radare2/libr/anal/block.c

835 lines
23 KiB
C

/* radare - LGPL - Copyright 2019-2020 - pancake, thestr4ng3r */
#include <r_anal.h>
#include <sdb/ht_uu.h>
#include <assert.h>
#define unwrap(rbnode) container_of (rbnode, RAnalBlock, _rb)
static void __max_end(RBNode *node) {
RAnalBlock *block = unwrap (node);
block->_max_end = block->addr + block->size;
int i;
for (i = 0; i < 2; i++) {
if (node->child[i]) {
ut64 end = unwrap (node->child[i])->_max_end;
if (end > block->_max_end) {
block->_max_end = end;
}
}
}
}
static int __bb_addr_cmp(const void *incoming, const RBNode *in_tree, void *user) {
ut64 incoming_addr = *(ut64 *)incoming;
const RAnalBlock *in_tree_block = container_of (in_tree, const RAnalBlock, _rb);
if (incoming_addr < in_tree_block->addr) {
return -1;
}
if (incoming_addr > in_tree_block->addr) {
return 1;
}
return 0;
}
#define D if (anal && anal->verbose)
R_API void r_anal_block_ref(RAnalBlock *bb) {
assert (bb->ref > 0); // 0-refd must already be freed.
bb->ref++;
}
#define DFLT_NINSTR 3
static RAnalBlock *block_new(RAnal *a, ut64 addr, ut64 size) {
RAnalBlock *block = R_NEW0 (RAnalBlock);
if (!block) {
return NULL;
}
block->addr = addr;
block->size = size;
block->anal = a;
block->ref = 1;
block->jump = UT64_MAX;
block->fail = UT64_MAX;
block->op_pos = R_NEWS0 (ut16, DFLT_NINSTR);
block->op_pos_size = DFLT_NINSTR;
block->stackptr = 0;
block->parent_stackptr = INT_MAX;
block->cmpval = UT64_MAX;
block->fcns = r_list_new ();
return block;
}
static void block_free(RAnalBlock *block) {
if (!block) {
return;
}
r_anal_cond_free (block->cond);
free (block->fingerprint);
r_anal_diff_free (block->diff);
free (block->op_bytes);
r_anal_switch_op_free (block->switch_op);
r_list_free (block->fcns);
free (block->op_pos);
free (block->parent_reg_arena);
free (block);
}
void __block_free_rb(RBNode *node, void *user) {
RAnalBlock *block = unwrap (node);
block_free (block);
}
R_API RAnalBlock *r_anal_get_block_at(RAnal *anal, ut64 addr) {
RBNode *node = r_rbtree_find (anal->bb_tree, &addr, __bb_addr_cmp, NULL);
return node? unwrap (node): NULL;
}
// This is a special case of what r_interval_node_all_in() does
static bool all_in(RAnalBlock *node, ut64 addr, RAnalBlockCb cb, void *user) {
while (node && addr < node->addr) {
// less than the current node, but might still be contained further down
node = unwrap (node->_rb.child[0]);
}
if (!node) {
return true;
}
if (addr >= node->_max_end) {
return true;
}
if (addr < node->addr + node->size) {
if (!cb (node, user)) {
return false;
}
}
// This can be done more efficiently by building the stack manually
if (!all_in (unwrap (node->_rb.child[0]), addr, cb, user)) {
return false;
}
if (!all_in (unwrap (node->_rb.child[1]), addr, cb, user)) {
return false;
}
return true;
}
R_API bool r_anal_blocks_foreach_in(RAnal *anal, ut64 addr, RAnalBlockCb cb, void *user) {
return all_in (anal->bb_tree ? unwrap (anal->bb_tree) : NULL, addr, cb, user);
}
static bool block_list_cb(RAnalBlock *block, void *user) {
RList *list = user;
r_anal_block_ref (block);
r_list_push (list, block);
return true;
}
R_API RList *r_anal_get_blocks_in(RAnal *anal, ut64 addr) {
RList *list = r_list_newf ((RListFree)r_anal_block_unref);
if (list) {
