(R_SHA_CTX *ctx) { int t; unsigned int A, B, C, D, E, TEMP; for (t = 16; t <= 79; t++) { ctx->W[t] = SHA_ROT (ctx->W[t - 3] ^ ctx->W[t - 8] ^ ctx->W[t - 14] ^ ctx->W[t - 16], 1); } A = ctx->H[0]; B = ctx->H[1]; C = ctx->H[2]; D = ctx->H[3]; E = ctx->H[4]; for (t = 0; t <= 19; t++) { TEMP = SHA_ROT (A, 5) + (((C ^ D) & B) ^ D) + E + ctx->W[t] + 0x5a827999; E = D; D = C; C = SHA_ROT (B, 30); B = A; A = TEMP; } for (t = 20; t <= 39; t++) { TEMP = SHA_ROT (A, 5) + (B ^ C ^ D) + E + ctx->W[t] + 0x6ed9eba1; E = D; D = C; C = SHA_ROT (B, 30); B = A; A = TEMP; } for (t = 40; t <= 59; t++) { TEMP = SHA_ROT (A, 5) + ((B & C) | (D & (B | C))) + E + ctx->W[t] + 0x8f1bbcdc; E = D; D = C; C = SHA_ROT (B, 30); B = A; A = TEMP; } for (t = 60; t <= 79; t++) { TEMP = SHA_ROT (A, 5) + (B ^ C ^ D) + E + ctx->W[t] + 0xca62c1d6; E = D; D = C; C = SHA_ROT (B, 30); B = A; A = TEMP; } ctx->H[0] += A; ctx->H[1] += B; ctx->H[2] += C; ctx->H[3] += D; ctx->H[4] += E; } void SHA1_Init(R_SHA_CTX *ctx) { int i; ctx->lenW = 0; ctx->sizeHi = ctx->sizeLo = 0; // Initialize H with the magic constants (see FIPS180 for constants) ctx->H[0] = 0x67452301; ctx->H[1] = 0xefcdab89; ctx->H[2] = 0x98badcfe; ctx->H[3] = 0x10325476; ctx->H[4] = 0xc3d2e1f0; for (i = 0; i < 80; i++) { ctx->W[i] = 0; } } void SHA1_Update(R_SHA_CTX *ctx, const void *_dataIn, int len) { const ut8 *dataIn = _dataIn; int i; // Read the data into W and process blocks as they get full for (i = 0; i < len; i++) { ctx->W[ctx->lenW / 4] <<= 8; ctx->W[ctx->lenW / 4] |= (unsigned int) dataIn[i]; if ((++ctx->lenW) % 64 == 0) { shaHashBlock (ctx); ctx->lenW = 0; } ctx->sizeLo += 8; ctx->sizeHi += (ctx->sizeLo < 8); } } void SHA1_Final(ut8 hashout[20], R_SHA_CTX *ctx) { ut8 pad0x80 = 0x80; ut8 pad0x00 = 0x00; ut8 padlen[8]; int i; /* Pad with a binary 1 (e.g. 0x80), then zeroes, then length */ padlen[0] = (ut8) ((ctx->sizeHi >> 24) & 255); padlen[1] = (ut8) ((ctx->sizeHi >> 16) & 255); padlen[2] = (ut8) ((ctx->sizeHi >> 8) & 255); padlen[3] = (ut8) ((ctx->sizeHi >> 0) & 255); padlen[4] = (ut8) ((ctx->sizeLo >> 24) & 255); padlen[5] = (ut8) ((ctx->sizeLo >> 16) & 255); padlen[6] = (ut8) ((ctx->sizeLo >> 8) & 255); padlen[7] = (ut8) ((ctx->sizeLo >> 0) & 255); SHA1_Update (ctx, &pad0x80, 1); while (ctx->lenW != 56) { SHA1_Update (ctx, &pad0x00, 1); } SHA1_Update (ctx, padlen, 8); /* Output hash */ for (i = 0; i < 20; i++) { hashout[i] = (ut8) (ctx->H[i / 4] >> 24); ctx->H[i / 4] <<= 8; } /* Re-initialize the context (also zeroizes contents) */ SHA1_Init (ctx); }