r_anal_blocks_foreach_in (anal, addr, block_list_cb, list);
}
return list;
}
static void all_intersect(RAnalBlock *node, ut64 addr, ut64 size, RAnalBlockCb cb, void *user) {
ut64 end = addr + size;
while (node && end <= node->addr) {
// less than the current node, but might still be contained further down
node = unwrap (node->_rb.child[0]);
}
if (!node) {
return;
}
if (addr >= node->_max_end) {
return;
}
if (addr < node->addr + node->size) {
cb (node, user);
}
// This can be done more efficiently by building the stack manually
all_intersect (unwrap (node->_rb.child[0]), addr, size, cb, user);
all_intersect (unwrap (node->_rb.child[1]), addr, size, cb, user);
}
R_API void r_anal_blocks_foreach_intersect(RAnal *anal, ut64 addr, ut64 size, RAnalBlockCb cb, void *user) {
all_intersect (anal->bb_tree ? unwrap (anal->bb_tree) : NULL, addr, size, cb, user);
}
R_API RList *r_anal_get_blocks_intersect(RAnal *anal, ut64 addr, ut64 size) {
RList *list = r_list_newf ((RListFree)r_anal_block_unref);
if (!list) {
return NULL;
}
r_anal_blocks_foreach_intersect (anal, addr, size, block_list_cb, list);
return list;
}
R_API RAnalBlock *r_anal_create_block(RAnal *anal, ut64 addr, ut64 size) {
if (r_anal_get_block_at (anal, addr)) {
return NULL;
}
RAnalBlock *block = block_new (anal, addr, size);
if (!block) {
return NULL;
}
r_rbtree_aug_insert (&anal->bb_tree, &block->addr, &block->_rb, __bb_addr_cmp, NULL, __max_end);
return block;
}
R_API void r_anal_delete_block(RAnalBlock *bb) {
r_anal_block_ref (bb);
while (!r_list_empty (bb->fcns)) {
r_anal_function_remove_block (r_list_first (bb->fcns), bb);
}
r_anal_block_unref (bb);
}
R_API void r_anal_block_set_size(RAnalBlock *block, ut64 size) {
if (block->size == size) {
return;
}
// Update the block's function's cached ranges
RAnalFunction *fcn;
RListIter *iter;
r_list_foreach (block->fcns, iter, fcn) {
if (fcn->meta._min != UT64_MAX && fcn->meta._max == block->addr + block->size) {
fcn->meta._max = block->addr + size;
}
}
// Do the actual resize
block->size = size;
r_rbtree_aug_update_sum (block->anal->bb_tree, &block->addr, &block->_rb, __bb_addr_cmp, NULL, __max_end);
}
R_API bool r_anal_block_relocate(RAnalBlock *block, ut64 addr, ut64 size) {
if (block->addr == addr) {
r_anal_block_set_size (block, size);
return true;
}
if (r_anal_get_block_at (block->anal, addr)) {
// Two blocks at the same addr is illegle you know...
return false;
}
// Update the block's function's cached ranges
RAnalFunction *fcn;
RListIter *iter;
r_list_foreach (block->fcns, iter, fcn) {
if (fcn->meta._min != UT64_MAX) {
if (addr + size > fcn->meta._max) {
// we extend after the maximum, so we are the maximum afterwards.
fcn->meta._max = addr + size;
} else if (block->addr + block->size == fcn->meta._max && addr + size != block->addr + block->size) {
// we were the maximum before and may not be it afterwards, not trivial to recalculate.
fcn->meta._min = UT64_MAX;
continue;
}
if (block->addr < fcn->meta._min) {
// less than the minimum, we know that we are the minimum afterwards.
fcn->meta._min = addr;
} else if (block->addr == fcn->meta._min && addr != block->addr) {
// we were the minimum before and may not be it afterwards, not trivial to recalculate.
fcn->meta._min = UT64_MAX;
}
}
}
r_rbtree_aug_delete (&block->anal->bb_tree, &block->addr, __bb_addr_cmp, NULL, NULL, NULL, __max_end);
block->addr = addr;
block->size = size;
r_rbtree_aug_insert (&block->anal->bb_tree, &block->addr, &block->_rb, __bb_addr_cmp, NULL, __max_end);
return true;
}
R_API RAnalBlock *r_anal_block_split(RAnalBlock *bbi, ut64 addr) {
RAnal *anal = bbi->anal;
r_return_val_if_fail (bbi && addr >= bbi->addr && addr < bbi->addr + bbi->size && addr != UT64_MAX, 0);
if (addr == bbi->addr) {
r_anal_block_ref (bbi); // ref to be consistent with splitted return refcount
return bbi;
}
if (r_anal_get_block_at (bbi->anal, addr)) {
// can't have two bbs at the same addr
return NULL;
}
// create the second block
RAnalBlock *bb = block_new (anal, addr, bbi->addr + bbi->size - addr);
if (!bb) {
return NULL;
}
bb->jump = bbi->jump;
bb->fail = bbi->fail;
bb->parent_stackptr = bbi->stackptr;
// resize the first block
r_anal_block_set_size (bbi, addr - bbi->addr);
bbi->jump = addr;
bbi->fail = UT64_MAX;
// insert the second block into the tree
r_rbtree_aug_insert (&anal->bb_tree, &bb->addr, &bb->_rb, __bb_addr_cmp, NULL, __max_end);
// insert the second block into all functions of the first
RListIter *iter;
RAnalFunction *fcn;
r_list_foreach (bbi->fcns, iter, fcn) {
r_anal_function_add_block (fcn, bb);
}
// recalculate offset of instructions in both bb and bbi
int i;
i = 0;
while (i < bbi->ninstr && r_anal_bb_offset_inst (bbi, i) < bbi->size) {
i++;
}
int new_bbi_instr = i;
if (bb->addr - bbi->addr == r_anal_bb_offset_inst (bbi, i)) {
bb->ninstr = 0;
while (i < bbi->ninstr) {
ut16 off_op = r_anal_bb_offset_inst (bbi, i);
if (off_op >= bbi->size + bb->size) {
break;
}
r_anal_bb_set_offset (bb, bb->ninstr, off_op - bbi->size);
bb->ninstr++;
i++;
}
}
bbi->ninstr = new_bbi_instr;
return bb;
}
R_API bool r_anal_block_merge(RAnalBlock *a, RAnalBlock *b) {
if (!r_anal_block_is_contiguous (a, b)) {
return false;
}
// check if function lists are identical
if (r_list_length (a->fcns) != r_list_length (b->fcns)) {
return false;
}
RAnalFunction *fcn;
RListIter *iter;
r_list_foreach (a->fcns, iter, fcn) {
if (!r_list_contains (b->fcns, fcn)) {
return false;
}
}
// Keep a ref to b, but remove all references of b from its functions
r_anal_block_ref (b);
while (!r_list_empty (b->fcns)) {
r_anal_function_remove_block (r_list_first (b->fcns), b);
}
// merge ops from b into a
size_t i;
for (i = 0; i < b->ninstr; i++) {
r_anal_bb_set_offset (a, a->ninstr++, a->size + r_anal_bb_offset_inst (b, i));
}
// merge everything else into a
a->size += b->size;
a->jump = b->jump;
a->fail = b->fail;
// kill b completely
r_rbtree_aug_delete (&a->anal->bb_tree, &b->addr, __bb_addr_cmp, NULL, __block_free_rb, NULL, __max_end);
// invalidate ranges of a's functions
r_list_foreach (a->fcns, iter, fcn) {
fcn->meta._min = UT64_MAX;
}
return true;
}
R_API void r_anal_block_unref(RAnalBlock *bb) {
if (!bb) {
return;
}
assert (bb->ref > 0);
bb->ref--;
assert (bb->ref >= r_list_length (bb->fcns)); // all of the block's functions must hold a reference to it
if (bb->ref < 1) {
RAnal *anal = bb->anal;
assert (!bb->fcns || r_list_empty (bb->fcns));
r_rbtree_aug_delete (&anal->bb_tree, &bb->addr, __bb_addr_cmp, NULL, __block_free_rb, NULL, __max_end);
}
}
R_API bool r_anal_block_successor_addrs_foreach(RAnalBlock *block, RAnalAddrCb cb, void *user) {
#define CB_ADDR(addr) do { \
if (addr == UT64_MAX) { \
break; \
} \
if (!cb (addr, user)) { \
return false; \
} \
} while(0);
CB_ADDR (block->jump);
CB_ADDR (block->fail);
if (block->switch_op && block->switch_op->cases) {
RListIter *iter;
RAnalCaseOp *caseop;
r_list_foreach (block->switch_op->cases, iter, caseop) {
CB_ADDR (caseop->jump);
}
}
return true;
#undef CB_ADDR
}
typedef struct r_anal_block_recurse_context_t {
RAnal *anal;
RPVector/*<RAnalBlock>*/ to_visit;
HtUP *visited;
} RAnalBlockRecurseContext;
static bool block_recurse_successor_cb(ut64 addr, void *user) {
RAnalBlockRecurseContext *ctx = user;
if (ht_up_find_kv (ctx->visited, addr, NULL)) {
// already visited
return true;
}
ht_up_insert (ctx->visited, addr, NULL);
RAnalBlock *block = r_anal_get_block_at (ctx->anal, addr);
if (!block) {
return true;
}
r_pvector_push (&ctx->to_visit, block);
return true;
}
R_API bool r_anal_block_recurse(RAnalBlock *block, RAnalBlockCb cb, void *user) {
bool breaked = false;
RAnalBlockRecurseContext ctx;
ctx.anal = block->anal;
r_pvector_init (&ctx.to_visit, NULL);
ctx.visited = ht_up_new0 ();
if (!ctx.visited) {
goto beach;
}
ht_up_insert (ctx.visited, block->addr, NULL);
r_pvector_push (&ctx.to_visit, block);
while (!r_pvector_empty (&ctx.to_visit)) {
RAnalBlock *cur = r_pvector_pop (&ctx.to_visit);
breaked = !cb (cur, user);
if (breaked) {
break;
}
r_anal_block_successor_addrs_foreach (cur, block_recurse_successor_cb, &ctx);
}
beach:
ht_up_free (ctx.visited);
r_pvector_clear (&ctx.to_visit);
return !breaked;
}
R_API bool r_anal_block_recurse_followthrough(RAnalBlock *block, RAnalBlockCb cb, void *user) {
bool breaked = false;
RAnalBlockRecurseContext ctx;
ctx.anal = block->anal;
r_pvector_init (&ctx.to_visit, NULL);
ctx.visited = ht_up_new0 ();
if (!ctx.visited) {
goto beach;
}
ht_up_insert (ctx.visited, block->addr, NULL);
r_pvector_push (&ctx.to_visit, block);
while (!r_pvector_empty (&ctx.to_visit)) {
RAnalBlock *cur = r_pvector_pop (&ctx.to_visit);
bool b = !cb (cur, user);
if (b) {
breaked = true;
} else {
r_anal_block_successor_addrs_foreach (cur, block_recurse_successor_cb, &ctx);
}
}
beach:
ht_up_free (ctx.visited);
r_pvector_clear (&ctx.to_visit);
return !breaked;
}
static bool recurse_list_cb(RAnalBlock *block, void *user) {
RList *list = user;
r_anal_block_ref (block);
r_list_push (list, block);
return true;
}
R_API RList *r_anal_block_recurse_list(RAnalBlock *block) {
RList *ret = r_list_newf ((RListFree)r_anal_block_unref);
if (ret) {
r_anal_block_recurse (block, recurse_list_cb, ret);
}
return ret;
}
R_API void r_anal_block_add_switch_case(RAnalBlock *block, ut64 switch_addr, ut64 case_addr) {
if (!block->switch_op) {
block->switch_op = r_anal_switch_op_new (switch_addr, 0, 0, 0);
}
r_anal_switch_op_add_case (block->switch_op, case_addr, 0, case_addr);
}
R_API bool r_anal_block_op_starts_at(RAnalBlock *bb, ut64 addr) {
if (!r_anal_block_contains (bb, addr)) {
return false;
}
ut64 off = addr - bb->addr;
if (off > UT16_MAX) {
return false;
}
size_t i;
for (i = 0; i < bb->ninstr; i++) {
ut16 inst_off = r_anal_bb_offset_inst (bb, i);
if (off == inst_off) {
return true;
}
}
return false;
}
typedef struct {
RAnal *anal;
RAnalBlock *cur_parent;
ut64 dst;
RPVector/*<RAnalBlock>*/ *next_visit; // accumulate block of the next level in the tree
HtUP/*<RAnalBlock>*/ *visited; // maps addrs to their previous block (or NULL for entry)
} PathContext;
static bool shortest_path_successor_cb(ut64 addr, void *user) {
PathContext *ctx = user;
if (ht_up_find_kv (ctx->visited, addr, NULL)) {
// already visited
return true;
}
ht_up_insert (ctx->visited, addr, ctx->cur_parent);
RAnalBlock *block = r_anal_get_block_at (ctx->anal, addr);
if (block) {
r_pvector_push (ctx->next_visit, block);
}
return addr != ctx->dst; // break if we found our destination
}
R_API R_NULLABLE RList/*<RAnalBlock *>*/ *r_anal_block_shortest_path(RAnalBlock *block, ut64 dst) {
RList *ret = NULL;
PathContext ctx;
ctx.anal = block->anal;
ctx.dst = dst;
// two vectors to swap cur_visit/next_visit
RPVector visit_a;
r_pvector_init (&visit_a, NULL);
RPVector visit_b;
r_pvector_init (&visit_b, NULL);
ctx.next_visit = &visit_a;
RPVector *cur_visit = &visit_b; // cur visit is the current level in the tree
ctx.visited = ht_up_new0 ();
if (!ctx.visited) {
goto beach;
}
ht_up_insert (ctx.visited, block->addr, NULL);
r_pvector_push (cur_visit, block);
// BFS
while (!r_pvector_empty (cur_visit)) {
void **it;
r_pvector_foreach (cur_visit, it) {
RAnalBlock *cur = *it;
ctx.cur_parent = cur;
r_anal_block_successor_addrs_foreach (cur, shortest_path_successor_cb, &ctx);
}
RPVector *tmp = cur_visit;
cur_visit = ctx.next_visit;
ctx.next_visit = tmp;
r_pvector_clear (ctx.next_visit);
}
// reconstruct the path
bool found = false;
RAnalBlock *prev = ht_up_find (ctx.visited, dst, &found);
RAnalBlock *dst_block = r_anal_get_block_at (block->anal, dst);
if (found && dst_block) {
ret = r_list_newf ((RListFree)r_anal_block_unref);
r_anal_block_ref (dst_block);
r_list_prepend (ret, dst_block);
while (prev) {
r_anal_block_ref (prev);
r_list_prepend (ret, prev);
prev = ht_up_find (ctx.visited, prev->addr, NULL);
}
}
beach:
ht_up_free (ctx.visited);
r_pvector_clear (&visit_a);
r_pvector_clear (&visit_b);
return ret;
}
typedef struct {
RAnalBlock *block;
bool reachable;
} NoreturnSuccessor;
static void noreturn_successor_free(HtUPKv *kv) {
NoreturnSuccessor *succ = kv->value;
r_anal_block_unref (succ->block);
free (succ);
}
static bool noreturn_successors_cb(RAnalBlock *block, void *user) {
HtUP *succs = user;
NoreturnSuccessor *succ = R_NEW0 (NoreturnSuccessor);
if (!succ) {
return false;
}
r_anal_block_ref (block);
succ->block = block;
succ->reachable = false; // reset for first iteration
ht_up_insert (succs, block->addr, succ);
return true;
}
static bool noreturn_successors_reachable_cb(RAnalBlock *block, void *user) {
HtUP *succs = user;
NoreturnSuccessor *succ = ht_up_find (succs, block->addr, NULL);
if (succ) {
succ->reachable = true;
}
return true;
}
static bool noreturn_remove_unreachable_cb(void *user, const ut64 k, const void *v) {
RAnalFunction *fcn = user;
NoreturnSuccessor *succ = (NoreturnSuccessor *)v;
if (!succ->reachable && r_list_contains (succ->block->fcns, fcn)) {
r_anal_function_remove_block (fcn, succ->block);
}
succ->reachable = false; // reset for next iteration
return true;
}
static bool noreturn_get_blocks_cb(void *user, const ut64 k, const void *v) {
RList *blocks = user;
NoreturnSuccessor *succ = (NoreturnSuccessor *)v;
r_anal_block_ref (succ->block);
r_list_push (blocks, succ->block);
return true;
}
R_API RAnalBlock *r_anal_block_chop_noreturn(RAnalBlock *block, ut64 addr) {
r_return_val_if_fail (block, NULL);
if (!r_anal_block_contains (block, addr) || addr == block->addr) {
return block;
}
r_anal_block_ref (block);
// Cache all recursive successors of block here.
// These are the candidates that we might have to remove from functions later.
HtUP *succs = ht_up_new (NULL, noreturn_successor_free, NULL); // maps block addr (ut64) => NoreturnSuccessor *
if (!succs) {
return block;
}
r_anal_block_recurse (block, noreturn_successors_cb, succs);
// Chop the block. Resize and remove all destination addrs
r_anal_block_set_size (block, addr - block->addr);
block->jump = UT64_MAX;
block->fail = UT64_MAX;
r_anal_switch_op_free (block->switch_op);
block->switch_op = NULL;
// Now, for each fcn, check which of our successors are still reachable in the function remove and the ones that are not.
RListIter *it;
RAnalFunction *fcn;
// We need to clone the list because block->fcns will get modified in the loop
RList *fcns_cpy = r_list_clone (block->fcns);
r_list_foreach (fcns_cpy, it, fcn) {
RAnalBlock *entry = r_anal_get_block_at (block->anal, fcn->addr);
if (entry && r_list_contains (entry->fcns, fcn)) {
r_anal_block_recurse (entry, noreturn_successors_reachable_cb, succs);
}
ht_up_foreach (succs, noreturn_remove_unreachable_cb, fcn);
}
r_list_free (fcns_cpy);
// This last step isn't really critical, but nice to have.
// Prepare to merge blocks with their predecessors if possible
RList merge_blocks;
r_list_init (&merge_blocks);
merge_blocks.free = (RListFree)r_anal_block_unref;
ht_up_foreach (succs, noreturn_get_blocks_cb, &merge_blocks);
// Free/unref BEFORE doing the merge!
// Some of the blocks might not be valid anymore later!
r_anal_block_unref (block);
ht_up_free (succs);
ut64 block_addr = block->addr; // save the addr to identify the block. the automerge might free it so we must not use the pointer!
// Do the actual merge
r_anal_block_automerge (&merge_blocks);
// No try to recover the pointer to the block if it still exists
RAnalBlock *ret = NULL;
for (it = merge_blocks.head; it && (block = it->data, 1); it = it->n) {
if (block->addr == block_addr) {
// block is still there
ret = block;
break;
}
}
r_list_purge (&merge_blocks);
return ret;
}
typedef struct {
HtUP *predecessors; // maps a block to its predecessor if it has exactly one, or NULL if there are multiple or the predecessor has multiple successors
HtUP *visited_blocks; // during predecessor search, mark blocks whose successors we already checked. Value is void *-casted count of successors
HtUP *blocks; // adresses of the blocks we might want to merge with their predecessors => RAnalBlock *
RAnalBlock *cur_pred;
size_t cur_succ_count;
} AutomergeCtx;
static bool automerge_predecessor_successor_cb(ut64 addr, void *user) {
AutomergeCtx *ctx = user;
ctx->cur_succ_count++;
RAnalBlock *block = ht_up_find (ctx->blocks, addr, NULL);
if (!block) {
// we shouldn't merge this one so GL_DONT_CARE
return true;
}
bool found;
RAnalBlock *pred = ht_up_find (ctx->predecessors, (ut64)block, &found);
if (found) {
if (pred) {
// only one predecessor found so far, but we are the second so there are multiple now
ht_up_update (ctx->predecessors, (ut64) block, NULL);
} // else: already found multiple predecessors, nothing to do
} else {
// no predecessor found yet, this is the only one until now
ht_up_insert (ctx->predecessors, (ut64) block, ctx->cur_pred);
}
return true;
}
static bool automerge_get_predecessors_cb(void *user, const ut64 k, const void *v) {
AutomergeCtx *ctx = user;
const RAnalFunction *fcn = (const RAnalFunction *)k;
RListIter *it;
RAnalBlock *block;
r_list_foreach (fcn->bbs, it, block) {
bool already_visited;
ht_up_find (ctx->visited_blocks, (ut64)block, &already_visited);
if (already_visited) {
continue;
}
ctx->cur_pred = block;
ctx->cur_succ_count = 0;
r_anal_block_successor_addrs_foreach (block, automerge_predecessor_successor_cb, ctx);
ht_up_insert (ctx->visited_blocks, (ut64)block, (void *)ctx->cur_succ_count);
}
return true;
}
// Try to find the contiguous predecessors of all given blocks and merge them if possible,
// i.e. if there are no other blocks that have this block as one of their successors
R_API void r_anal_block_automerge(RList *blocks) {
r_return_if_fail (blocks);
AutomergeCtx ctx = {
.predecessors = ht_up_new0 (),
.visited_blocks = ht_up_new0 (),
.blocks = ht_up_new0 ()
};
HtUP *relevant_fcns = ht_up_new0 (); // all the functions that contain some of our blocks (ht abused as a set)
RList *fixup_candidates = r_list_new (); // used further down
if (!ctx.predecessors || !ctx.visited_blocks || !ctx.blocks || !relevant_fcns || !fixup_candidates) {
goto beach;
}
// Get all the functions and prepare ctx.blocks
RListIter *it;
RAnalBlock *block;
r_list_foreach (blocks, it, block) {
RListIter *fit;
RAnalFunction *fcn;
r_list_foreach (block->fcns, fit, fcn) {
ht_up_insert (relevant_fcns, (ut64)fcn, NULL);
}
ht_up_insert (ctx.blocks, block->addr, block);
}
// Get the single predecessors we might want to merge with
ht_up_foreach (relevant_fcns, automerge_get_predecessors_cb, &ctx);
// Now finally do the merging
RListIter *tmp;
r_list_foreach_safe (blocks, it, tmp, block) {
RAnalBlock *predecessor = ht_up_find (ctx.predecessors, (ut64)block, NULL);
if (!predecessor) {
continue;
}
size_t pred_succs_count = (size_t)ht_up_find (ctx.visited_blocks, (ut64)predecessor, NULL);
if (pred_succs_count != 1) {
// we can only merge this predecessor if it has exactly one successor
continue;
}
// We are about to merge block into predecessor
// However if there are other blocks that have block as the predecessor,
// we would uaf after the merge since block will be freed.
RListIter *bit;
RAnalBlock *clock;
for (bit = it->n; bit && (clock = bit->data, 1); bit = bit->n) {
RAnalBlock *fixup_pred = ht_up_find (ctx.predecessors, (ut64)clock, NULL);
if (fixup_pred == block) {
r_list_push (fixup_candidates, clock);
}
}
if (r_anal_block_merge (predecessor, block)) { // r_anal_block_merge() does checks like contiguous, to that's fine
// block was merged into predecessor, it is now freed!
r_list_foreach (fixup_candidates, bit, clock) {
// Make sure all previous pointers to block now go to predecessor
ht_up_update (ctx.predecessors, (ut64)clock, predecessor);
}
// Remove it from the list
r_list_split_iter (blocks, it);
free (it);
}
r_list_purge (fixup_candidates);
}
beach:
ht_up_free (ctx.predecessors);
ht_up_free (ctx.visited_blocks);
ht_up_free (ctx.blocks);
ht_up_free (relevant_fcns);
r_list_free (fixup_candidates);
}